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Rashba spin-orbit coupling, strong interactions, and the BCS-BEC crossover
in the ground state of the two-dimensional Fermi Gas

Hao Shi, Peter Rosenberg, Simone Chiesa, and Shiwei Zhang
Department of Physics, The College of William and Mary, Williamsburg, Virginia 23187

The recent experimental realization of spin-orbit coupled Fermi gases provides a unique opportu-
nity to study the interplay between strong interaction and SOC in a tunable, disorder-free system.
We present here precision ab initio numerical results on the two-dimensional, unpolarized, uniform
Fermi gas with attractive interactions and Rashba SOC. Using auxiliary-field quantum Monte Carlo
and incorporating recent algorithmic advances, we carry out exact calculations on sufficiently large
system sizes to provide accurate results systematically as a function of experimental parameters.
We obtain the equation of state, the momentum distributions, the pseudo-spin correlations and the
pairing wave functions. Our results help illuminate the rich pairing structure induced by SOC, and
provide benchmarks for theory and guidance to future experimental efforts.

PACS numbers: 03.75.Ss, 05.30.Fk, 02.70.Ss, 03.75.Hh

Spin-orbit coupling (SOC) plays a fundamental role in
a number of physical contexts spanning nuclear, atomic,
and condensed matter physics. SOC in two-dimensional
(2D) systems is particularly relevant to condensed mat-
ter physics, because of connections to the quantum Hall
effect, and topological insulators and superconductors,
among others. While it can be difficult to isolate and
study the effects of SOC in typical condensed matter
settings, the advent of synthetic gauge fields in ultra-
cold atomic gases [1–4] provides unprecedented access to
clean, tunable systems in which it is possible to precisely
investigate the interplay between interaction and SOC.
Current experimental efforts have primarily achieved a
combination of Rashba and Dresselhaus SOC. Recently,
pure Rashba SOC was realized using a three laser Ra-
man scheme [5], and a number of proposals exist for dark-
state, generalized Raman, and magnetic schemes [6–13].

Even without SOC, Fermi gas systems have been a
fertile ground for fundamental advances in many-body
physics. The precise agreement achieved between exper-
iment and theory in three-dimensions is a triumph for
understanding strongly correlated Fermion systems [14–
18]. Recently, the 2D Fermi gas has drawn considerable
attention [19–30], for the possibility to study with great
precision fermion pairing in 2D, which is important in
high-Tc and other exotic matter. SOC adds a new layer
of complexity to the rich pairing picture, with the pres-
ence of both singlet and triplet pairing, and the interplay
with spin chirality.

These recent experimental advances have thus
prompted intense theoretical efforts to study SOC in the
2D Fermi gas, many of which focus on the connection be-
tween SOC and the BCS-BEC crossover [31–36]. How-
ever, as is commonly the case in the study of strongly
interacting systems, mean-field theory is often the only
available tool. To date almost all the theoretical and
computational work on the Fermi gas has been done at
the mean-field level. It is therefore crucial to understand
and quantify the corrections from particle correlations,

in order to validate the predictions from mean-field cal-
culations. Establishing precise benchmark results is also
of fundamental value in guiding and calibrating experi-
ments and assessing new theoretical and computational
methods as they are developed for treating SOC in the
presence of strong interactions.

In this work we present the first exact results on the
ground state of the 2D Fermi gas with strong attractive
interactions and Rashba SOC. We show how SOC effects
in many-fermion systems can be treated by auxiliary-field
quantum Monte Carlo (AFQMC), formulated as random
walks of general Slater determinants consisting of spin-
orbitals. The method can be generalized to carry out ab
initio calculations in real materials which will be impor-
tant in the investigation of novel phases of matter under
the interplay of topological physics and strong electron
correlations.

For the unpolarized 2D Fermi gas with SOC, this
method allows numerically exact calculations free of the
sign problem. Combining it with Monte Carlo algorith-
mic advances, we are able to simulate large lattice sizes
to reach the ground state and the continuum limit, and
sufficiently large number of particles to reach the ther-
modynamic limit. Our results present a precision bench-
mark for an exotic quantum system which, on the verge
of experimental realization, combines topological effects
and superconductivity.

The Hamiltonian for the 2D Fermi gas with attractive
zero-range interactions and Rashba SOC can be written
as a sum of three pieces,

Ĥ = Ĥ0 + ĤSOC + Ĥint, (1)

which correspond to the kinetic, SOC, and interaction
energy. We consider N particles in a periodic box, rep-
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resented on a lattice of dimension L× L, so that

Ĥ0 =
∑
k,σ

εkc
†
kσckσ,

ĤSOC =
∑
k

λ (ky − ikx) c†k↓ck↑ + h.c.,

Ĥint = U
∑
i

ni↑ni↓, (2)

where c†kσ is the creation operator for a fermion with
spin σ and momentum k. The number operators on
lattice site i are niσ = c†iσciσ, and the dispersion re-
lation is εk = |k|2 = (k2x + k2y). The Hamiltonian in
Eq. (1) can be directly mapped to the continuum form
(e.g., as in experiments) by an overall energy scale de-
fined by the ground-state energy per particle of the cor-
responding non-interacting Fermi gas, EFG (which in the
present form is πn, with n = N/L2 the number density).
The interaction strength U is uniquely defined [22, 37]
by log(kFa) where the Fermi wave-vector kF measures
the inverse of the average inter-particle spacing while a
is the scattering length. It is convenient to introduce two
dimensionless parameters:

α =
λ2

EFG
; β =

εB
EFG

, (3)

to specify the strengths of the SOC and interaction, re-
spectively, where εB is the two-body binding energy at
λ = 0 and is directly related to kFa [22].

Our calculations treat periodic lattices of over 1200
sites, typically with over 70 fermions. For each set of pa-
rameters, the many-body ground state is computed us-
ing the AFQMC framework [38–40], generalized to treat
SOC. In AFQMC, one projects out the ground state of
Ĥ from an initial state |φ(0)〉 by repeated applications of

the imaginary-time propagator e−τĤ , which is decoupled
into path integrals over independent-particle propagators
defined by auxiliary-fields. The path integrals can be
evaluated by Monte Carlo, which can be realized as ran-
dom walks in the space of Slater determinants, starting
from |φ(0)〉. Without SOC, each Slater determinant takes
the form of a Hartree-Fock solution, |φ〉 = |φ↑〉 ⊗ |φ↓〉,
where the ↑- and ↓-spin components are Ns × N↑ and
Ns × N↓ matrices, respectively, with Ns being the ba-
sis size (= L2 here) and Nσ being the number of σ-spin
fermions (= N/2 here). With SOC, this must be replaced
with the generalized Hartree-Fock form, of a 2Ns × N
matrix. The matrix elements evolve stochastically, be-
ing propagated by one-body propagators which sample
auxiliary-fields and each of which can be thought of as a
2Ns× 2Ns matrix. Further details of the method will be
published elsewhere.

The Fermi gas Hamiltonian, with λ = 0, is free of the
sign problem, because |φ↑〉 can be made identical to |φ↓〉
for every random walker, so that the trace or ground-
state overlap over each path has the form of the square
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FIG. 1: Equation of state for three SOC strengths, α = 0.0
(triangle), 1.0 (square), and 5.0 (circle). Results have been ex-
trapolated to the continuum and thermodynamic limit. The
inset plots the results relative to those from BCS, reveal-
ing that the correlation energy is quite insensitive to SOC
strength.

of a determinant and is thus non-negative. With SOC,
it is straightforward to show that time-reversal symme-
try is preserved, T̂ ĤSOCT̂

−1 = ĤSOC, as is already the
case with Ĥ0 and Ĥint. Thus there is no sign problem
[41, 42], with the eigenvalues of the overlap matrix be-
ing complex-conjugate pairs and thereby the determinant
being non-negative [43]. (Of course the λ = 0 Hamilto-
nian can be viewed as a special case, by thinking of |φ↑〉
and |φ↓〉 as two diagonal blocks of the 2Ns × N super-
matrix.) We apply dynamic force biases [22] in sampling
the AF paths to achieve high efficiency, and remove the
infinite variance problem [44]. All numerical biases or
systematic errors in the calculations have been controlled
so that they are smaller than our statistical uncertainty.
The high-precision results obtained are therefore fully ab
initio and are exact for each parameter set.

In Figure 1 we present the computed equation of state
as a function of interaction strength, log(kFa), for several
values of SOC strength. The results are first extrapolated
to the continuum limit with calculations on a sequence
of L values with N fixed, and then larger N systems are
computed until convergence is obtained [22]. Results for
the 2D FG without SOC [22] are also shown as a refer-
ence. The most dramatic effect of SOC is a decrease of
the total energy, which plateaus at large log(kFa). The
shift to the energy, which is related to the occupancy of
the ε−k helicity band, becomes more pronounced at larger
values of SOC strength. The inset of Fig. 1 displays the
difference between the QMC energy and the energy pre-
dicted by BCS theory. This difference provides a measure
of the correlation energy. The similarity in the behavior
of the curves suggests that the correlation energy is rel-
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atively insensitive to SOC, with a small effect becoming
noticeable for systems with strong SOC, in the crossover
or BEC regime.

The non-interacting part of the Hamiltonian can be
expressed in diagonal form in the helicity basis with the
corresponding dispersion relations, ε±k = k2 ± λ|k|. We
examine the properties of the many-body ground state in
this representation by working in natural orbital space.
We diagonalize the one-body density matrix,(

〈nk↑〉 〈S+
k 〉

〈S−k 〉 〈nk↓〉

)
=

(
〈c†k↑ck↑〉 〈c†k↑ck↓〉
〈c†k↓ck↑〉 〈c†k↓ck↓〉

)
, (4)

where the expectation values are taken with respect to
the many-body ground state. The eigenvalues yield the
momentum distribution in the helicity bands, n±k . The
spin orientation is specified by (Sx, Sy), which are com-
puted from 〈S±k 〉 directly.

Plotted in Fig. 2 are the momentum distributions
for each helicity band at several values of interaction
strength. The insets show the pseudo-spin orienta-
tion and magnitude. The helicity bands and the non-
interacting Fermi surfaces are indicated for reference.
(They are also illustrated in more detail in the insets
in Fig. 3.) In the weak SOC regime, both helicity bands
are occupied, while for strong SOC only the ε−k band is
occupied. The transition between the two is at α = 4.0
for β = 0. Our calculations indicate a smooth transition
in the presence of interaction.

At small interaction strengths the momentum distri-
butions deviate very little from the non-interacting case,
as expected. As β increases, the sharper features of the
momentum distributions smoothen and the distributions
broaden, indicating that higher momentum states have
become occupied. At intermediate and large interaction
strengths the discrepancy from the non-interacting case
becomes quite apparent, as interaction dramatically al-
ters the structure defined by the shaded regions. For
large SOC, for instance, both bands become occupied and
lower k states, which are empty in the non-interacting
case, are heavily populated.

We next examine the pairing properties of the system
as a function of SOC and interaction strength. We focus
on the interplay of singlet and triplet pairing, and con-
nect the pairing structure to the pair wave function and
condensate fraction. With the pairing operators

∆†↑(k) = c†k↑c
†
−k↑; ∆†↓(k) = c†k↓c

†
−k↓;

∆†s(k) =
1√
2

(
c†k↑c

†
−k↓ − c

†
k↓c
†
−k↑

)
, (5)

we construct the following 3Ns × 3Ns zero-momentum
pairing matrix

Mσσ′(k,k′) = 〈∆†σ(k)∆σ′(k′)〉, (6)

with σ, σ′ = ↑, ↓, or s. The leading eigenvalue, Nc,
of the pairing matrix yields the condensate fraction,
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FIG. 2: Momentum distributions, n+
k (squares), n−k (tri-

angles), ntotal
k (circles) for modest (α = 1.0, left column)

and strong (α = 7.0, right column) SOC. From top to bot-
tom, the rows correspond to weak (β = 0.001), intermediate
(β = 1.0), and strong (β = 10.0) interaction strength. The
non-interacting Fermi surfaces are indicated by the vertical
dashed lines, and the occupation for each band is indicated
by the corresponding shaded regions (in both the main plot
and the inset). In the insets, the arrows point to the direc-
tion of 〈Sk〉, and their size indicate its magnitude. The size
of the dots represents the magnitude of ntotal

k . These calcu-
lations had L = 35 and N = 58 (left column) and N = 56
(right column). (Note that different scales are used between
the two columns, and between the last row and the other two
to improve clarity.)

nc ≡ Nc/N . The corresponding eigenstate gives the pair
wave function in k-space [45]. The pair wave function
is composed of singlet and triplet components, |Ψc〉 =
|Ψc,s〉+ |Ψc,t〉. With |Ψc〉 normalized, we define the sin-
glet and triplet contributions to the condensate fraction
by nc,s/nc = 〈Ψc,s|Ψc,s〉 and nc,t/nc = 〈Ψc,t|Ψc,t〉 re-
spectively.

The singlet and triplet components of the pair wave
function, and the condensate fraction, are plotted for
several representative values of SOC and interaction
strength in Fig. 3. The anti-symmetry of the triplet wave
function is reflected by the presence of a node at k = 0,
while the symmetric singlet component has no node.

As SOC strength increases, the amplitude of the triplet
component of the wave function becomes closer to that of
the singlet, and the triplet portion of the condensate frac-
tion grows relative to the singlet component. The total
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FIG. 3: Singlet (square) and triplet (circle) components of the pair wave function, and the condensate fraction. (a)-(d) are
for α = 1.0 and (e)-(h) are for α = 7.0. The first three panels in each row show the wave functions at increasing interaction
strength (β1 = 0.001, β2 = 1.0, and β3 = 10.0, values indicated by arrows in panel (d)). The insets show the helicity bands,
ε±k , and the non-interacting Fermi surfaces, indicated by the vertical dashed lines. The systems are the same as in Fig. 2.

condensate fraction grows with SOC strength, primarily
a consequence of the increase in triplet pairing, which is
induced by SOC and vanishes as α → 0. BCS theory
tends to over-estimate both components but is seen to
especially over-estimate the singlet component.

As interaction strength increases the sharp peaks of the
wave function, which occur in the vicinity of the Fermi
surface, broaden and become smooth. While pairing is
confined to the Fermi surface at weak interactions, it oc-
curs over a wide range of momenta at strong interactions,
consistent with the modification to the momentum dis-
tribution. A peak emerges in the singlet component at
low |k|, centered around states which are un-occupied in
the independent-particle picture. The pairing wave func-
tions in (a) exhibit larger peaks on the right (at larger
|k|), in contrast with two relatively even peaks in (e).
This is a consequence of the very different properties of
the momentum distribution. For α = 7.0, many unoccu-
pied momentum states are available in the vicinity of the
Fermi surface at lower |k| to facilitate pairing, which is
not the case for α = 1.0.

The shape and amplitude of the singlet and triplet
components of the pair wave function are most similar at
small interaction strength, and the contributions to the
condensate from singlet and triplet pairs are of roughly
equal magnitude. For large interaction strength, the am-
plitude of the triplet wave function is significantly re-
duced and the condensate fraction is primarily composed
of singlet pairs. The triplet component of the condensate
fraction has a peak around log(kFa) = 1.0 suggesting
that triplet pairing is maximized in the crossover regime,
where the strength of the interaction is large enough to
induce robust pairing, but not so large as to discourage
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FIG. 4: Real-space pairing structure, nematic order, and spin
chirality index. Plotted on the left is 〈Qxy(0, r)〉 for α = 1.0,
β = 0.001, with average inter-particle spacing 1/kF = 0.0524.
The right panel shows the (isotropic) spin correlation 〈n0↑nr↓〉
for L =11 (purple triangle), 25 (blue square), and 35 (red
circle). The black diamonds plot a reference curve without
SOC for L = 25. The inset illustrates the chirality of the pair
along the dashed red circle shown in the plot of Qxy.

triplet pair formation.
To probe the real-space structure of pairs and examine

possible spin nematic order in the presence of Rashba
SOC, we compute the spin correlator defined as [46],

Q̂ij(r1, r2) =
1

2

(
Ŝi1Ŝ

j
2 + Ŝj1Ŝ

i
2

)
− δij

3
Ŝ1 · Ŝ2, (7)

where the subscript refers to r1 or r2 and i and j denote
x, y, and z. As depicted in Fig. 4, 〈Qxy〉 (and similarly,
〈Qxx〉) yields a flower-shaped pattern, a 4π rotation of
the second spin in the pair, relative to the first spin,
along a circular path around the origin. This spin ro-
tation is illustrated in the upper right panel of Fig. 4,
which gives the direction of the spin along the dashed
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red circle in the plot of 〈Qxy〉. Similar chirality/winding
behaviors have been observed in pseudo-spins in layered
materials [47–50]. SOC causes a dramatic difference in
the spin correlation as shown in the right panel. With
SOC turned on, a significant decrease in 〈n0↑nr↓〉 is seen
immediately beyond the central peak. However the total
density-density correlation (not shown) is essentially un-
changed. This signals a decrease in singlet pairing which
is compensated for by an increase in triplet pairing.

In summary, we have developed an approach for ex-
act numerical computations of the ground state of the
strongly interacting Fermi gas under SOC, and have pro-
vided the first systematic results beyond mean-field the-
ory. A detailed equation of state is obtained. The cor-
relation energy is seen to be nearly independent of SOC
strength. Dramatic deviations are seen from the non-
interacting picture in the momentum distribution. The
condensate fraction is computed. Triplet pairing ap-
pears under SOC, and the interplay between interaction
and SOC causes triplet pairing to be maximized in the
crossover region. Nematic correlation develops but no
long-range order is seen. A spin chirality of 4π is seen
in the pair state. These ab initio precision many-body
results provide benchmark for theory and can serve as a
calibration for experiments.

We thank L. He, E. Rossi, P. Xu, C. Zhang, R. Zhang
for useful discussions. This research was supported by
NSF (grant no. DMR-1409510), and the Simons Foun-
dation. Computing was carried out at the Oak Ridge
Leadership Computing Facility at the Oak Ridge Na-
tional Laboratory, and at the computational facilities at
the College of William and Mary.
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