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ABSTRACT: We compared hydrology and porewater chemistry along transects in 3 tidal marshes
vegetated by Spartina alterniflora and by the invasive species Phragmites australis. Relative to the
Phragmites zone, the S. alterniflora zone occurred at lower tidal elevations in all 3 marshes and was
characterized by greater depth of flooding and shorter periods of water-table drawdown below the
soil surface. Penetration by Phragmites into the S. alterniflora zone appeared to be limited by exten-
sive soil saturation at the leading edge of Phragmites growth. This mixed-species zone occurred at
the intersection of the low-tide groundwater table with the soil surface and was characterized by sig-
nificantly higher concentrations of porewater sulfide (739 + 63 pM) relative to the monospecific
Phragmites zone (335 = 63 nM). Dissolved ammonium and phosphate concentrations were also sig-
nificantly lower in the Phragmites zone relative to S. alterniflora and mixed-species zones of vegeta-
tion. Discriminant analysis of the measured hydrologic and chemical variables identified depth of
flooding, flooding frequency and duration, and sulfide concentration, as the most significant vari-
ables distinguishing Phragmites stands along the estuarine salinity gradient. Together, these results
indicate a greater flooding tolerance by Phragmites in marshes where porewater sulfide and salinity
are lower. From a hydrologic and chemical perspective, opportunities for Phragmites invasion and
expansion should be greater in oligohaline and mesohaline tidal marshes relative to polyhaline
habitats. To control the growth of Phragmites in tidal marshes of management concern, both the
feasibility and need for methods that increase flooding depth, frequency, salinity and/or sulfide
concentrations should be considered.
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INTRODUCTION

Over the past 50 yr, expansion of common reed
Phragmites australis into oligohaline and mesohaline
tidal marshes of the USA has led to dramatic changes
in plant community structure and, perhaps, wetland
function (Roman et al. 1984, Chambers et al. 1999,
Windham & Lathrop 1999, Meyerson et al. 2000, War-
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ren et al. 2001). Plant and animal diversity is dimin-
ished in Phragmites wetlands relative to the wetlands
they replace (Marks et al. 1994, Benoit & Askins 1999),
and specific habitat function (i.e. spawning and nurs-
ery use by fish and macrocrustaceans) may be im-
paired (Weinstein & Balletto 1999, Able & Hagan 2000,
Osgood et al. in press). Because of these concerns,
enhanced saltwater flooding of reed-dominated wet-
lands is used as a management tool to limit Phragmites
expansion, but the specific mechanism for controlling
reed growth has never been identified. Further, man-
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agement efforts sometimes are not successful, and rea-
sons for success or failure cannot always be docu-
mented. Finally, Phragmites expansion continues even
in some tidally unrestricted marshes, so the need exists
for understanding the specific environmental factors
that influence reed establishment and expansion in
these wetlands (Bart & Hartman 2000).

Hydrology, specifically periodic fluctuation in water
level, is the primary determinant of vegetation commu-
nity structure and ecosystem function in both tidal and
non-tidal wetlands (Gosselink & Turner 1978, Odum et
al. 1995). Differences in nutrient status, oxygen con-
tent and salinity of the soil are often reported as the
mechanisms that link hydrologic pulses to the vegeta-
tion structure of the wetland ecosystem. For example,
the production of the tidal marsh grasses has been
linked to porewater drainage through the alleviation of
salt accumulation, excess hydrogen sulfide concentra-
tions and low oxygen status of the soil (Chalmers 1982,
Howes et al. 1986). More recently, the occurrence and
growth of plant species in lower-salinity marshes has
also been linked to factors including soil saturation and
soil chemistry (Burdick et al. 1989, Koch & Mendels-
sohn 1989, Koch et al. 1990, Broome et al. 1995).

Similar feedbacks between plants and the wetland
soil environment (Bertness 1992) may facilitate the
establishment and spread of Phragmites along the
estuarine salinity gradient (Amsberry et al. 2000, Bart
& Hartman 2000, Warren et al. 2001). Low porewater
nutrient concentrations within Phragmites peat have
been attributed to substantial storage of nutrients in
aboveground tissue (Templer et al. 1997, Meyerson et
al. 2000) and higher rates of denitrification within
irregularly flooded Phragmites stands (Chambers et al.
1998). Phragmites also has the capacity to oxidize the
rhizosphere (Bart & Hartman 2000). How soil chem-
istry within Phragmites stands interacts with hydro-
logy, and the extent to which these interactions affect
expansion rates along the estuarine salinity gradient
is still unknown. From a management perspective,
identification of the range of environmental conditions
where Phragmites occurs may assist
both the identification of tidal wetlands
susceptible to further expansion and
the development of methods for limit-
ing Phragmites spread (Chambers et

(Clevering & Lissner 1999, Koppitz 1999), but the phys-
ical and biological environment still imposes limita-
tions on the realized niche of salt marsh vegetation
(e.g. Emery et al. 2001). In this paper, we compare the
hydrology and porewater chemistry of 3 tidal salt
marshes occurring along an estuarine salinity gradient
to help identify the environmental limits of Phragmites
expansion into Spartina alterniflora marshes.

MATERIALS AND METHODS

Study site. Three fringing marshes were chosen
for study along the estuarine salinity gradient of
the lower Housatonic River in SW Connecticut
(41°10.3'N, 73°6.34'W) (Table 1). In each marsh, 3
short (<30 m) transects 10 to 30 m apart extended from
a zone of higher tidal elevation dominated by Phrag-
mites, across a mixed-species marsh zone co-domi-
nated by Phragmites and Spartina alterniflora, to a
lower-elevation, tidal creek zone dominated by S. al-
terniflora. Standard surveying techniques were used to
determine marsh elevations in each vegetation zone
relative to the creekbank edge of the S. alterniflora
zone. Through analysis of 1:2400 aerial photographs
from 1995 using Arcview 3.2a, we determined that ex-
pansion by Phragmites was greater with distance up
the estuary, as documented by the decreasing percent-
age of S. alterniflora area in the marshes located 4, 6
and 8 km from where the river discharges into Long
Island Sound (Table 1). These distribution patterns
were visible on aerial photography as far back as 1950,
indicating early establishment and relative stability of
the Phragmites stands under study.

Hydrologic instrumentation and analysis. Piezome-
ters constructed of 5 cm diameter PVC pipe, commer-
cially slotted over a 10 cm length at the bottom of the
pipe, were installed to 30 cm soil depth in Phragmites,
mixed-species and Spartina alterniflora vegetation
zones along each transect (n = 27). Hydraulic head was
continuously monitored for a 2 wk interval encompass-

Table 1. Location of 3 tidal salt marshes near the mouth of the Housatonic River
in SW Connecticut, USA, showing the average porewater salinity and relative
area of the Spartina zone and elevations of the mixed-species and Phragmites

zones in each marsh

al. 1998).
We hypothesize that the linkage Distance from  Average salinity (SD) Average elevation

between hydrology and soil biogeo- mouth of river April 1999 (ppt) relative to

. . . . Spartina Spartina zone (cm)
chemistry is a primary determinant of cover (%) Mix Phragmites
Phragmites expansion in tidal marshes.
Increased growth and competitive 8 km 8.4 (1.8) 0.7 20.6 41.2
abilities in Phragmites and its recent 6 km 11.7 (2.1) 12 24.7 39.4
expansion into tidal marshes in part 4 km 19.0 (7.0) 92 423 74.6
may be due to genetic hybridization
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ing both spring and neap tidal phases each month from
July to September 1998 and April to August 1999 by
instrumenting each piezometer with a mini-data log-
ger/pressure transducer unit (Onset Computer) set to
record pressure at 12 min time intervals. This dataset
represents a total of 11 neap and 13 spring tide periods
over the course of the study. Individual pressure read-
ings recorded by the transducer were converted to
hydraulic head by calibrating each instrument with
measurements of actual water level in the piezometers,
concurrent with pressure recordings. Hydraulic head
was determined by referencing all converted pressure
measurements to a common datum 1 m below the
marsh surface. Resolution of the pressure transducer/
data loggers was within 1.3 cm. Water level from the
piezometers is reported as the average water table
maximum and minimum relative to the marsh surface
for each recorded tidal cycle (28 recorded cycles mo™).

The specific yield (water drainage per unit volume)
of soils from Phragmites and Spartina alterniflora
zones was determined by measuring head changes fol-
lowing addition of a known volume of water to a de-
watered, 30 cm diameter by 30 cm deep core (Harvey
et al. 1995). One core each was collected from S.
alterniflora and Phragmites zones at each marsh, using
sharpened teeth on the corer to minimize compaction
to less than 1 cm. From piezometer measurements, the
maximum change in hydraulic head over both the ebb
and flood portion of the tidal cycle (AH) was multiplied
by specific yield (S,) to calculate the total volume of
porewater exchanged with each tide. This value was
then divided by 12 h to determine the porewater flow
rate (Q) (1 m2 tide™?), as:

Q = [S,x (AHx 1 m?)]/12h (1)

Porewater flow rate therefore represented the total
volume of flow through the root zone in a single tidal
cycle as a function of soil properties and head changes
associated with tidal and evapotranspirative fluxes.
Raw data satisfied the assumptions of normality and
homogeneity of variance. Significant differences in
mean porewater flow rates, water table position and
specific yield among marshes and vegetation zones
were identified using 2-way ANOVA.

Porewater collection and analysis. In each vegeta-
tion type along all transects, duplicate porewater sam-
plers were installed to 30 cm (n = 54). Samplers con-
sisted of slotted 3.8 cm PVC pipe with a porous bottom
plate to minimize clogging; samplers were capped
with a butyl rubber stopper to inhibit oxygen penetra-
tion. Once a month from April through October 1999,
vertically integrated porewater samples were collected
at low tide by pumping out the samplers and within 1 h
withdrawing the water that refilled them. Water sam-
ples were passed by syringe through a Whatman GFC

filter (1 pm pore size) and processed immediately in
the field. Porewater for sulfide analysis was filtered
directly into vials containing mixed diamine reagent
(Cline 1969); porewater for dissolved nutrients was
acidified with 6 N HCI to a pH <2 and kept refriger-
ated. Porewater salinity was read directly in the field
using a hand-held refractometer (accuracy =+ 1 ppt).

Dissolved sulfide, phosphate and ammonium analy-
ses were completed spectrophotometrically using stan-
dard analytical techniques (Parsons et al. 1984). For
nutrient analyses, the interference of sulfide with color
development was removed by initially bubbling the
acidified water samples with nitrogen gas, then adjust-
ing the sample pH to neutrality with 6 N NaOH. Sig-
nificant differences in porewater chemistry among
marshes and zones of vegetation were identified using
repeated measures ANOVA (p < 0.05).

Plant collection and measurement. Before the flow-
ering season in August 1999, stem density and plant
height of Phragmites were determined in both Phrag-
mites and mixed-species stands. Triplicate 0.25 m?
quadrats were selected at random adjacent to each
sampling station, and the stem heights of all living
shoots in the quadrats were measured.

Discriminant analysis. We used discriminant analy-
sis to identify the measured hydrologic and chemical
variables contributing most significantly to the occur-
rence of Phragmites in the 3 tidal marshes. Discrimi-
nant analysis generated a linear combination of the
4 hydrologic variables (water table maximum, water
table minimum, flooding frequency and duration) and
4 chemical variables (porewater salinity, sulfide, am-
monium and phosphate) that best explained the cate-
gorical separation of the dependent variable (Phrag-
mites position) along the estuarine salinity gradient of
the lower Housatonic River estuary.

RESULTS
Hydrologic analysis

The 2 wk continuous recording of water table levels
demonstrated the differences in tidal flooding among
zones of vegetation (Fig. 1). For the lower 2 sites, at 4
and 6 km, the water table position in the Phragmites
zone remained below the soil surface during neap
tides and moved above the soil surface only during the
spring tidal phase. For the upper 8 km site, the Phrag-
mites zone was flooded almost every tidal cycle. The
Spartina alterniflora zone was flooded every tidal cycle
in every marsh, but tidal excursions in the water table
were large, i.e. the soils drained regularly. In contrast,
water table position in the mixed-species zone tended
to remain nearer or above the soil surface throughout
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Fig. 1. Continuous recordings of water table levels from 22

July to 5 August 1998 as measured from piezometers within

each vegetation zone at each marsh site. A water table value
of 0 corresponds with the marsh surface

neap and spring tidal cycles, demonstrating a greater
time of soil waterlogging.

Averaged over all measured tidal cycles, the mean
minimum position of the water table at low tide was
significantly higher in the mixed-species zone relative
to both Phragmites and Spartina alterniflora zones
(Fig. 2). A larger portion of the plant rhizosphere re-
mained waterlogged during the entire tidal cycle in the
mixed-species zones relative to both Phragmites zones
(occurring at higher elevations) and S. alterniflora
zones (occurring at lower elevations). Commensurate
with relative elevations (Table 1), the mean maximum
flooding depth was greatest in S. alterniflora zones,
less in mixed-species zones and least in Phragmites
zones. The maximum depth of flooding in the Phrag-
mites zone was greatest in the 8 km marsh located
farthest up the estuary (Fig. 2).

Within each marsh, the Phragmites zone typically
flooded less frequently and for a shorter duration of the
tidal cycle than the Spartina alterniflora and mixed-
species zones (Table 2). Also, porewater flow rate was
less in the Phragmites zone relative to the S. alterni-
flora zone in all marshes. Comparing Phragmites zones
among marshes, however, porewater flow rate was
greatest in the 8 km marsh relative to both the 4 and
6 km marshes. The higher flow rate from the 8 km
marsh occurred despite a lower specific yield, under-
scoring the influence of the larger tidal excursion at
that marsh (Fig. 2). Flooding frequency, but not dura-
tion, was also greatest in the Phragmites zone of the
8 km marsh (Table 2).

Porewater analysis

Among marshes, porewater salinity ranged from 5 to
25 ppt over the course of the study. We documented

Table 2. Summary of hydrologic variables, expressed as mean (SE) for Phragmites (P), mixed-species (M) and Spartina (S) zones
of vegetation in each marsh along the estuarine salinity gradient. na = not available

P M S P M S

6 km 8 km

Variable 4 km
p M S
Flooding frequency (%)% 64.0(6.8)*' 91.1(2.8) 99.8(0.2)
Flooding duration (%)® 16.6(2.4)° 24.7(2.3) 40.9(2.7)
Porewater flow rate 19.0(0.8)%! na 60.7 (0.9)
(I m~2 tidal cycle™)¢
Specific yield 0.28(0.12)" na 0.14(0.03)
(cm® cm~3)4

‘n =112, the number of complete tidal cycles
dn = 5 replicates per core

58.0(4.8)' 87.6(1.8) 98.7(0.7)
19.7 (4.0)°
17.0(0.6)*  na

0.07(0.02)  na

dExpressed as percentage of recorded high tide events (28 mo!) when marsh was flooded, n = 8
bExpressed as percentage of tidal cycle (12 h) that marsh was flooded, n = 224

®Indicates significant difference from mixed and Spartina stands at the same site, ANOVA, p < 0.05
Indicates significant difference from Phragmites stands at other sites, ANOVA, p < 0.05

89.7(2.3)°! 93.3(1.7) 99.6(0.4)
21.8(2.1)° 35.3(3.8) 36.9(2.8)
31.2(0.6)*' na  52.9(0.8)

28.7(4.2) 30.7(1.6)
46.0(0.7)
0.05(0.01)

0.03(0.01) na  0.07(0.03)
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Fig. 2. Summary of water table excursions in each vegetation
type, presented as the mean maximum (above 0) and mini-
mum (below 0) water table positions relative to the marsh sur-
face at each site. Means plus SE are the average of 28 tidal
events each month from July to September 1998 and April to
August 1999. Water table maxima are significantly different
among vegetation types within marshes (ANOVA, p < 0.01).
Between marshes, the water table maximum in the Phrag-
mites zone is significantly higher at the 8 km marsh, noted
with an asterisk. The water table minimum in the mixed-
species vegetation zone was significantly higher than Spartina
and Phragmites zones of each marsh, noted with an asterisk
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Fig. 3. Average monthly porewater salinity and sulfide con-

centration by vegetation zone from each marsh over the 1999
growing season, + SE (n = 6)

strong monthly differences in porewater salinity, typi-
cally with lowest values measured in April and highest
values in July or August (Fig. 3). Relative to the
Spartina alterniflora zone, lower salinity in the Phrag-
mites and mixed-species zones of the 4 km marsh was
observed and may have been due to intrusion of fresh
groundwater near the upland margin. Porewater sul-
fide concentration ranged from 0 to 1500 ptM and was
always lower in the Phragmites zone relative to the
other vegetation zones in all 3 marshes along the estu-
arine salinity gradient (Fig. 3). From the 6 km marsh,
sulfide concentration in the Phragmites zone was
on average >500 uM for 5 of the 7 months sampled,
whereas the average sulfide concentration was
<500 pM for every month from the 4 and 8 km marshes.

Porewater ammonium and phosphate concentrations
ranged from 3 to 75 pM and 2 to 35 nM, respectively,
and generally were lower in the Phragmites zone of
vegetation (Fig. 4). The broadest differences in con-
centrations among vegetation zones were observed in
porewater from the 8 km marsh. On average, the high-
est porewater ammonium concentration measured in
August (50.5 £ 8.3 pM) was 5 times higher than the
lowest concentration in April (9.5 + 2.1 nM); whereas
the highest phosphate concentration measured in May
(20.6 + 2.5 pM) was more than double the lowest
concentration in April (8.3 = 1.0 nM).

Repeated measures ANOVA revealed significant
differences in the concentrations of porewater con-
stituents by marsh (df = 2, p < 0.01) and/or by vegeta-
tion type (df = 2, p < 0.01). Significant interactions
between marsh and vegetation type were found for
salinity, sulfide and phosphate concentration. We com-
pleted a posteriori, mean comparisons between treat-
ment groups to determine the sources of significant
variation in salinity, sulfide, ammonium and phosphate
(Table 3). Among marshes, mean salinity was slightly
lower and phosphate was higher at the 8 km site rela-
tive to the 4 and 6 km marshes. Ammonium concentra-
tion was not significantly different among marshes, but
sulfide concentration was significantly higher at the
6 km marsh. Among vegetation zones, salinity was
slightly higher in the Spartina alterniflora zone, but
sulfide concentration was highest in the mixed-species
zone. Both ammonium and phosphate concentrations
were lower in the Phragmites zone, with similarly
higher concentrations in the mixed-species and S.
alterniflora zones.

Analysis of plant metrics
At both the 4 and 6 km marshes, the mean number

of reed stems (+SE) m2 between Phragmites and
mixed-species stands was not significantly different



88 Mar Ecol Prog Ser 239: 83-91, 2002

Table 3. Multiple a posteriori comparisons of significant differences in porewater chemistry variables between marshes and zones
of vegetation (Tukey's HSD, p < 0.05). Groups with statistically similar means (SE) have the same superscript(s) (n = 18)

Variable Marsh Vegetation zone
4 km 6 km 8 km Phragmites Mix Spartina
Salinity 14.2 (0.3) 14.0 (0.2)° 12.7 (0.2)° 13.2 (0.2)° 13.4 (0.2)° 14.3 (0.2)
Sulfide 389 (72)° 870 (61)° 404 (64)° 335 (63)° 739 (63)° 589 (69)aP
Ammonium 20.7 (4.4)° 26.8 (3.6)° 26.6 (3.7)° 12.6 (3.7) 35.4 (3.8)°  26.1 (4.3)%P
Phosphate 9.9 (1.9)° 11.3 (1.5)2 16.1 (1.6)° 7.4 (1.5) 14.2 (1.5)° 15.7 (2.0)°
8 km w 8 km ‘
i (¢}
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Fig. 5. Canonical variates scores from discriminant analysis of
4 km 4 km Phragmites zones of vegetation along the estuarine salinity
80 gradient as a function of hydrology and porewater chemistry
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= 60 =40 stands (2.3 +0.1vs 1.3 0.1 and 2.2 + 0.1 vs 1.4 + 0.1,
) S . . L.
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5 A site, the plants were uniformly short and not different
0 —— o between Phragmites and mixed-species stands (1.3 +
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Fig. 4. Average monthly porewater ammonium and phos-
phate concentration by vegetation zone from each marsh over
the 1999 growing season, + SE (n = 6)

(38.7 + 4.7 vs 36.7 £ 6.7 and 49.3 + 6.2 vs 51.6 = 6.8,
respectively), but at the 8 km marsh farthest up the
estuary, significantly more stems were found in the
Phragmites stands relative to the mixed-species
stands (48.4 £ 8.1 vs 26.7 + 3.1; n = 9, t-test, p < 0.05).
Stem heights measured during the growing season
were different between marshes and zones of vegeta-
tion. At both the 4 and 8 km marshes, Phragmites
stems (mean height [+SE] m) were significantly taller
in the Phragmites stands relative to the mixed-species

Discriminant analysis

Significant discrimination among Phragmites zones
of the marshes along the estuarine salinity gradient of
the lower Housatonic River was accomplished by the
first loading factor in the analysis (93%, p < 0.001;
Fig. 5). The independent variables contributing most
strongly to this separation were maximum water table
depth, flooding frequency and duration (hydrologic
variables), and porewater sulfide concentration (a
chemical variable) (Table 4). Canonical coefficients for
water table minimum, porewater salinity, ammonium
and phosphorus concentrations were smaller. The sec-
ond loading factor was not significant to the discrimi-
nant analysis (p = 0.07).
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Table 4. Standard canonical coefficients from discriminant

analysis
Variable Canonical variates
Variate 1 Variate 2
(93%) p<0.001 (7#%) p=0.07
Water table maximum 0.97 -1.81
Water table minimum -0.09 -0.46
Flooding duration -0.79 1.99
Flooding frequency 0.79 -0.17
Porewater salinity 0.57 -0.46
Sulfide -1.03 -0.24
Ammonium -0.35 0.00
Phosphate -0.06 -0.22
DISCUSSION

With the current expansion of Phragmites into tidal
marshes of North America, research efforts are focused
on identifying methods for controlling reed growth
(Chambers et al. 1999). Our approach was to deter-
mine hydrologic and chemical conditions of soil envi-
ronments along both an estuarine salinity gradient and
a vegetation gradient through marsh zones dominated
by a native species (Spartina alterniflora) and the inva-
sive Phragmites australis. Edaphic conditions that are
modified by marsh management or restoration may
preclude the expansive growth of Phragmites.

Relative to the Spartina alterniflora zone of the low
marsh, lower flooding depth, reduced porewater flow
rate, and lower flooding frequency and duration were
the hydrological characteristics of the Phragmites zone
of the high marsh. Interestingly, we observed low
water table minima for both the Phragmites zone
(at high tidal elevation with longer exposure) and S.
alterniflora zone (at low tidal elevation and shorter
exposure). Water table drawdown in soils of the more
frequently flooded S. alterniflora zone probably was
due to high rates of horizontal porewater drainage typ-
ically found within 10 to 15 m of the creek edge in tidal
marshes (Harvey et al. 1987); each of our S. alternifiora
sampling locations was within 5 m of a marsh creek. In
contrast, the low-tide water table position was highest
in the mixed-species zone where the water table inter-
sected with the marsh surface (Fig. 2).

Significant variation in 3 hydrologic variables helped
distinguish among Phragmites stands along the estuar-
ine salinity gradient (Table 4). In the discriminant
analysis, the standard canonical coefficients of the first
loading factor for water table maximum and flooding
frequency were positive owing to high values mea-
sured from the 8 km marsh. Flooding duration, how-
ever, was not higher at the 8 km marsh and thus had a
negative canonical coefficient. Without absolute eleva-

tions among the 3 marshes, we cannot compare tidal
elevations of Phragmites zones, although a higher ele-
vation might be inferred for the 6 km marsh where
flooding frequency and water table maximum were
low. The observed slow drainage from the 6 km marsh
may have been a function of the low slope of the marsh
surface being sufficient to counteract a shorter flood-
ing duration (Table 1).

Consistent with the results of Bart & Hartman (2000),
the principal chemical factor influencing the expansion
of Phragmites in tidal marshes appears to be pore-
water sulfide (Fig. 3). Sulfide concentrations were very
low in the Phragmites zones of the 4 and 8 km marsh;
elevated sulfide concentrations were more typical of
mixed-species zones where the transition to Spartina
alterniflora occurred. In addition to the probable ef-
fects of interspecific competition (Levine et al. 1998),
physiological limits to Phragmites growth imposed by
hydrology and porewater chemistry were apparently
reached in mixed-species zones. From the discriminant
analysis, the standard canonical coefficient for the in-
dependent variable of porewater sulfide concentration
was negative, i.e. occurrence of Phragmites farthest up
the estuary was negatively associated with sulfide con-
centration (Table 4). S. alterniflora is more tolerant of
elevated sulfide in the rhizosphere (Chambers et al.
1998) and thus maintains a zone of vegetation into
which Phragmites cannot easily expand.

Elevated sulfide does not necessarily preclude Phrag-
mites, as documented by its presence in the 6 km
marsh, where depth-integrated sulfide concentrations
reached 1000 pM during the growing season (Fig. 3).
We did observe, however, that shoot growth in the
Phragmites zone was stunted in this marsh relative to
the other marshes, where sulfide concentrations were
much lower. Production of sulfide in the rhizosphere is
a manifestation of extensive soil waterlogging that pro-
motes sulfate reduction. This environmental condition
is more typical of lower elevations in the intertidal pro-
file. Thus, the combination of extensive waterlogging
and sulfide accumulation in the porewater creates
edaphic conditions that are not conducive to the ex-
pansive growth of Phragmites.

Given the large springtime difference in porewater
salinity among zones of Spartina alterniflora (Table 1),
we anticipated that variation in porewater salinity
would be correlated with the distribution of Phrag-
mites in the 3 tidal marshes. Over the time of the study,
porewater salinity was significantly lower in the 8 km
marsh farthest up the estuary and was significantly
lower in the Phragmites zone of vegetation (Table 3),
but the differences among marshes and vegetation
zones were not dramatic. Further, salinity was not a
strong primary loading factor associated with the
occurrence of Phragmites (Table 4), and others have
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suggested that shallow porewater salinity is not always
a reliable predictor of Phragmites distribution (Burdick
et al. 2001). The Phragmites zone in the 8 km marsh,
however, experienced deeper surface flooding, as doc-
umented by maximum water table depth and flooding
frequency (Table 2). With distance up the estuary, we
suspect that lower-salinity marshes are susceptible to
greater Phragmites expansion into lower relative tidal
elevations (Table 1). We did not separate salinity ef-
fects experimentally from other chemical and hydro-
logic factors, but many studies have documented that
elevated salinity negatively influences the growth and
physiology of Phragmites (Hellings & Gallagher 1992,
Lissner & Schierup 1997, Chambers et al. 1998). Sal-
inity in combination with environmental stresses asso-
ciated with waterlogging appears to influence the
depth of penetration of Phragmites into the intertidal
profile of marshes.

In our study, Spartina alterniflora was found lower in
the intertidal zone and was inundated by tidal water
more frequently for longer periods of time. At low tide,
however, the water table was closest to the soil surface
in the mixed-species zone, i.e. the degree of soil satu-
ration at low tide was greater than in the Phragmites
and S. alterniflora zones (Fig. 2). The initial sites of
establishment of Phragmites tend to be restricted to
sections of brackish and salt marshes where sulfide
concentrations are low, such as along exposed creek-
banks (Bart & Hartman 2000) and marsh-upland tran-
sitions (this study). As a result of the inhibitory effects
of salinity and sulfide, Phragmites expansion in marshes
near the mouth of estuaries takes on a more restricted
linear growth form along marsh edges. In contrast, a
common observation is that Phragmites expansion from
initial sites of establishment forms circular patches of
growth in all lateral directions—reminiscent of fungal
cultures on a petri plate—in marshes far up the estu-
ary, where salinity and sulfide concentrations are uni-
formly low (Warren et al. 2001). This differential con-
figuration of Phragmites in the estuarine landscape
will influence the extent of impaired functions among
tidal marshes (e.g. nekton habitat use and nutrient
exchange; Weinstein & Balletto 1999).

Phragmites grows rapidly and draws down soil nutri-
ents that are incorporated into plant biomass (Meyer-
son et al. 1999). Porewater nitrogen and phosphorus
concentrations were significantly lower in Phrag-
mites vegetation zones, perhaps due to plant growth
(Table 3). Regular tidal drainage of soil porewater in
the Phragmites zone and oxygen transport through the
roots also allow for cyclical oxidation and reduction
of the rhizosphere, thereby providing conditions for
coupled nitrification/denitrificiation. Lower ammonium
concentrations in soil water of Phragmites zones
may be a consequence of all these processes. In the

Spartina alterniflora and mixed-species zones, where
ammonium and sulfide concentrations were typically
higher (Table 3), nitrification and nitrogen uptake are
inhibited by high concentrations of sulfide (e.g. Joye &
Hollibaugh 1995, Chambers et al. 1998) and dissolved
phosphorus is more mobile in the absence of iron oxide
sorption (Chambers & Odum 1990).

To sum up, wetland hydrology and biogeochemistry
combine to create soil environments influencing the
distribution and expansion of Phragmites in tidal
marshes. These controlling variables are manifest in
edaphic features of the rhizosphere, including soil
anoxia, nutrient availability and sulfide toxicity. The
relative ‘ease’ with which Phragmites has expanded
into large areas of oligohaline and mesohaline marshes,
and its restriction to upland edges and creekbank lev-
ees of polyhaline marshes are tied to hydrological fea-
tures of depth and frequency of flooding and associated
chemical features of porewater salinity and sulfide con-
centration. Likewise, the efficiency with which Phrag-
mites has been removed from invaded wetlands via
restoration and enhancement of tidal water exchange is
tied to these same factors. As for any restoration effort,
managers must consider the economic feasibility and
ecological need for methods to limit the spread of
Phragmites in tidal wetlands of concern.

Acknowledgements. Thanks to M. Hojnacki, L. Hurton, L.
Millman, C. Vanderbeck, D. Jacobson, S. Pianka and J. Lewis
for field and laboratory assistance, and to D. Bart and F.
Montalto for helpful editorial comments. Principle funding for
the project was provided by NOAA CT Sea Grant Award
NA86RG0043.

LITERATURE CITED

Able KW, Hagan SM (2000) Effects of common reed (Phrag-
mites australis) invasion on marsh surface macrofauna:
response of fishes and decapod crustaceans. Estuaries 23:
633-646

Amsberry L, Baker MA, Ewanchuk PJ, Bertness MD (2000)
Clonal integration and the expansion of Phragmites aus-
tralis. Ecol Appl 10:1110-1118

Bart DJ, Hartman JM (2000) Environmental determinants of
Phragmites australis invasion in a New Jersey salt marsh:
an experimental approach. Oikos 89:59-69

Benoit LK, Askins RA (1999) Impact of the spread of Phrag-
mites on the distribution of birds in Connecticut tidal
marshes. Wetlands 19:194-208

Bertness MD (1992) The ecology of a New England salt
marsh. Am Sci 80:260-268

Broome SW, Mendelssohn [A, McKee KL (1995) Relative
growth of Spartina patens (Ait.) Muhl. and Scirpus olneyi
Gray occurring in a mixed stand as affected by salinity and
flooding depth. Wetlands 15:20-30

Burdick DM, Mendelssohn IA, McKee KL (1989) Production
and metabolism of the marsh grass Spartina patens as
related to edaphic factors in a brackish, mixed marsh com-
munity in Louisiana. Estuaries 12:195-204



Chambers et al.: Phragmites growth in tidal marshes 91

Burdick DM, Buchsbaum R, Holt E (2001) Variation in soil
salinity associated with expansion of Phragmites australis
in salt marshes. Environ Exp Bot 46:247-261

Chalmers AG (1982) Soil dynamics and the productivity of
Spartina alterniflora. In: Kennedy VS (ed) Estuarine com-
parisons. Academic Press, New York, p 231-242

Chambers RM, Odum WE (1990) Porewater oxidation, dis-
solved phosphate and the iron curtain. Biogeochemistry
10:37-52

Chambers RM, Mozdzer TJ, Ambrose JC (1998) Effects of
salinity and sulfide on the distribution of Phragmites aus-
tralis and Spartina alterniflora in a tidal marsh. Aquat Bot
62:161-169

Chambers RM, Meyerson LA, Saltonstall K (1999) Expansion
of Phragmites into tidal wetlands of North America. Aquat
Bot 64:261-273

Clevering OA, Lissner J (1999) Taxonomy, chromosome num-
bers, clonal diversity and population dynamics of Phrag-
mites australis. Aquat Bot 64:185-208

Cline JD (1969) Spectrophotometric determination of hydro-
gen sulfide in natural waters. Limnol Oceanogr 14:
454-458

Emery NC, Ewanchuk PJ, Bertness MD (2001) Competition
and salt-marsh zonation: stress tolerators may be domi-
nant competitors. Ecology 82:2471-2485

Gosselink JG, Turner RE (1978) The role of hydrology in
freshwater wetland ecosystems. In: Good RE, Whigham
DF, Simpson RL (eds) Freshwater wetlands: ecological
processes and management potential. Academic Press,
New York, p 63-78

Harvey JW, Germann PF, Odum WE (1987) Geomorphologi-
cal controls of subsurface hydrology in the creekbank
zone of tidal marshes. Estuar Coast Shelf Sci 25:677-691

Harvey JW, Chambers RM, Hoelscher JR (1995) Preferential
flow and segregation of porewater solutes in wetland
sediment. Estuaries 18:568-578

Hellings SE, Gallagher JL (1992) The effects of salinity and
flooding on Phragmites australis. J Appl Ecol 29:41-49

Howes BL, Dacey JWH, Goehringer DD (1986) Factors con-
trolling the growth form of Spartina alterniflora: feed-
backs between above-ground production, sediment oxi-
dation, nitrogen and salinity. J Ecol 74:881-898

Joye SB, Hollibaugh JT (1995) Influence of sulfide inhibition
of nitrification on nitrogen regeneration in sediments.
Science 270:623-625

Koch MS, Mendelssohn IA (1989) Sulphide as a soil phyto-
toxin: differential responses in two marsh species. J Ecol
77:565-578

Koch MS, Mendelssohn IA, McKee KL (1990) Mechanism for

Editorial responsibility: Ronald Kneib (Contributing Editor),
Sapelo Island, Georgia, USA

the hydrogen sulfide-induced growth limitation in wet-
land macrophytes. Limnol Oceanogr 35:399-408

Koppitz H (1999) Analysis of genetic diversity among selected
populations of Phragmites australis world-wide. Aquat Bot
64:209-222

Levine JM, Brewer JS, Bertness MD (1998) Nutrients, compe-
tition and plant zonation in a New England salt marsh.
J Ecol 86:125-136

Lissner J, Schierup H (1997) Effects of salinity on the growth
of Phragmites australis. Aquat Bot 55:247-260

Marks M, Lapin B, Randall J (1994) Phragmites australis (P.
communis): threats, management, monitoring. Nat Areas
J 14:285-294

Meyerson LA, Chambers RM, Vogt KA (1999) The effects of
Phragmites removal on nutrient pools in a freshwater tidal
marsh ecosystem. Biological Invasions 1:129-136

Meyerson LA, Saltonstall K, Windham L, Kiviat E, Findlay S
(2000) A comparison of Phragmites australis in freshwater
and brackish marsh environments in North America. Wetl
Ecol Manag 8:89-103

Odum WE, Odum EP, Odum HT (1995) Nature's pulsing par-
adigm. Estuaries 18:547-555

Osgood DT, Yozzo DJ, Chambers RM, Jacobson D, Hoffman
T, Wnek J (in press) Tidal hydrology and habitat utiliza-
tion by resident nekton in Phragmites and non-Phragmites
marshes. Estuaries

Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical
and biological methods for seawater analysis. Pergamon
Press, New York

Roman CT, Niering WA, Warren RS (1984) Salt marsh vege-
tation change in response to tidal restriction. Environ
Manag 8:141-150

Templer P, Findlay S, Wigand C (1998) Sediment chemistry
associated with native and non-native emergent macro-
phytes of a Hudson River marsh ecosystem. Wetlands 18:
70-78

Warren RS, Fell PE, Grimsby JL, Buck EL, Rilling GC, Fertik
RA (2001) Rates, patterns and impacts of Phragmites aus-
tralis expansion and effects of experimental Phragmites
control on vegetation, macroinvertebrates, and fish within
tidelands of the lower Connecticut River. Estuaries 24:
90-107

Weinstein MP, Balletto JH (1999) Does the common reed,
Phragmites australis, affect essential fish habitat? Estu-
aries 22:793-802

Windham L, Lathrop R (1999) Effects of Phragmites australis
(common reed) invasions on above-ground biomass and
soil properties in brackish tidal marsh of the Mullica River,
New Jersey. Estuaries 22:927-935

Submitted: December 7, 2001; Accepted: April 15, 2002
Proofs received from author(s): July 30, 2002



