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Abstract

While a minimalist representation of 2D Magnetohydrodynamics (MHD) on a square lattice is a 9-bit 
scalar and 5-bit vector distribution functions, here we examine the effect of using the 9-bit vector 
distribution function on the effect of a magnetic field on the Kelvin-Helmholtz instability.  While there 
is little difference in the simulation results between the 5-bit and the 9-bit vector distribution models 
in the vorticity, energy spectra.., the 9-bit model permits simulations with mean magnetic field a 
factor of approximately 2  greater than those attainable in the standard 5-bit model.  Indeed a 9-bit 
single-relaxation model can attain such success over a 5-bit multiple-relaxation model at the same 
computational expense. 
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1.  Introduction
Lattice Boltzmann (LB) algorithms [1] are an extremely successful computational technique for 

solving nonlinear collisional problems because of their simplicity of coding and their ideal 
parallelization.  In principle, one is replacing a computationally difficult problem involving nonlinear 
convective terms by a linearized kinetic equation with simple advection and local collision operator.  
Since one is now solving on a lattice in kinetic space, one typically reduces the inherited extra 
memory/calculations by minimizing the number of kinetic velocities required in LB to recover the 
fluid equations in the long wavelength limit.  In particular, such a minimalist 2D LB MHD model has 
been introduced by Dellar [2].  It consists of a 9-bit square lattice model for the evolution of the 
quasi-incompressible fluid velocity u and a 5-bit (square lattice) model for the evolution of the 
magnetic field B.   This asymmetry is because the fluid velocity u arises as the 1st moment but the 
magnetic field arises from the 0th moment of their corresponding distributions.   Here we consider in 
some detail the effect of utilizing the same 9-bit square lattice for the vector magnetic distribution 
function as for the particle distribution function on the magnetic stabilization of the Kelvin-Helmholtz 
instability [3, 4].  In considering the stabilization of a velocity jet we extend the collision operator for 
the evolution of the vector magnetic distribution to a multiple relaxation model (MRT) – a relaxation 
model introduced in 2002 by d’Humieres et. al [5] for LB for Navier-Stokes flows and which 
permitted numerically stable LB simulations for considerably higher flow velocities than could be 
achieved by the single relaxation rate (SRT).  Similarly, we [6] have found that an MRT extension to 
the evolution of the 5-bit vector distribution function permitted considerably greater B-fields than 
under the SRT collision operator. [We note that MRT models for LB MHD have also been 
considered earlier by Dellar [9, 10], but these papers were not concerned with the question we are 
investigating]. Here we will find that even a single relaxation rate (SRT) model of the 9-bit collision 
operator leads to stable simulations with magnetic field magnitudes on the order of 34% greater
than those attainable from the 5-bit MRT simulations at fixed Reynolds numbers.  Moreover, this 
can be achieved at the same computational expense (wallclock time).  Moving to 9-bit MRT model 
only gains a further 6% in maximum B-field over the 9-bit SRT, but with a wallclock time increase of 
over 50%.  These results have direct bearing on LB-MHD tokamak simulations with its much larger 
toroidal to poloidal magnetic fields. 

2.  Lattice Boltzmann Algorithms 
     For 2D LB MHD [2], the minimalist square lattice is 9 streaming velocities for the evolution of the 
scalar density distribution function, Fig. 1, but 5 streaming velocities for the vector magnetic 
distribution [ ei ,i = 0....4 ].  However, here we will consider using exactly the same kinetic lattice 
velocities for both distributions – the D2Q9 model. 
     The lattice vectors are along the axes and the diagonals of a unit square 

(1)

The 2-step SRT lattice algorithm (with relaxation rate )  for the scalar distribution  consists 
of a stream-collide sequence 

Stream:

              Collide: (2)

where the streaming is a shift of the data from one spatial lattice node to a neighboring node, while 

 
e i = 0,0( ), ±1, 0( ), 0,±1( ), ±1,±1( )     ,        i = 0…8

τ fi x,t( )

′fi x,t +δ t( ) = fi x−e iδ t ,t( )
fi x,t +δ t( ) = ′fi x,t +δ t( )+

1
τ

fi
eq ρ,u,B( )− ′fi x,t +δ t( )( )



Fig. 1  The  D2Q9 velocity lattice for our 2D LB-MHD simulations.

where the streaming is a shift of the data from one spatial lattice node to a neighboring node, while 
the collision step requires only local on-site information.  Similarly, for the SRT evolution of the 
vector magnetic distribution gi x,t( )
 Stream:   gi x,t + t( ) = gi x e i t ,t( )
 Collide:    gi x,t + t( ) = gi x,t + t( )+

1
m

gi
eq ,u,B( ) gi x,t + t( )( ) , i = 0....8  (3) 

From Chapman-Enskog theory, the kinetic equations (2) and (3) are coupled through the u- and B-
fields in the relaxated distributions, f eq   and   geq [2]

fi
eq = wi 1+ 3 e i u( )+ 9

2 e i u( )2 3
2u2 + 9

2wi
1
2B2e i

2 B e i( )2 +O u4( ) ,

gi
eq = wi B + 3 e i u( )B e i B( )u{ } +O u4( ) , (4)

with the same
 
    weights      w0 = 4

9 ,w1…4 = 1
9 ,w5…8 = 1

36

Lattice Boltzmann Moments [7,8] 
The 0th  and 1st moments of the scalar distribution function yield the density and momentum of the 
fluid, while the 0th moment of the vector distribution function yields the magnetic field  

= fi
i=0

8
x,t( )     ,         u      =   e i fi x,t( )

i=0

8
                ;                B = g j x,t( )

j=0

8
(5)  

One now constructs an orthogonal basis  : 

Mi = ij f j
j=0

8
                   ;              Ni = ij g j

j=0

8
   ,     i = 0....8      ;         = x,y (6)

using the 9-vectors for the velocity distribution 
cx = 0,1,0, 1,0,1, 1, 1,1{ }       ,     cy = 0,0,1,0, 1,1,1, 1, 1{ }



with  ( j =   0  ....8 )
Ψ0 j =1          ,          Ψ1 j = cx        ,        Ψ2 j = cy        ,      Ψ3 j = cxcy       ,  Ψ4 j = cx

2 − cy
2 , Ψ5 j = 3cx cy

2   −   2cx

    Ψ6 j = 3cx
2 cy     −   2cy ,Ψ7 j = 4− 9 cx

2 + cy
2 − 2cx

2cy
2( ) , Ψ8 j = 4− 4 cx

2 + cy
2( ) + 3 cx

2cy
2

and
ψ 0 j =1      ,     ψ1 j = cX   ,    ψ 2 j = cY   ,      ψ 3 j = cX

2     ,   ψ 4 j = cY
2      ,  

ψ 5 j = cXcY       ,     ψ 6 j = cX
2cY   ,    ψ 7 j = cX cY

2 ,      ψ 8 j = cX
2 cY

2       , j = 0...8
 . (7)

We can now determine a new set of orthogonal moments whose equilibria are the 5 conserved 
moments (collisional invariants for quasi-incompressible MHD)

 
M0 = ρ       ,        M1 = ρux      ,     M2 = ρuy         ;         N0β = Bβ   Nβ   ,    β = x,y (8)

and the equilibria moments (with the M’s corresponding to the fluid moments and the N’s 
corresponding to magnetic field moments) 

M3
eq =

M1M2
M0

−NxNy              ;        M 4
eq =

M1
2 −M2

2

M0
  −  Nx

2 + Ny
2        ;     M5

eq =  −M1

M6
eq = −M2         ;      M 7

eq = −3M1
2 + M2

2

M0
         ;         M8

eq =
5
3M0  − 3

M1
2 + M2

2

M0

N1β
eq =

N0βM x −N0xMβ

M0
; N2β

eq =
N0βM y −N0yMβ

M0
; 3N3β

eq = N0β ; 3N4β
eq = N0β        

  N5β
eq = 0 ; 3N6β

eq = N2β
eq ; 3N7β

eq = N1β
eq ; 9N8β

eq = N0β .

          (9)

  
Thus the LB evolution in the velocity distribution basis would yield (say for i= 3 lattice direction)

 
∂t f3  +   e3 i∇f3  =  

1
τ

f3
eq − f3( )

while the evolution equation for the i = 3 moment yields 

∂t M3 +
1
3∂x 2M2 + M6( )  +  

1
3∂y 2M1 + M5( )     =     

1
τ

M3
eq −M3( )

div B = 0 in LB-MHD Algorithm 
In the Dellar [2] vector magnetic distribution function approach, one can enforce  ∇ iB = 0
automatically.  Reverting to Dellar’s moment definitions

N1β ,    N2β( )      =  Λαβ      ,   α = x,y

one finds that (for 9-bit magnetic lattice) 

∂tΛαβ
eq + ∂γ eiγ eiγ giβeq

i=0

8

∑ = − 1
τ m

Λαβ
1( ) , with Λαβ

n( ) = eiαgiβn( )

i=0

8

∑ (10)

with the antisymmetric tensor 
Λαβ

eq = uαBβ −Bαuβ (11)
  



Since ei ei gieq
i=0

8
= B , one immediately obtains to leading order that 1( )   =   m   B .  On 

taking the trace one finds

 
Tr 1( )   =   m   iB   +  O Ma3( )       ,  with Ma = Mach number. (12)

From 2D LB-MHD turbulence studies [2, 6] of  iB = 0 , the moment Tr 1( )  , Eq. (10), is very

 (a)  D2Q5-MRT model for B-field

             (b)  D2Q9-SRT model for B-field

              (c)  D2Q9-MRT model for B-field
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Fig. 2   The direct calculation of the perturbed moment Tr Λαβ
1( )⎡

⎣⎢
⎤
⎦⎥

, which is  related to div B by Eq. (12) for 

(a)  D2Q5-MRT, (b) D2Q9-SRT, and (c) D2Q9-MRT lattice models for the evolution of the vector magnetic 
distribution function.  Both D2Q5-MRT and D2Q9-SRT lattices preserve  ∇ iB = 0 to extremely high 
precision.  However in the D2Q-MRT model the perturbed moment asymptotes to a significantly higher level 
of 10-8. 

close to zero for the D2Q5 lattice but, interestingly, only slightly higher for the D2Q9-SRT, but 
significantly higher for D2Q9-MRT model, Fig. 2. 

3.  Single Relaxation LB-MHD
In the single relaxation time (SRT) approach, all the moments have the same time relaxation rate – 
which for the fluid moments is τ  and for the magnetic field moments is τm .  We outline the 
derivation of the SRT magnetic field evolution equation.  Under Chapman-Enskog expansions 
∂t = ε ∂t

0( )  +  ε 2 ∂t
1( )      ,              ∂β = ε ∂β         ,         Mi = Mi

eq M0 ,   M1  ,  M2   ,   Nx   ,  Ny( )   +  εMi
1( )  ….. 

since the equilibrium moments can only be functions of the conserved moments.  To leading order  
∂t

(0)Nα + ∂β Λβα
eq = 0

while at O ε 2( )
∂t

(1)Nα + ∂β 1− 1
2τm

⎛

⎝⎜
⎞

⎠⎟
Λβα

(1)⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 0

Combining these two equations yields  

∂t Nα + ∂β ε 1− 1
2τm

⎛

⎝⎜
⎞

⎠⎟
Λβα

(1) +Λβα
eq⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 0

But from the perturbed moments to leading order [c.f., Eq. (12)}: Λαβ
(1) = −

τm
3 ∂α Nβ .

After some straightforward manipulations one recovers the evolution equation for the magnetic field 
∂B
∂t

=∇× u×B( )+η∇2B (13)

with the resistivity 

η =
1
3 τm − 12
⎛
⎝⎜

⎞
⎠⎟

(14)

Similarly for the fluid equations` 
∂ρ
∂t

+∇⋅ρu = 0         , ∂u
∂t

+ u⋅∇( )u = −∇P+ ∇×B( )×B +ν ∇ ∇⋅u( )+∇2u⎡
⎣

⎤
⎦

with the pressure in this isothermal model: P = ρ / 3   and the viscosity 

ν =
1
3 τ − 12
⎛
⎝⎜

⎞
⎠⎟

(15)



4.  Multiple Relaxation LB-MHD
The SRT model of LB-MHD becomes numerically unstable as one increases the Reynolds 

number Re = U0L /ν( ) and magnetic Reynolds number ReM = U0L /η( ) .  This bottleneck can be 
relieved if one proceeds to MRT in both kinetic equations.  Of the 9 possible relaxation rates 
correlated to the 9 lattice vectors introduced in the evolution of the velocity distribution equation [5],  
several of these rates are fixed by the choice of the shear viscosity  ν = 1

3 τ 3 −
1
2( ) = 1

3 τ 4 −
1
2( ) , and 

the bulk viscosity [12] ξ = − 19 −
τ 4
9 −

τ 7
15 +

2τ 8
5

∂u
∂t

+ u⋅∇( )u = −∇P+ ∇×B( )×B +ν 2
3∇ ∇⋅u( )+∇2u⎡

⎣
⎤
⎦+ξ∇ ∇⋅u( )

This leaves three relaxation rates τ 5 ,τ 6 ,τ 7( )  free for the stabilization of the LB-MHD algorithm 
without affecting the viscosity.  We now proceed to the evolution of the magnetic field using the 9-bit 
model, rather than the usual 5-bit model of Dellar [2].  For the 9-bit SRT the single relaxation rate is 
determined by the resistivity.  However, for the 9-bit MRT, It can be shown that the resistivity is 
determined by four of the magnetic distribution function relaxation rates,

η = τM ,1x −
1
2( ) / 3      =     τM ,1y −

1
2( ) / 3      = τM ,2x −

1
2( ) / 3      = τM ,2y −

1
2( ) / 3      

which leaves five free relaxation rates for the stabilization of the MHD equations.  For some runs we
have chosen all these free parameters as 0.625 [while those rates determining the transport 
coefficient are τ 3 = τ 4 = 0.503 , τM ,1x =τM ,1y =τM ,2x = τM ,2y = 0.50075 ], while other runs we 
chose one of the relaxation rates to be 0.5 or 0.833 while the others were fixed at 0.625. 
 In the simulations below we will find that the 9-bit SRT magnetic field representation is 
more stable than the usual 5-bit MRT model and permits stronger mean fields by a factor of around
34% . It should be noted that Dellar [9, 10] has also introduced multiple relaxation collision operator 
for the evolution equation of the magnetic distribution function in 5-bit model – but in these papers 
only 2 collision rates are introduced. 

5.  MRT/SRT LB-MHD Simulation on Jet flow stabilization 
Typically the Kelvin-Helmholtz instability [3, 4, 11] arises from velocity (or current) shear.  

In the absence of a magnetic field, the linear incompressible theory leads to the dispersion relation 
ω
k

=
1
2 U1 +U2( )     ±     i  12 U1 −U2 (16)

where U1,  U2  are the representative velocities in the shear layer.   Hence the linear perturbation is 
always unstable.  If there is a uniform magnetic field parallel to the fluid velocity, this dispersion 
relation changes to

ω
k

=
1
2 U1 +U2( )     ±    

B0
2

ρ0
   −  
1
4 U1 −U2( )2 (17)

Thus this instability can be stabilized for sufficiently strong magnetic field if the Alfven speed  



VA = B0 / 0       >  
1
2 U1 U2 .

 (b)  t = 25 x 103 

(c) t = 50 x 103                                                              (d)  t = 75 x 103

(d)  t = 250 x 103                                                             (e)   t = 300 x 103



(f)   t = 350 x 103                                                              (g)  t = 450 x 103

Fig. 3  The development of the vorticity x,y( ) = x uy y ux    in the Kelvin-Helmholtz instability of a 2D 

velocity jet.  Grid = 10242, viscosity =10 3 , mean flow U0 = 0.049 , Re = 5 104 . The color scheme 
is held fixed throughout these plots.
  

In Fig. 3 we present the development of the Kelvin-Helmholtz instability for a fluid jet with 
initial velocity profile.

uy x( ) = U0 sech 2 x            ,                ux = 0 (16)
Because of the sharp changes in slope in the velocity profile, the vorticity consists of 2 counter-
streaming layers [the red > 0 and the blue < 0 in Fig. 3].  The 2D jet is Kelvin-Helmholtz
unstable.  A 1% periodic perturbation is applied to the velocity field.  Each vorticity layer (continuous 
in y) breaks up into a series of vortex blobs rotating in the same direction, but opposite to those 
vortex blobs in the other layer.  As the instability evolves these vortex blobs start to interact with 
each other and tear the layer (which was parallel to the y-axis) apart, Fig. 3(d).  Since we move into 
the regime of 2D turbulence, like vortices merge and so by t = 300K we have two sets of two vortex 
blobs moving throughout space – the jet being destroyed.   
        One can also consider the energy spectra Etot(k) , where the total energy 

E = d 2x
0

L u2

2
+

B2

2
= dk

0

kmax Etot k( ) (17)

The corresponding energy spectra Etot(k) are shown in Fig. 4 



(a)  t = 0                                                                    (b)  t = 50 x 103

(c)  t = 250 x 103                                                               (d)   t = 449.5 x 103

Fig. 4  Total (Kinetic) energy spectrum Ekin k( )   for the Kelvin-Helmholtz instability in 2D Navier-Stokes as a 

function of the wavenumber k = k . [case of B =  0 ].

We now introduce a relatively strong uniform magnetic field B0 = B0 ŷ parallel to the jet flow and 
see the stabilization of the velocity jet B0 /U0 = 0.25 , Fig. 5.  We now see that this magnetic field is 
sufficiently strong to prohibit the formation of vortex blobs within the vortex layers.  While vorticity

 x 103



(c)      t = 75 x 103                                                             (d)  t = 150 x 103

(e)    t = 175 x 103                                                             (f)  t = 200 x 103

Fig. 5  The stabilization of the velocity jet by a sufficiently strong axial uniform magnetic field for the 9-bit SRT
model.  Vortex blobs do not form in the vortex layers and the jet retains its basic form but quite strong 
transient vorticity streaks are formed [c.f. (b)-(d)], but which are then stabilized, resulting in a velocity jet 
which has somewhat increased in width.  The color scheme is adaptive, unlike that for the Navier-Stokes 
simulation, Fig. 3.

stripes are found within the layers (Fig. 5a), the vortex layers retain their identity albeit being 
somewhat more diffuse (Fig. 5b). 

In Fig. 6 we plot the initial (t = 0) and final (t = 500 x 103) jet velocity profiles noticing how the parallel 
magnetic field stabilizes the jet – but with slight broadening of the profile 



(a)  initial jet profile (t = 0)                                                  (b)  stabilized jet profile at t = 500 x 103

Fig. 6  The velocity profile of the jet stabilized against the Kelvin-Helmholtz instability by a strong axial 
magnetic field, using the 9-bit SRT model for the magnetic vector distribution functions.

It should be noted that the computational costs (in terms of wallclock time) of the 9-bit SRT model 
are almost identical to that of the 5-bit MRT models introduced by Dellar [9, 10] and Flint et. al. [6]. 
The 9-bit MRT model is considerably more expensive [by more than a factor of 50%]. 

The corresponding total (kinetic + magnetic) energy spectra for the 9-bit SRT model are shown in 
Fig. 7 

(a)   t = 0                                                                        (b)  t = 50 x 103

(c)  t = 250 x 103                                                                    (d)  t = 449.5 x 103

Fig. 7 The total energy spectrum Etot k( ) for the magnetically stabilized velocity jet (9-bit SRT model) as a 

function of the wavenumber k = k



Except for the early stages (t <  70 x 103) there are considerable small scale structures still present 
in the magnetized velocity jet, but as the stabilization sets in these small scale structures are 
suppressed.  This is evident in Fig. 7(b) with the wave number of excited modes reaching k = 300 
(for energy spectra ranges held the same in all plots of Fig. 7). The corresponding stabilization and 
spectral plots for the standard 5-bit MRT LB-MHD model are basically identical to the 9-bit SRT LB-
MHD model for t < 200 x 103.  However, for times t > 200 x 103 numerical instabilities arise in the 5-
bit MRT model, but which are not seen in the 9-bit SRT model at these strong magnetic fields 
B0 /U0 = 0.25 .

6. CONCLUSION
The LB-MHD algorithm is an ideal computational tool as one scales codes to exascale because of 

its impressive parallelization.  This parallelization arises because the 2 major LB-MHD operations: 
(a) free-streaming distribution function data to nearby spatial nodes (a simple shift), and (b) local 
collisional relaxation of the distribution functions (requiring only local data at the nodes).   Here we 
have applied the LB-MHD code to study the stabilization of the Kelvin-Helmholtz unstable 2D-fluid 
jet by an external parallel magnetic field.  Since the vector distribution function, as originally 
introduced by Dellar [2], can recover the magnetic field at its zeroth moment the underlying lattice 
for 2D problems can be restricted to the simple 5-bit model.  This SRT model has then been 
extended by Dellar [9, 10] and Flint et. al. [6] to MRT where the collision-step is now performed in 
the moment space of the magnetic distribution function as it is also performed for the moment 
velocity space so as to take full advantage of the local collisional invariants.     In this paper we have 
examined the consequences of moving to a 9-bit lattice for the magnetic velocity distribution 
function and applied the model to the stabilization of the Kelvin-Helmholz instability in a fluid jet.  
Since the strength of the stabilizing axial magnetic field is a critical parameter in the jet stabilization, 
we have examined the effect of lattice geometry and kinetic collisional relaxation rates on Bmax 
before numerical instabilities limit the simulation.  We found that Bmax can be successfully increased 
by 34% in moving from the 5-bit MRT magnetic lattice to the 9-bit SRT lattice with no loss in the 
computational wallclock time required.  However the further extension to 9-bit MRT magnetic lattice 
only permitted Bmax to be 40% greater than the 5-bit MRT while the computational wallclock now 
increased by over 50%.        

The optimal choice of kinetic moments basis is still an open question.  Our choice was predicated 
on making the choice of the next higher order moments – but with our current results on the 
importance of the 9-bit SRT (which does not require the introduction of a kinetic moment space for 
the magnetic distribution) it may be a mute point.  We have also performed some parameter runs in 
the choice of the stabilizing moment relaxation rates on achievable Bmax .  With 6 degrees of 
freedom in the kinetic moment relaxation rates only a somewhat superficial testing was performed.  
No particularly strong correlations were found.  In some cases, forcing strong damping of some of 
the higher kinetic moments did not lead to stabilization while reducing some led to better results.  
Again, in light of the important gains in the 9-bit SRT magnetic lattice (at no extra computational 
costs) this seems to be a secondary issue.   

The important question of whether these results will also hold in wall-bounded flows is left for a 
future study.  It is well known that the accuracy and stability of an LB-code is dependent on the 
treatment of boundary conditions. This would introduce another set of free parameters that would 
possibly lead to further discussions on improvement in boundary condition implementations.  Since 



our next major goal is to extend these MHD results from 2D to 3D (in periodic geometry) and 
examine the differences between 2D and 3D Kelvin-Helmholtz jet stabilization in an axial magnetic 
field with an eye to moving to magnetic fusion applications where the toroidal magnetic field is an 
order of magnitude greater than the poloidal field, we are leaving the effect of wall boundary 
conditions for a later study.                                              

ACKNOWLEDGEMENTS
This work was partially supported by AFOSR and NSF. 

REFERENCES
[1]  S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Clarendon Press, 
2001  - and references therein
[2]  P. J. Dellar, “Lattice kinetic schemes for magnetohydrodynamics”, J. Comput. Phys. 179, (2002) 
95-126
[3]  Lord Kelvin, “Hydrokinetic solution and observations”, Phil. Mag. 42, 362-377 (1871)
[4]  S. Chandrasekhar, Hydrodynamics and Hydromagnetic Stability (Oxford Univ. Press, Oxford), 
1961
[5]  D. d’Humieres, I. Ginzburg, M. Krafczyk, P. Lallemand and L-S. Luo, “Multiple-relaxation-time 
lattice Boltzmann models in three dimensions”, Phil. Trans. R. Soc. Lond. A 360, 437- 451 (2002) 
[6] C. Flint, G. Vahala, L. Vahala and M. Soe, “Magnetic field stabilization of a two-dimensional fluid 
jet:  a multiple relaxation lattice Boltzmann simulation”, REDS (to be published). 
[7]  P. J. Dellar, “Moment equations for magnetohydrodynammics”, J. Stat. Phys P06003-22, (2009) 
[8]  S. Ansumali, I. V. Karlin and S. Succi, “Kinetic Theory of Turbulence Modeling:  Smallness 
Paameter, Scaling and Microscopic Derivation of Smagorinsky Model”, Physica A338, 379-394
(2004).
[9]  P. J. Dellar, “Electromagnetic waves in lattice Boltzmann magnetohydrodynamics”, Europhys. 
Lett. 90, 50002 (2010) 
[10]  P. J. Dellar, “Lattice Botlzmann magnetohydrodynamics with current-dependent resistivity”, J. 
Computat. Phys. 237, 115-131 (2013). 
[11]  D. Biskamp, Magnetic Reconnection in Plasmas, (Cambridge Univ. Press, Cambridge) 2000.
[12] P. J. Dellar, "Bulk and shear viscosities in lattice Boltzmann equations." Phys. Rev. E 64 (2001)
031203.


	A 9-bit multiple relaxation Lattice Boltzmann magnetohydrodynamic algorithm for 2D turbulence
	Recommended Citation

	LBMHD_9bitB

