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1; Abstract
19 Let A be an irreducible (entrywise) nonnegative n x n matrix with eigenvalues
20
21 p,A2:b+iC7>\3:b*iC,)\4,"',)\n,
22
23 where p is the Perron eigenvalue. It is shown that for any ¢ € [0,0) there is a nonnegative
24 matrix with eigenvalues
25 p+1€~,)\2+t,)\3+t,)\4-~-,)\n,
26 .
27 whenever £ > v,t with 73 = 1,74 = 2,75 = v/5 and v, = 2.25 for n > 6. The result improves
28 that of Guo et al. Our proof depends on an auxiliary result in geometry asserting that the area
29 of an m-sided convex polygon is bounded by =, times the maximum area of a triangle lying
30 inside the polygon.
31
32 2000 Mathematics Subject Classification. 15A48, 15A18.
33
34 Key words and phrases. Non-negative matrices, Perron eigenvalue, perturbation.
35
36 )
371 Introduction
38
28 The nonnegative inverse eigenvalue problem concerns the study of necessary and sufficient con-
41 ditions for a given set of complex numbers Ai,..., A\, to be the eigenvalues of an (entrywise)
42

43 nonnegative matrix. This problem has attracted the attention of many authors, and is still open;

44 for example, see [4] and its references. In connection to this study, researchers study the change of
22 the Perron eigenvalue under the perturbation of the other real or complex eigenvalues of a given

47 honnegative matrix. Here are several results in this direction.

48

49 (1) In [6], the author proved the following:

50

51 Suppose p, A2, A3, -+, Ay are the eigenvalues of an n x n nonnegative matrix A such that p is

52

53 -

54 with eigenvalues p +t, Ao £ t, A3, -+, Ay
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the Perron eigenvalue, and Ay is real. Then for any 0 < t < t, there is a nonnegative matriz



(2) Laffey [9] and Guo et al. [5] obtained the following independently:

Suppose p, Ao, A3, -+ , Ay are the eigenvalues of an n x n nonnegative matriz A such that p

1 is the Perron eigenvalue, and (A2,A3) = (b + ic,b —ic) is a (non-real) complex conjugate

g pair. Then for any t,t € [0,00) with 2t < t, there is a nonnegative matriz with eigenvalues

4 p+f,)\2—t,)\3—t,/\4---,)\n.

5

6 (3) In [5, Proposition 3.1], Guo and Guo showed that:

e

8 Suppose p, Ao, A3, -+, An are the eigenvalues of an n x n nonnegative matriz A such that p
18 is the Perron eigenvalue, and (A2,\3) = (b + ic,b —ic) is a (non-real) complex conjugate
11 pair. Then for any t,t € [0,00) with 4t < t, there is a mnonnegative matriz with eigenvalues
ig p+t~a)\2+ta>‘3+t7)\4"'a>\n~
14 The authors also pose the problem of finding the smallest constant ¢ for which the above
1
lg result holds with 4¢ replaced by ct. In [3] Cronin and Laffey show that ¢ = 1 for n = 3,
17 ¢c=2forn=4and c=>2for n>5. They further show that for ¢ > 2, the result holds for
ig sufficiently small ¢ but the question about arbitrary ¢ is left open.
20

g; The results in (1) and (2) above were shown to be optimal in the sense that the conclusion may

23 fail if £ < ¢ in (1) and £ < 2t in (2). However, the result in (3) may be strengthened. In this paper,
24
25

26
27 Theorem 1.1. Suppose p, A2, A3, -+, Ay, are the eigenvalues of an n x n nonnegative matriz A such

we improve the third result, and prove the following.

28 that p is the Perron eigenvalue, and Ay = b+ ic and A3 = b — ic are (non-real) complex conjugate

30 pairs. Then for any t € [0,00) there is a nonnegative matriz with eigenvalues

31

32 ,0+£,/\2+t,)\3+t,)\4--~,)\n,

33

gg whenever t > Yot with v3 = 1,74 = 2,75 = V5 and Yo = 2.25 forn = 6.

36
37 Our proof depends on the following geometrical result, which is of independent interest [7].

38

39 Proposition 1.2. Suppose n € {3,4,5,6}. The area of an n-sided convex hexagon P < R? is
40
41
42
43 V3 = 17 Y4 = 27 V5 = \/57 Y6 = 225;
44
45

46
47 One easily sees that the maximum area of the triangles lying inside a convex polygon is attained

bounded by ~y, times the mazximum area of the triangles lying inside P, where

and these bounds are best possible.

48 at a triangle formed by 3 of the vertices of the polygon.

49
50 The proof of Theorem 1.1 is given in Section 2, and the technical proof of Proposition 1.2 and

51 some remarks are given in Section 3.
52
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2 Proof of Theorem 1.1

We begin with two lemmas. The first one can be found in [8].

1

2 Lemma 2.1. Suppose \i,...,\, are the eigenvalues of a monnegative matriz. Then there is a
3 . . . . .

4 nonnegatiwe matriz with constant row sums with eigenvalues Ay, ..., Ap.

6 The next lemma concerns the change of r eigenvalues, Aq,..., A, with r < n, and leaving

7 invariant the other eigenvalues of an n x n matrix A by a rank-r perturbation. It can be viewed as

8
g an extension of the result in [10]; see also [2, Theorems 27 and 33].

10

11 Lemma 2.2. Let A € C"*™ with eigenvalues A1, -+, \n. Let X = [x1|z2|- - |x,] € C™*" be such
ig that rank(X) = r and AX = XD, where D € C™" with eigenvalues \1,--- ,\.. Then for any
14 7 x n matriz C, the matriz A+ XC' has eigenvalues ft1,- -+, fbr, \p1, -+ , An, where gy, -+, [ are

12 etgenvalues of the matrix D + CX.
1

17
18 Proof. Let S = [X|Y] be a nonsingular matrix with S~! = [ g }, with U € C"™*". Then UX =
19

20 I, VY = I, and (VX)"' = UY = O, 4(,_r). Because AX = XD, we have

21

22 U D UAY }

—1 _ _
- s [ U]y - 2 VAT

25
26 and

27 1 I,
o8 S XCSz[O]CSz[
29

30 Thus,

31

32 STHA+XC)S=85"1AS +S71XCS = {
33

gg Now, from (2.1) we have o(VAY) = {\.41, -+, \n} and therefore

36

37 0(A+XC)=0(D+CX)U{Ai1,-, A} n
38

39

40 We are now ready to present the proof of Theorem 1.1.

41
42
43 let u+iv be eigenvectors of A corresponding to the eigenvalues b+ic, where u = (u1,uz, -+ ,u,)?,v =
44 (
45
46
47 Al = 1| 2, 7 | (2:2)
48 —c b | '
49

50 We adopt an idea in [5] and let

51

(2.1)

o o=

D+ CX UAY +CY
0 VAY

Let A € 2, be an n x n non-negative real matrix with eigenvalues p,b+ic,b—ic, A4, - , Ap, and

v1, V2, ,vp) T € R™. Then we have the following equality for n x 2 matrices:

52

53 M —_— u]_ DY un
54 v o Up
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Denote by P = P(u,v) a point in R? with co-ordinate (u,v). By Analytic Geometry, suppose

1 1 1
1 det(i,j, k) =det [ [u; wj wr] |, 1<1, j, k<n.
2 Vi Vi Vg
3
4

5 Then | det(, j, k)| is 2 times the area of the triangle with vertices Pj(u;, v;), Pj(uj,vj) and Py(ug, vk).
g Moreover, det(i, j, k) > 0 if and only if the points P; — P; — P, — P; are not collinear and appear
g in counterclockwise direction in R2.

9 Replacing (A, u,v) by (QAQT, Qu, Qu) for a suitable permutation matrix @, we may assume
10

17 that

12 A =det(1,2,3) = max det(s,j, k). (2.3)
13 1<i,j,k<n

14 T o . ) . . .

15 Recall that e = (1,...,1)". Since e,u + iv,u — iv are the eigenvectors of the distinct eigenvalues

16 p, My, A3, so e, u, v are linearly independent over R. It follows that A = det(1,2,3) > 0. Let
17

18
19 $=($1,$2,.’E3,0,"‘,0)

20
21 satisfy
22
23

24 .

o5 that is,

26 I 1 1 T
27 up U2 U3 T2 Y2 | =

28 v v2 vz | |x
59 1 V2 U3 3 Y3

30 Then
31

r and Yy = (y1,3/2a?/3,0,"' 70)T

2le=0, zTu=1, 2Tv=0; yTe=0, yTu=0, y"v =1, (2.4)

O = O
= o O

32 1 1 1

33 T = Z(U2 —v3), 12 = —(v3 —v1), 13 = —(v1 — v2),
34

35 1 1

36 Y1 = Z(ug_W)’ Y2 = —(u1 —u3), ys =
37

gg and

40 [x,y]T[u, U] = I.

41

42 Suppose

43 a1 (12 (013 0O --- 0

44
« « o
45 21 22 @23

46 [ulv][z]y]" = | @s1 asz asz O -+ 0 | (2.6)
47 : : . - :
jg | Qnl Qp2 Qp3 0 --- 0_
50
51
52 1 1
53 o o : _ _

> Qi1 = UiT1 + VY Adet(z,2,3) A(UQU?, ugv2),
55
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(ug — u1). (2.5)

DN
b=

[es}
[an}

Then fori =1,...,n,



1 1
Qo = UiTo + VYo = A det(1,4,3) — Z(U3vl — u1v3),

1 . 1
1 Q3 = U3 + VY3 = —det(l,Q,z) — *(U1U2 —UQUI).

A A
2
31If
4
S i = a = L det(5,2,3), e = o — L det(1,4,3), e = — L det(1,2,4)
g Cil = il 0421—A €7, 2,9), G2 = Qq2 0432—A etll,2,9), Gi3 = Q43 0423—A etil, 4,1),
e
gthen
10 Cl11 2 Ci1, €22 2 Cj2, €33 = Ci3, (2.7)

11

12 because A = det(1,2,3) > det(i, j, k) for all 1 < 4,5,k <n. Let

13

14 1= min ¢i, c¢jp= min ¢, cp = min 3.

15 1=1,2....n =1,2....n =12....n

16

17 Then ¢;1 < ¢1, ¢cjo < ¢ and ¢z < ¢3 forall l =1,2...,n. Therefore, we have
18
19
20
21 . . .

22 Assume that n > 6, and that 1,2, 3,4, j, k are distinct, and focus on
23

24 1 1 1 1 1 1

25 M = up U2 U3 U; Uj; U | - (2.9)
26
27
28
29 Note that for the following points in R?,
30
g; Pi(u1,v1), Pa(ug,v2), P3(us,vs), Pi(ui,vi), Pj(uj,vj), Pr(ur,vx),
33
34
35
36 is the area of the triangle with vertices Py, P, Ps;
37

det(2,2,3 det(2,3,3 det(1,1,3 det(1,3,3
gg .Ci].< et(A=7):et(A7=):070j2< et(Avv):et(AV)

49 Thus, det(i,2,3), det(1,j,3), det(1,2,k) € (—0,0]. Note that det(r,s,f) < 0 if and only if

42 P., P, P, are collinear or they are in clockwise direction. Let ¢; (respectively, 2, f3) be the

a1 < o1, agp < ogp and agpz < gz foralll=1,2... n. (2.8)

vl V2 U3 U U Ug

det(1,2,3)

e the area of a triangle formed by any three of these points is not larger than , which

det(1,2,1 det(1,2,2
:O’ Ck3< e(A77):e(A77):O‘

22 line through Py (respectively, P, P3) parallel to P, Ps, (respectively, P;P3, P;P,). Suppose {5 and
45 /3 (respectively, ¢1 and /3, ¢1 and {2) intersect at @)1 (respectively, Q2 and @3). Since det(i,2,3) <0
jg and |det(1,2,7)], |det(1,3,7)] < det(1,2,3), P; lies in the triangle Q1 P3P>. Similarly, P; and Py
48 lie in the triangles P P3Q2 and P3P respectively. Thus PP, P, P;P3P; is a convex hexagon
gg (including the degenerate cases, when it is a triangle, quadrilateral or pentagon). Moreover, the

51 vertices Py, P;, P3, P;, P, P, P; are in clockwise direction. By Proposition 1.2,

52
53 5
54 1
55
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= (| det(7,2,3)| + | det(1,7,3)| + | det(1,2,k)|) = —(ci1 + cj2 + ck3) = 0.
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It follows that
5
-1 = a; + Qj2 + gz = Ci1 + o1 + Cj2 + a3a + Ck3 + Qo3 = _Z —1=-2.25. (2.10)

Suppose t > 2.25t > 0. Let

t+ t(Oéil + ajo + Oék;g) < t —2.25¢

o = >
3 3

=

O8]
[}
=+

2= (—taj + 06, —taje+ 0, —tags +96,0,---,0)7 and A = A + [e|ulv][z|tz|ty]”.

=
QOO ~NOURAWNE

11
12
13
14 T
15 [z]tz|ty]” [e|u|v] =
16
17
18
19
20
21
22
23
24

25 [ Bin Bz Pz 0 - 0
gg P21 Baz B3
28 [e|ulv][z|tz|ty]” = | P31 Bs2 B3 0 - 0
29 : f Do f
gg _/Bnl Bn2 6713 0o --- 0_
gg By (2.8), we have

34 B = tlar —ain)+6=0

35

36 Bz = tlage —ajo) +6=0

37

38
39 Bis = t(ayz —ags) + 9 = 0.

40 = . . T . .
41 Thus, A also has nonnegative entries. Hence, A is the desired matrix.

By direct computation, we have

O O M
~
-+ O %

By Lemma 2.2, the eigenvalues of A are p+t, o9, 03, M, , Ap, where oo, 03 are the eigenvalues

of[_bc g}—i—tlg,thatis, oo =b+t+ic, o3 =0b+1t—ic.

Let

[an}
[an)

42 Suppose n = 5, 4, 3. Then the matrix M in (2.9) has at most n columns. Nevertheless, we

47 AN apply a similar argument and use the corresponding result in Proposition 1.2 to construct the

45 desired matrix A. We omit the details. OJ
46
47

jg 3 Proof of Proposition 1.2

50
51 The purpose of this section is to prove the Proposition 1.2. The results for n = 3 is trivial.

gg We will assume that P, ..., P, are vertices of the convex polygon arranged in counterclockwise

54 direction. The following two facts are useful in our discussion.
55
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(a) One can apply an affine transformation v — T + vy for some invertible 2 x 2 matrix 7" and
vo € R? to the points Py, ..., P, without affecting the hypothesis and conclusion of the result.
(b) One can always find an affine map to send any 3 vertices of the polygon to any 3 non-collinear

points.

Suppose n = 4. One may apply an affine transformation and assume that P = (0,0), P, =

0), P3 = (1,1) are the vertices of the triangle of largest area. Since all the triangles in-

O©CoO~NOOOITA~AWNPE

(1,
side the quadrilateral have area at most 1/2, the fourth vertex is in the triangle with vertices
o (0

0),(1,1),(0,1). The conclusion of Proposition 1.2 follows readily.

10

11
12 direction. Let T' be a triangle of largest area.

Suppose n = 5 and P4, ..., P; are vertices of a convex pentagon arranged in counterclockwise

iz Case 1. T has two sides in common with the pentagon. We may assume that P, = (0,0), P, =
5 (1,0), P3 = (1,1) are the vertices of T. Then P; and Ps have to lie in the triangle with vertices

6 (1,0), (1,1), (0,1) and the conclusion of Proposition 1.2 follows readily.

18 Case 2. T has only one side in common with the pentagon. We may assume that P =
9 (0,0), P, =(1,0), Py = (0,1) are the vertices of T'. Then we have

20

21

5o (a) P3 = (us,v3) lies in the triangle with vertices (1,0), (1,1), (0,1), and

gi (b) Ps = (—us,vs) lies in the triangle with vertices (0,0), (0,1), (—1,1).

25

gg By applying the affine transformation (z, y) — (1 — (z + y), y), if necessary, we may assume
2g that vs = vs. For the convenience of calculation, we will use A(i, j, k) to denote twice the area
28 of the triangle with vertices P;, Pj, P,. We will show that subject to the constraints (a), (b)
31 and A(2,3,5) < 1, we have A(1,2,4) + A(2,3,4) + A(1,4,5) < +/5, where the equality holds at
gg (u3,v3) = (2,5 —1)/2 and (—us,vs5) = (1 — /5,5 —1)/2.

34 By direct calculation, we have
35

36
37
38
39 A(1,2,4) + A(2,3,4) + A(1,4,5) = ug + us + vs.

40

j; So we need to show that subject to the constraints

43

44 us <1 <wuz+wvs, 0<us<vs<wg<l1, vg(l+wus)—(1—ug)vs <1, (3.1)
45

46 the maximum value of us + us + v3 is /5.
47
48 We can replace vs by vs without changing us + us + vs or violating the constraints. So we will

A(2,3,5) =v3(1 +us) — (1 —us)vs and

gg assume that vs = vs. Then the constraints in (3.1) becomes

51

2% u3 <1 <wuz 4wz, 0<us <wz<l1, (u3+us)vz <1
54
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1
So we have ug + us < 1+ v3 and —. Therefore, for fixed 0 < v3 < 1, the maximum of ug + us + vg

U3
V5 —1 1 1 V-1

,andvg+ — if1l4+v3 < — < vy = .

1
isequal to 1 +2v3, if 1 + v3 < — < v3 <

1 V3 U3 V3 2
z . : . V51
2 Maximizing over vs in both cases, we have the maximum value v/5 attained at v3 = 7 Thus
5 : : : V5 —1
6 the maximum of u3 + us + v3 is attained at uz = 1, us = vz = v5 = 5 We note that for
g these values of us, us, vs, vs, we actually have A(i, 7, k) < 1forall 1 <i<j<k<H5.
10 Finally, we consider the intricate case when n = 6. Suppose a (non-degenerate) convex hexagon
i; has vertices P;(z1,91), ..., Ps(xs, ys) arranged in counterclockwise direction. We will prove that
13 ) )
14 Area of the hexagon with vertices Py, Ps,..., Py - 9 (3.2)
15 max{Area of triangle with vertices P;, P;, P, :1<i<j <k <6} S '
16
17 where the inequality becomes an equality for the hexagon H, with vertices
18
19 5 2 1 2 2
0,0, 1707 PRy 071 3 _771 sy \T 91 o/
21
22 Note that a direct calculation shows that the area of the triangle with vertices (0,0), (1,0), (0,1)
23 1
24 is —, which is maximum among all triangles with vertices from Hj.
25
26

27 Lemma 3.1. Suppose the mazimum of the left hand side of (3.2) is attained at some hexagon H
28 with vertices Py, ..., Ps. Then

29
30

31 max{Area of triangle with vertices P;, Pj, Py :1<i<j <k <6}

32 . , . . o ‘
33 s attained at some triangle with at least one side in common with the boundary of H.

34
35 Proof. Let M be the maximum of the left hand side of (3.2) over all (non-degenerate) convex

9
gg hexagon. Clearly, M exists and 1 <M <4

gg Suppose the maximum of the left hand side of (3.2) is attained at some hexagon H with vertices
40 P, ..., Ps, labeled in counterclockwise direction. We are going to prove the result by contradiction.

4l Suppose the maximum of the area of triangles with vertices P;, Pj, P, 1 <i<j <k <6
43 can only be attained at triangles with no side in common with the hexagon H. Without loss of
44 generality, we may assume that the maximum is attained at the triangle with vertices Py, P3, Ps.
46 Using an affine transformation, we may assume that P = (0,0), P35 = (1,0) and P5 = (0,1). For

47 the convenience of notation and computation, let
48

gg A(i, j, k) = 2 x (area of triangle with vertices P;, P;, Pj)

g; for 1 <i < j <k < 6. By our assumption, we have

53

54 A(1,3,5) =1, A(2,4,6) <1 and A(i,j,k) <1 for all (4,5, k) # (1,3,5), (2,4,6). (3.3)
55
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We will prove that under the conditions in (3.3), the area of the hexagon H is less than or equal to

9
1, which contradicts the fact that M > 1% shown by our example before Lemma 3.1.

1 In the following, we will prove that under the conditions in (3.3), we have
2
s Ao = A(1,2,3) + A(3,4,5) + A(L,5,6) < 1 (3.4)
5
6 Suppose Py = (u1, —v1), Py = (u2,v2) and Ps = (—us,v3). Let
2
g 1 1 11 1 1
10 A= 0 w3 1 wg 0 —ug
11 0 —U1 0 (%) 1 V3
12
iz Then |A(i, j, k)| is equal to the determinant of the submatrix of A lying in columns ¢, j, k. By (3.3),
15 we have
16
17
18 A(1,3,5) = 1 is the maximum, among all A(i,j, k)
19
gg A(2,4,6) = (ug —wu1)(v1 +v3) + (ug + uz)(v1 +v2) <1, and (3.5)
22
23 0<vy <u <1, Uy <1, vo <1, wo+wv2=21, 0<uz<wvy<l.
gg By direct computation, we have
26
27 Ag = us +ug + vy +wve — 1.
28
29

30 Note that the area of the triangle with vertices P;, P;, P} will not change if we replace P; by

g; P; + d(Pj — Py) for any d € R. Thus, A(1,3,5) will not be affected and A(2,4,6) will not change

33 under the following transformations:

34

35 1. (u1,v1,u2,v2,u3,v3) = (u1 + (ug + uz)d, v1 + (v3 — v2)d, uz, v2,us, v3),
36
37
38

39
40 3. (U]_,Ul,'UQ,’UQ,Ug,’Ug) - (Ul,Ul,UQ,UQ,Ug + (U]_ - Ug)d, v3 + (Ul + UQ)d)

2. (u1,v1,u2,v2,u3,v3) = (u1,v1,u2 + (w1 + u3)d,va — (v1 + v3)d, ug, v3),

41
42 For (i,j,k) # (1,3,5) and (2,4,6), A(i,,k) < 1 will hold for sufficiently small d > 0, whereas Ag
42 will change to

45
46 1. Ao+ (1)3 - 'UQ)d,

47

48 2. Ao + (u1 + us — v — Ug)d,
49

50 3. Ay + (u1 — Ug)d,

51

52

53
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respectively. By the maximality of Ay, we must have

vy —v3 = (u] +uz —v; —v3) = (ugp —ug) =0,
1

2 which gives

3
4 U] = U2, V1 = U + U3 — VU3, U2 = V3.
5
6 Substituting into A(2,4,6), we have
e
g A(2,4,6) = (ug +u3)> <1 = (ug +u3) <1.
10 P
11 Substituting into Ay, we have
12 AOZQUQ+2U,3—1<1,
13
ig which is the desired contradiction. O
16
ig By Lemma 3.1, we can assume that the largest triangle A in the hexagon H has at least one

19 side in common with H. We consider two cases.

20 Case 1 A has two sides in common with . Then we may assume that A is the triangle with
g; vertices Pi, P, P3. Using an affine transformation, we may assume that P; = (0,0), P, = (1,0)
23 and P3 = (0,1). Then Py, P5 and Py have to lie inside the triangle with vertices, (0,0), (1,1) and
25 (0, 1). Therefore, H has area less than or equal to 1, a contradiction.

26
27 Case 2 A has one side in common with 4. Then we may assume that A is the triangle with

gg vertices Py, P, Pj.
30 Using an affine transformation, we may assume that P; = (0,0), P, = (1,0) and Py = (0,1).
g; Let Py = (u1,v1), Ps = (—ug,v2) and Ps = (—us,v3), where uy, ug, us, v1,v2,vs = 0. So, we have

33 a hexagon with vertices (0,0), (1,0), (ui,v1), (0,1), (—ug,v2), (—us,vs). Since the hexagon is
34
35
36
37 up + v =1, vg = v3, ugvg = ugv3, and uzva — UgV3 = U3 — Us (3.6)
38

39 et

40
a1 1 1 1

3 11 1
42 A= 0 1 (31 0 —UuU2 —Us
43 0 0 1
44 B ~
45 Then |A(4, j, k)| is the determinant of the submatrix of A lying in columns 4, j, k, and assume that
46
47 ) )
48 A(1,2,4) =1, and A(,j,k) <1 foralll<i<j<k<6 (3.7)
49
50 It follows from (3.7) that
51
52  (a) (u1,v1) lies in the triangle with vertices (1,0), (1,1), (0,1). Equivalently, 0 < 1 —u; <
o3 v <1
54 - T 7
55
56
57 10
58
59
60
61
62
63
64
65

convex, we have

U1 V2 U3
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(b) (—ug,v2) and (—us,vs) lie in the triangle with vertices (0,0), (0,1), (—1,1). Equivalently,

O<uos<wvy<1l and O0<uz<wvy<l.

Let

g(u1, vi,u2, v, us, v3) = A(2,3,4) + A(1,4,5) + A(1,5,6) = ug + uz + v1 + uzve — ugvz — 1.

7 Suppose g attains a maximum M at (uy, vy, ug, ve,us, v3) subject to the constraints (3.6) and (3.7).

9 We are going to show that

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5
M<? (3.8)
4
) 5)
Lemma 3.2. Suppose (uy,v1,uz,v2,us,v3) satisfy (a) and (b) such that g(uy,vi, ug, ve, uz, v3) = 1
Then
5) 1
up + v = 1 Vg = 1
o 5
Proof. Suppose at some (u1,v1, uz, v2, us, v3) satisfying (a) and (b), g(ui,v1,u2,ve, us, v3) = T
Then
5
1 < up + ug + v + usve —ugvy — 1
= wu +v1 —1+u(l —vy +u3) + (vg — uz)us
< (u1+U1—1)+U2+(U2—U2)
= (u1 +v1—1)+ vo.
Since (u1 + v1 — 1), vy < 1, the result follows. O

Let us focus on the following constraints.
(c) A~(1,3, 5) = uguy + ujve < 1,

(d) A(1,3,6) = ugvy + ujvy < 1,

(e) A~(2,3, 5) = v1 — vg + ugv1 + ujvy < 1,
(f) A(2,3,6)

A 2,3,6) = v; — w3+ uzvy +uvg < 1,

Consider the maximization problems under the following constraints:

1. M; = maximum of g under the constraints v; < vs, (a), (b), (c), (d) and (3.6).
2. My = maximum of g under the constraints v < v1 < ve, (a), (b), (c) and (f).

3. M3 = maximum of g under the constraints v < v1, (a), (b), (f) and (3.6).
Because v3 < vy, we have M < max{M;, Ma, Ms}. So (3.8) will follow from the following.

11



= Ot

Proposition 3.3. My, M3 < My <

5)

1 Proof. First we show that M;, M3 < max {Mg, 4}. Let

2

3 ~

4 g1(u1,v1,u2,v2,u3,v3) = A(1,3,5) = ugv1 + u1v2

5

6 _

7 g2(u1,v1,ug,v2,u3,v3) = A(1,3,6) = uzv1 + ugvs

8 ~

9 g3(u1,v1,u2,v2,u3,v3) = A(2,3,5) = v1 — v + ugv1 + urvo
10
11 X
12 ga(u1,v1,u2,v2,u3,v3) = A(2,3,6) = v1 — v3 + uzvy + urvs.
13

14 Suppose M is attained at P = (uq, v1, ug, va, us, v3) satisfying the constraints v; < vs, (a), (b), (c),
12 (d) and (3.6). Note that

17

18 g1(u1 — uzd, v1 + v3d, ug, v2,us, v3)
19
20
21
22
23
24 g(ur — uzd, vy +v3d, uz,v2,u3,v3) = g(u,v1,u2,v2,u3,v3) + (v3 — uz)d
25 = g(ul)vl)u2>027u3av3)‘
26
27
28
29 with @ = u; — us(vs — v1)/vs. Then by the fact that 0 < ug < vs < 1,
30

31 -
32 i Zu;—(v3—v)=u +vy—v3=1-v3=>0

33 )
34 up+vy =up+v=1.

35
36 Thus, this replacement will neither decrease M; nor violate the constraints (a), (b), (c), (d), (3.6).

g; In that case, P also satisfies (f). Therefore, M; < M.

39
40 5 1
j; (e) and (f). We may assume that M3 > T Then, by Lemma 3.2, vy > T Note that
43

jg g3(u1 + (1 4+ ug)d, v1 — vad, ug,vo,u3,v3) = g3(u1,v1,uz,v2,u3,v3),

46
47
48
49 < ga(u1,v1,u2,v2,us, v3),

50

g; g(ur + (1 4+ ug)d,v1 — vad, ug, v2,u3,v3) = g(u1,v1,u2,v2,u3,v3) + (1 + ug — v2)d
gi 29(111,’(}1,’(/,2,’[}2,?13,113)-

55

56

57 12

58

59

60

61
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g1 (Ul,vl,UQ,UQ,U3,U3) — (’LL3U2 — ’LL2’U3)d
g1(u1,v1,uz,v2,u3,v3)

N

g2(u1 — ugd, v1 + v3d, uz, v, us, v3) g2(u1, v1,ug, v, u3, v3) ,

If v1 < v3, then we may let d = (v3 — v1)/v3 and replace (u1,v1) by (u1 — usd, v1 + vsd) = (u1,v3)

Suppose Ms is attained at P = (u,v1, uz2,v2, us, v3) satisfying the constraints ve < vy, (a), (b),

ga(ur + (1 4+ ug)d, v1 — vad, ug, v2,u3,v3) = ga(ur, vy, ug, v, usz,v3) — (V2 — v3 + UzvV2 — ugv3)d



If v1 > v9, we may let d = (v1 — v2)/v2 and replace (u1,v1) by (u1 + (1 + ug)d, vy — vod) = (U1, v2)
so that 41 = w3 + (1 4+ ug)d. Then

1 R

2 u =up =0,

3

4 R 14+ ug)(vy —w

5 Ul + vy :Ul—l-( 2?0(21 2) + Vo

6 1+ ug—v9)(vy —w

7 =U1+’U1+( 2 ’Uj)(l 2)2’&1-}-’0121.
8

9 Such a replacement will neither decrease M3 nor violate the constraints (a), (b), (f), and (3.6). In

1
11 that case, P also satisfies (c). Therefore, M3 < My.

5
ig It remains to prove My < 1 Note that we have relaxed the constraint (3.6) in the definition of

14 A1, to simplify the arguments in the following. On the other hand, we cannot use the assumption
16 that Pp, ..., Ps are the vertices of a convex polygon anymore. To establish our result, We need one

17 more lemma.
18

%g Lemma 3.4. My is attained at some (u1,v1, uz, v2, us, v3) satisfying one of the following conditions:
21

22 1. V1 = Vg = V3.

23 5 -

24 2. A(1,3,5) =1, v3 = u3, A(2,3,6) <1 and vs = v;.

25

26 3. A(1,3,5) =1, v3 = u3 and A(2,3,6) =1 .

27
28
29
30 (¢) and (f). If vy = v3, then v = v9 = v3.

g; Suppose vy > v3. We first show that A(1,3,5) = 1. Assume that A(1,3,5) < 1. Note that

33

34 g1(u1,v1,ug +d,v2 + e,u3,v3) = g1(u1,v1,uz,va,u3,v3) + vid + use,

35

36 ga(ur,v1,u2 + d,va + e, uz,v3) = ga(u1,v1,uz,v2,u3,v3),

37

38

39 g(uy,v1,ug + d,vg + e,ug,v3) = g(u1,v1,us,ve,us,vs) + (1 —v3)d + uge.

40

41 Then we can do the following to increase g to derive a contradiction. (1) If vo < 1, then take

jé a suitable d = e > 0. (2) If vy = 1, then A(1,3,5) = ujvs + ugvy < 1 implies that us < 1 as

44 up +vy = 1. Wemay let d > 0 =e.

45

46 Next, we show that we may assume that vs = us. Note that

47

jg g1(u1,v1,u,v2,u3 — (1 —up)d,v3 —vid) = g1(u1,v1,u2,ve,us, v3),
50

51 ga(u1, vy, ug, v2,ug — (L —wr)d,vg —vid) = ga(u1, vy, ug, va, us, v3),
52

53 g(u1,vi,u2,va,us — (1 —uy)d,vg —v1d) = g(u1,vi,us, vy, us,v3) + (1 —ve)d.
54

55

56

57 13

58

59
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Proof. Suppose My is attained at some (u1,v1,ug, v, us, v3) satisfying v < v1 < ve, (a), (b),



Since u; + v1 > 1, we may decrease vy — ug without decreasing g. Hence, we may assume that
V3 = usg.
We further claim that vg > wus. If it is not true and vy = us9, then A~(1, 3,5) = (v1 + up)ug =1,

1
2and 1 +us =1+ vy = up +v1 = 1/ug so that 1 +ug > 1/up = 0. Hence us € [(v/5 —1)/2,1], and
3
g g(ur,...,v3) = 1/ug +up —1 < 5/4 for uy € [(V5 —1)/2,1],
6 . . . .
7 which is a contradiction.
8 .
9  Now, we can show that A(2,3,6) =1 or v3 = v;. Note that
10
11 g1(u1,v1,u2,v2,u3 +d,v3 +d) = gi(ur,v1,u2,v2,u3,v3),
12
13
14 ga(ur,v1,u2,v2,uz + d,v3 +d) = ga(u1,v1,u2,v2,u3,v3) + (u1 +v1 — 1)d,
15
16 g(U1,U1,U2,’l)2,U3+d,’L)3+d) = g(U1,’U]_,U2,’UQ,’LL3,’U3)+(U2—U2)d.
17
ig Suppose A(2,3,6) < 1. If v3 < vy, then we can increase g by choosing d > 0, a contradiction. So
20 we have vz = v1. O
21
22

53 Now we can finish the proof of Proposition 3.3.

24 Suppose (u1,v1,ug, v, us, v3) satisfies vy < v1 < ve, (a), (b), (c), (f) and one of the conditions
25
26 in Lemma 3.4, we will show that g(ui, vy, ug, va, us, v3) <
27
28
29 5 5
30 A(1,3,5) = (u1 + ug)v, A(2,4,6) = (u1 + ug)v
31
32
33
34
35
36
37 (w1 +udv<l < w
38 v
39 1

—u
jg (up +uz)v <1 < ug 5 L
42
43 and
44
45
46
47 1\? 1
48 Because (v — 2> > 0, it follows that v? > v — =~ > 1 — uy, and hence 1 >

49

50 . 1 — Ul

o1 maximum of g(ui, vy, ug, va, us, v3) occurs at ug = uz = — Then
52

53

54 g(u1,’U1,'LL2,’U2,U3,’U3) =uy +v+
55

56

57 14

58

59

60

61
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5
<7 according to the three conditions.
Case 2.1 Suppose v; = v9 = v3 = v. Then we have

g(u1,v1,u2,v2,u3,v3) = u1 + uz(l —v) + v+ uzv — 1.
We need to maximize g(u1,v1, ug, v2, us, v3) subject to the constraints:

1—U1

)

A

N

<up+v1 <2, 0<ug, ug <v<l.

| Ot

—u
5 L Therefore, the
v

W

— U
v

—1 = h(u1,v).



1—U1

oh
i =1
Since 5

5— = 0, the maximum of h occurs at v = 1, which gives h(u1,1) =1 < —.
v v

4
Case 2.2 Suppose A(1,3,5) = 1, v3 = uz = v; = v. Then we have

. -
A(L,3,5) = ugv +ugve = 1 = uyp :M
v

I
=
o,

1 —ujvg

g(u1,v1,u2,v2,us,v3) = (u1 +v)(1+ v2) + 2 = k(uy,v9,v).

O©CoO~NOOOITA~AWNPE

10 So we want to maximize k(u1, va,v) subject to
11

12 ~

13 A(Z, 3, 6) = ’U(Ul + U) < 1,
14

12 Equivalently,

17
18
19

- <
4
ok 1
20 Note that — =v—u (—1).
21 0 v

—
ot
—

V2
22 ok . v2
23 Suppose — =0, i.e., u; <
24 (9’02 1—w
25
26
27
28
29 . (1 - ul)
30 Elementary calculus shows that the maximum of 2u; + ——=
31
32 9
33 1
34 4
35

36 2 ) )
37 occurs at v = 3 u=g and k:(g, 1,
38 )

39 Suppose % <0, ie., u < Y . Then the maximum of k£ occurs at vo = - so that

40 Ova 1—v (u1 + v)

41

42 1
E(up, ——

43 )

a4 (up +v)

45

46 Direct calculation shows that the maximum of u; + v+ —— — 1 in

a7 (u1 +v)

48

49

50

51

52

2?1 occurs at up =1, v = \/521, which gives vy = \/32 !
55

56

57 15
58

59
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. Then the maximum of k& occurs at v9 = 1 so that

+ 2v — 2.

(1 —wup)

k(ui,1,v) = 2u; +

+ 2v — 2 with

2)_5
37 4

1
) =up + v+ —— — 1.
(u1 + )

5 oL v?
- —u <v
T4 T T4 1—-w

I




Case 2.3 A~(1,3,5) =1, A~(2,3,6) = 1 and v3 = uz. Then we have

(1 — vy + v3 —vyv3) V1V9 + V3 + V1V903 — Vg — Va3
uy = , U2 = )
U3 V1V3

&
=
[}

(1 —v1)(v1 — v2) + v3 + (v — 1)1)%
V103

g(ur,v1,ug, v, ug,v3) = = {(v1, v2,v3).

So we want to maximize ¢(vy, ve, v3) subject to

O©CoO~NOOOITA~AWNPE

10 1

11 4
12

13 Equivalentl
14 q Y,

1—v +v3 —viv3 V1V2 + V3 + V1U2V3 — V2 — VU3
_ )<u1<v2<1, <wvp <l
U3 V1v3

| Ot

15 v <vy <1 < <
16 ! 2 14w 4

17

ol +v2 -1

18 Note that — = w.

19 ovy V103

20 9 : vy — (1 —v1)?

21 Suppose v1 + vz > 1. The maximum of £ occurs at vy = 1 so that £(vi,1,v3) = —————.

22 V13

23 .. . . vz — (1 —v1)?
Direct calculation shows that the maximum of ————*

24 V103

25

26 1 4 — V3

27 v <vy <1 1 <y < 1

29

30 oecurs at v; = v3 = - and /
3 L= 73 (

with

A
A

., mAvix=1

2,25,
373 4
1— (1 —Ul)'l}g

33 Suppose v1 —|—v§ < 1. The maximum of k occurs at vy = vy so that £(vy, vy, v3) =
U1

34

1—(1-—
gg Direct calculation shows that the maximum of w n

U1
37
38 < <1 1 < 4—1}3
v <ve <1, —— <

39 ! 2 1+ w3 ! 4
40
41

2 221
42 to; ==, vg=~and (=, 2, 2) =
43occursa v =73, V3= an (3 3 2)
44

jg Remarks Several comments related to Proposition 1.2 are in order.

N

, v o3 <1
5
T

j; 1. The proof of Proposition 1.2 is direct but quite lengthy. A shorter proof is desirable.

49

50 2. One might expect that a symmetry argument can be used to show that the solution of
51
52
53 but it is not the case as shown by our result.
54

55

56

57 16
58

59

60

61
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Proposition 1.2 is attained at a regular hexagon by a suitable affine transform when n = 6,
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3. Following Proposition 1.2, a natural problem to study is to determine the optimal bound

of the ratio between the area of an n-sided convex polygon P, and the maximal area of an

m-sided polygon P, < P, for m < n.
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