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PRESERVERS OF UNITARY SIMILARITY FUNCTIONS
ON LIE PRODUCTS OF MATRICES

JIANLIAN CUI, CHI-KWONG LI, AND YIU-TUNG POON

In memory of Professor Hans Schneider.

ABSTRACT. Denote by M, the set of n x n complex matrices. Let f : M,, — [0, 00) be a continuous
map such that f(uUAU*) = f(A) for any complex unit u, A € M,, and unitary U € M,,, f(X) =0
if and only if X = 0 and the induced map ¢t — f(tX) is monotonically increasing on [0, c0) for
any rank 1 nilpotent X € M,. Characterization is given for surjective maps ¢ on M, satisfying
f(AB — BA) = f(¢(A)p(B) — ¢p(B)p(A)). The general theorem are then used to deduce results on
special cases when the function is the pseudo spectrum and the pseudo spectral radius.

AMS Subject Classification Primary 15A60, 46B04

Keywords Lie product, unitary similarity invariant function, pseudo spectrum.

1. INTRODUCTION

Let M, be the set of n x n matrices. A function f : M, — R is a radial unitary similarity

invariant function if
(P1) f(UAU*) = f(A) for a complex unit p, A € M,, and unitary U € M,

In [11], the authors studied unitary similarity invariant functions that are norms on M,, and

determine the structure of maps ¢ : M,, — M, satisfying
(1.1) J(AB = BA) = f(6(A)p(B) — o(B)6(4)) for all A, B € M,

In [11, Remark 2.7], it was pointed out that the result actually holds for more general unitary
similarity invariant functions. However, no detail was given, and it is not straightforward to apply
the results to a specific problem. For instance, it is unclear how one can apply the result to study
preservers of pseudo spectrum of Lie product of matrices;! see the definition in Section 3. To fill
this gap, we extend the result in [11] to continuous radial unitary similarity invariant functions

[+ M,, — R satisfying the following properties.

(P2) For any X € M,, we have f(X) = f(0,) if and only if X = 0,,, the n x n zero matrix.

(P3) For any rank 1 nilpotent X € M,,, the map ¢ — f(tX) on [0, 00) is strictly increasing.
For a function f : M,, — [0, c0) satisfying (P1) — (P3), we show that if ¢ : M,, — M,, is a surjective
map satisfying (1.1), then there is a unitary U € M,, and a subset N, of normal matrices in M,
such that ¢ has the form

H(A) = ;LAUATU*-i-I/AIn Ae M, \N,
pAU(ANYVU* +val, A€ N,,

IThis is a question raised by Professor Molnar to the second and third author at the 2014 Summer Conference of
the Canadian Mathematics Society.
1
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where
(a) pa,va € C with |pa| =1, depending on A,
(b) AT = A, A, A* or A*, and

(¢) NV, depends on the given unitarily invariant function f.

The proof of this result will be given in Section 2. In Section 3, we apply the main result to the
case when f is the pseudo spectral radius, and then obtain the result for the case when f is the

pseudo spectrum.

For other preserver problems on different types of products on matrices and operators, one may
see [1, 2, 3, 7, 11, 12] and their references.

2. MAIN THEOREM

In this section, we prove Theorem 2.1 extending the result in [11]. We use similar ideas in [11]

with some intricate arguments to make the extension possible.

Theorem 2.1. Let f : M, — [0,00) be a function on M, satisfying (P1) — (P3). Suppose n > 3,
and ¢ : M,, — M, is a surjective map satisfying

f(l¢(A), o(B)]) = f([A, B]).

Then there is a unitary matriz U and a subset Ny, of normal matrices with non-collinear eigenvalues
such that ¢ has the form

¢(A)_ /J,AUw(A)U*—i-I/AIn AGMn\Nn
N ,LLAUQJ)(A)*U* +val, Ae Nn,

where pa,va € C with |pa| = 1 depending on A, and 1 is one of the maps: A — A, A — A,
A At or A — A*.

A bijective map P on M, is said to be a locally regular polynomial map [14] if for every A € M,
there exists a polynomial p4(t) such that P(A) = pa(A) and A have the same commutant. To

prove the above theorem, we need the following result from Semrl [14].

Theorem 2.2. Suppose n >3, and ¢ : M, — M, is a bijective map satisfying

Let T be the set of matrices A such that the Jordan form of A only has Jordan blocks of sizes 1 or
2. Then there are an invertible matriz S, an automorphism T of the complex field and a reqular

locally polynomial map A — pa(A) such that
(2.1) P(A) = S(pa(AL)S™Y forall AcT.
Here, X, is the matriz whose (i, j)-entry is 7(X;;), and AT = A or A’

Our proof strategy is to show that ¢(A) has the asserted form described in the theorem for a

special class C; of matrices A. Then we modify the map ¢ to ¢; so that it will satisfy the same
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hypothesis of ¢ with the additional assumption that ¢(X) = X for every X € C;. Then we can set

B = ¢(A) for a certain matrix A not in C; and use the condition that

FA, X)) = f([¢1(A), 01(X)]) = f([B,X]) forall X € Cy
to show that B = ¢1(A) also has the asserted form. Thus, ¢; has the asserted form for a larger

class Co of matrices, and so on and so forth until we show that the modified map will fix every
matrices after a finite number of steps.
In the next few lemmas, we will focus on the relations between a pair of matrices A and B such
that
f([A, X])=f([B,X]) forall X eC

for a certain subset C of matrices.

Lemma 2.3. Suppose A € M, is a rank one nilpotent matriz. Then A = xy* for some non-zero

orthogonal vectors, x and y. Furthermore, A is unitarily similar to ||z||||y|| E21.

Proof. Suppose A € M, is a rank one matriz. Then A = xy* for some non-zero column vectors,
x and y € C*. If A is nilpotent, then A* =0 for some integer k > 1. Then we have

0=trA* = tr (2y")* = (y*z)".

Therefore, x and y are orthogonal. Let U be a unitary matriz with ﬁ and ﬁ as the first and

second columns respectively. Then U*AU = ||z||||y|| E21 O
Denote by o(A) the spectrum of A and N(A) the null space of A.

Lemma 2.4. For any two matrices A and B, if

(2.2) f([A, X]) = f([B,X]) for all rank one X € M,,

then there are p,v € C with |u| = 1 such that one of the following holds with A = A + vI,.

A~ A~

(a) o(B) =0(A) and for any \ € o(A),
N(B—\,)=N(A—AI,) and N(B'—\I,) = N(A'—\I,).

(b) The eigenvalues of A are not collinear, o(B) = o(A) and for any \ € o(A),
N(B—AI,)=N(A-\,) and N(B'—2XIL,) = N(A'—\IL,).

Proof. Note that for any rank one matrix X = zyt, [C, X] = 0 if and only if x and y' are the
right and left eigenvectors of C' corresponding to the same eigenvalue. To see this, as [C, X] =
(Cz)yt — z(y*C), then [C, X] = 0 if and only if Cx = Az and y'C = Ay for some X € C.

Suppose A and B satisfy (2.2). By the above observation on rank one matrices and property (P2)
of f, A and B must have the same set of left and right eigenvectors. Furthermore, x1 and x5 are
the right eigenvectors of A corresponding to the same eigenvalue if and only if the two eigenvectors
correspond to the same eigenvalue of B. Thus, the eigenvalues of A and B have the same geometric
multiplicity.

Let A1, ..., A\x be the distinct eigenvalues of A with x1,..., 2, and y1, ..., yr being the right and

left eigenvectors. Also for each pair of eigenvectors x; and y!, let y; be the corresponding eigenvalue
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of B. Take X;; = z;y5. Then AX;; = X\;X;; and X;;A = \;X;5. Using (P1), we see that for any
1<4,5 <n,

FUA, Xigl) = faXay = A Xig) = F((N = A) Xi) = F(IN = Aj] Xig)-

Similarly, f([B, Xy5]) = f((vi — ) Xi5) = f(lvi — 91 Xs)-
By the fact that f([A, X;;]) = f([B, Xi;]) and Property (P3),

N =Nl =|vi—] foralll<i,j<k.
As a result, there are p,v € C with |u| = 1 such that either

(1) vi =pAi+viforall 1 <i<Fk;or
(2) the eigenvalues of A are non-collinear and 7; = puX\; + v for all 1 <i < k.

Then the result follows with A = pA + v1,,. O

Lemma 2.5. Suppose A and B commute and satisfy (2.2). If A has at least two distinct eigenvalues,
then there are p,v € C with |u| =1 such that either

(a) B=pA+vl,, or

(b) A is normal with non-collinear eigenvalues and B = pA* + vi,.

Proof. As A and B commute, there is a unitary matrix U such that both U* AU and U*BU are
upper triangular, see [9, Theorem 2.3.3]. Replacing (A, B) with (U*AU,U*BU), we may assume
that A and B are upper triangular.

As A and B satisfy (2.2), Lemma 2.4 holds. Suppose Lemma 2.4(a) holds with A = A + v1,,.

~

Notice that o(B) = 0(A) and
f([A, X]) = f([pA + vI,, X]) = f([B,X]) for all rank one X € M,,.
Suppose A is an eigenvalue of A and y € N(A!—\I,,). For any z € C", let Z = zy'. Then ZA = \Z
and [A,Z] = (A — A,)Z. Note that (A — A\I,,)Z has rank at most one and tr (A — A\I[,,)Z) =
tr ([4, Z]) = 0, so (A — AI,)Z is unitarily similar to ||(A — AL,)z|||y"|| E12. Thus,
F(A, Z]) = FIA = AL)2|| 1y Erz)-
Similaxly, £((B, Z]) = (I(B — M)z | |y"] Eva). Hence, by (P1) and (P3),
(A= AL)z|| = ||(B = M,)z|| for all z € C" and X € o(A).
As a result,
2*A*Az — 2Re (V2" A2) + |\2*2 = ||(A — AL,)z|)?
= (B = \,)z||* = 2*B*Bz — 2Re (A\2*Bz) + | \|*2*2.
This implies that
9Re (A\z*(A — B)z) = 2*(A*A— B*B)z for all z € C" and X € o(A).
As A has at least two distinct eigenvalues, so does A. Taking any X,y € O'(A) with A # ~, we have
29Re (A\z*(A — B)z) = 2*(A*A — B*B)z = 2Re (72*(A — B)z).
Thus, W((A = ~)(A — B)) C iR, where W(X) is the numerical range of X.
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Then (A — 7)(A — B) is a skew-Hermitian matrix [8]. Since both A and B are upper triangular,

they must be diagonal matrices. Now for any 1 <i <n, b; € 0(B) = 0(A). Then
0= [[(B = buln)eill = (A = biln)eill = [[(B = biiln)ei + (A = B)es|| (A = B)eil|

Thus, (/Al — B)e; =0 for all 1 <7 <n and hence B = A.

Now suppose Lemma 2.4(b) holds. Then by a similar argument, we can show that
(2.3) (A= AL)z|| = ||(B = A,)z|| for all A € o(A) and z € C"

and so (A —7)A — (A —~)B is a skew-Hermitian matrix. It follows that (A — )74 —(A—~)Ts = 0,
or equivalently, Tp = i%;YTA, where T4 and T are the strictly upper triangular parts of A and B.

Now as the eigenvalues of A and hence A are not collinear, we can always find another w € cr(/l)

such that t:i =+ % Then the above equation is possible only if T4 = Tp = 0. In this case, A
and B are both diagonal and hence normal. Then (2.3) implies that A=B. u

From Lemma 2.5, we have the following consequence for diagonalizable matrices.

Corollary 2.6. Suppose A and B satisfy (2.2) and A is diagonalizable. Then there are u,v € C
with |pu| = 1 such that
(a) B=uA+vi,, or

(b) A is normal with non-collinear eigenvalues and B = pA* + vi,.

Proof. Suppose A is diagonalizable. Then A = SDS~! for some invertible S and diagonal D.
By Lemma 2.4, B = S(uD +vI,)S~! or B = S(uD +vI,)S~!. If A has only one eigenvalue, then
A is a scalar matrix and so is B. Then the result follows. Suppose A has at least two eigenvalues.

As A and B commute, the result now follows by Lemma 2.5. O

Lemma 2.7. For any two matrices A and B, if
(2.4) f[A, X]) = f([B,X]) forall X € M,

then there are p,v € C with |u] = 1 such that either
(a) B=pA+vl,, or

(b) A is normal with non-collinear eigenvalues and B = pA* + vi,.

Proof. Suppose A and B satisfy (2.4). Then, putting X = B in (2.4), it follows from (P2) that
A and B commute. If A has at least two eigenvalues, then the result follows from Lemma 2.5.

Suppose A has only one eigenvalue, say A. Then by Lemma 2.4, B has one eigenvalue only, say
v. Write A = SJS~1 + \I,,, where S is invertible and J = J,,, @ --- @ J,, is the Jordan form of
A with n; > --- > ng. Now as A and B satisfy (2.4), A and B have the same set of commuting
matrices. Then B = Sp(J)S~! + I, for some polynomial p of degree at most m = n; — 1 with
p(0) =0.

By a similar argument as in Lemma 2.5, we can show that

|(B—~I,)z|| = [[(A—A)z|| forall ze C".
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Then there is a unitary matrix W such that
Sp(J)S™ = (B —~I,) = W(A - \,,) = WSJS™ L.
Write S = UT for unitary U and upper triangular 7', V = U*WU and p(z) = > ", c;zt. Then we
have
(2.5) Tp(HT ' =vTJT .

Notice that both Tp(J)T~! and TJT~! are strictly upper triangular. Furthermore, the first n; — 1
entries in the super-diagonal of Tp(J)T 1
entries of TJT 1.

As V is unitary, we must have |c¢;| =1 and V = ¢11,,—1 ® V; for some unitary Vi € M;_p,41.

are c¢; times the corresponding n; — 1 super-diagonal

Now comparing the first n; X nj principal submatrices in (2.5), we have
Tip(Jn)TT = (e1dny 1 @ [ony V0T, T = e Ty T

where T is the ni X n; principal submatrix of 7. Therefore, T} (2212 cZ-J,Z'Ll) T ' = 0 and so
Sy cidi, =0. Hence, ¢ = -+ = ¢, = 0. Then p(z) = c1z and so B = c1 A+ (v — c1 M) . O
We are now ready to present the following.

Proof of Theorem 2.1.

First we assume that ¢ is bijective. Suppose ¢ is a bijective map satisfying
F(AB) = F(6(A), 6(B))) for all A, B € M,.

Because f(X) = f(0) if and only if X = 0 by (P2), we see that [4,B] = 0 if and only if
[¢(A), #(B)] = 0. We can apply Theorem 2.2 and conclude that ¢ has the form (2.1) with AT = A
or Al. In particular, for any rank one matrix R € M, there are pug,vr € C such that

d(R) = S(upRl + vgl,)S™L.

Suppose jg = |ugr|e®r. By replacing ¢(R) with e=¥% (¢(R) — vgl,), we may assume that pgr > 0

and v = 0.
Here we consider only the case when A" = A. The case when A' = A! is similar. Fixed
an orthonormal basis {x1,...,z,} and define X;; = ziz;. Take a = (a1y...,an) € C" and let

A=3T" 0X. Fork=2,....n,
(26)  Fluapxem(n)S(Xi)rS) = F(6(A), 6(Xi)]) = F([A, Xi]) = Fla X,
In particular, if Z = papix,,S(Xo1)-S™1, then

f(r()Z) = f(aX21) forall « €C.

Suppose 7 is neither the the identity map A — A nor the conjugate map A — A. By [10,
Theorem 1], the set 7([0, 1]) is an unbounded subset of C. Thus, there exists a € [0, 1] such that
|7(a)| > |7(2)]. But then by (P1) and (P3), we have

f2Xn) = f(r(2)2) = f(I7(2)|2) < f(I7(a)|Z2) = f(T()Z) = [ (aXa1) < [ (2X2),

which is a contradiction. Thus, 7 is either the identity map or the conjugate map.
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Furthermore, as f([XgQ,XQQD = f(XgQ) = f([ng, ng]),

S (1o 11X, S (X32) - S™1) = f([0(X32), p(X22)))
= f([6(X32), p(X33)]) = f(1ixsattxs5S (Xs2)-571).

Thus, p1x,, = ftxss by (P3). By (2.6) and the fact that f({X21) = f({X31) for all £ € C, we have
F(S(X21)-S71) = f(S(X31)-571).
We now claim that S is a multiple of some unitary matrix. If not, then there is a pair of
orthonormal vectors y2,ys such that ||Syz|| # |[Sys|. Extend y2,y3 to an orthonormal basis

{y1,v2,y3,...,yn} and let x; = (y;),-1. Then {z1,...,z,} also forms an orthonormal basis. By

the above study, we have

FUISy2llyy STH Brz) = f(S(X21)-S71) = f(S(X31)-87") = f(lSysllllyi S ™" | Erz),
which contradicts that ||Syz|| # |[Sys||. Thus, S is a multiple of some unitary matrix. By absorbing

the constant term, we may assume that S is unitary. Now for any rank one matrices R and S,

F(IR,S)) = f([9(R), 9(9)]) = fprus[Rr, S]).
By (P1), f([R,S]) = f([R+, S:]) whenever [R, S] is a rank one nilpotent matrix, and hence prpus = 1

in this case.

Now for any rank one matrix A, we can always find two other rank one matrices B and C
such that [A, B], [4,C] and [B,(C] are all rank one nilpotents. Then we must have papup =
uape = pppco = 1. As all pa, up, po are positive real numbers, the equality is possible only when
pa = pup = pic = 1. Then we have ¢(A) = SA,S~! = SA,S* for all rank one A.

By replacing ¢ with the map A — S*¢(A)S, we may assume that ¢(X) = X for all rank one
matrices X, where Xt = X, X, X! or X*. Then

f([A, B]) = f([¢(4),¢(B)]) = f([AT, BT]) = f([4,B]")
for all rank one A, B € M,,. Notice that the set
{X : X =[A, B] for some rank one A and B}

contains the set of trace zero non-nilpotent matrices with rank at most two and so is dense in the

set of trace zero matrices with rank at most two. Thus, by continuity of f we see that
f(X) = f(XT) for all trace zero matrices X with rank at most two.

Now define ® : M,, — M, by A — ¢(A)*. Then ®(X) = X for all rank one matrices X. For any

A € M, and rank one matrix X € M,, as [A, X] is a trace zero matrix with rank at most two,

F([A X)) = flo(A), 6(X)]) = f([o(A), XT]) = f([6(A)", X]) = f([@(A), X]).
Thus, f([4,X]) = f([®(A),X]) for all rank one X. Then Corollary 2.6 implies that ®(A) =
uAA+val, or ®(A) = pgA* + val, for all diagonalizable matrices A and the latter case happens
only when A is normal with non-collinear eigenvalues.
After absorbing the constants p4 and v4, we may assume that ®(X) = X for all non-normal

diagonalizable matrices X. Then

F([A, B]) = f([6(A),¢(B)]) = f([2(A), (B)]") = f([4, B]")
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for all non-normal diagonalizable matrices A and B. Since the set of all non-normal diagonalizable
matrices is dense in M, we see that f([A, B]) = f([A, B]") for all A,B € M,. Then for any
AeM,,

F[A X]) = f([¢(A), o(X)]) = F([2(A), 2(X)]T) = f([®(A), X])
for all non-normal diagonalizable matrices X, and so f([4, X]) = f([®(A), X]) for all X € M, by
the continuity of f. Now the result follows by Lemma 2.7.

Finally, we show that one only needs the surjective assumption on ¢. For any A, B €
M, we say A ~ B if
f([A, X]) = f([B,X]) forall X € M,.

Clearly, ~ is an equivalence relation and for each A € M, denote by Sq4 = {B : B ~ A} the

equivalence class of A. By Lemma 2.7, either

(I) Sg4 is the set of matrices of the form uA + vI for some pu,v € C with |u| =1, or
(IT) A is normal and A ~ A* Sy, is the set of matrices of the form pA + vI or uA* + vI for
some p,v € C with |p| = 1.

Pick a representative for each equivalence class and write A for the set of these representatives.
Since ¢ is surjective, S4 and ¢~ 1(S4) have the same cardinality ¢ for every A € A. Thus there
exists a map v : M,, — M,, which maps ¢~ 1(S4) bijectively onto S for each A € A. Clearly  is
bijective and ¢(A) ~ ¢(A) for all A € M,,. Then, for any A, B € M,,

F(1A, B]) = f([6(A), ¢(B)]) = f([¥(A), ¢(B)]) = f([¥(A), %(B)]).

That is, 1 is bijective map satisfying (2.2). By the proof of Theorem 2.1 with bijective ¢ in
the previous paragraphs, ¢ has the desired form and hence so does ¢, as ¥(A) ~ ¢(A) implies
$(A) = pp(A) + vl or ¢(A) = up(A)* + vI when ¥(A)* is normal and ¢(A)* ~ (A). O

Remark Using the argument in the last part of the proof on the replacement of the bijective
assumption by the surjective assumption on ¢, one may further weaken the surjective assumption

on ¢ by any one of the following (weaker) assumptions on the following modified map 6 defined by

¢(X) = o(X) — tr (¢(X))I/n
on the set MY of trace zero matrices in M,,.
(a) The map ¢ : M9 — M9 surjective.
(b) For any A € MY the range of ¢ contains a matrix of the form e A for some ¢ € [0, 27).

3. PSEUDO SPECTRUM AND PSEUDO SPECTRAL RADIUS

In this section, we use Theorem 2.1 to study maps preserving the pseudo spectral radius (see
the definitions below) of the Lie product of matrices. Then we further deduce the result for maps
preserving the pseudo spectrum. As one shall see, with considerable effort, one will be able to get
more specific structure of the preserving maps.

For € > 0, define the e-pseudospectrum o.(A) of A € M, as

o:(A)={2€0(A+E): E€M,, |E|<e}={2€C:s,(A-zl,) <e},
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where s1(X) > -+ > s,(X) denote the singular values of X € M,,, and the e-pseudospectral radius
re(A) of A € M, as

re(A) = sup{|p| : p € 0(A)}.
Note that the pseudo spectral radius is useful in studying the stability of matrices under perturba-
tions, and there are efficient algorithm for its computation; see for example, [6] and its references.
Preservers of pseudo spectrum has been considered for several types of products in [4] (see also
[5]). Here we characterize the preservers of pseudo spectral radius and pseudo spectrum for Lie

products. We first prove the following.

Theorem 3.1. Suppose n >3 and € > 0. Then a surjective map ¢ : M, — M, satisfies
ro([A,B)) = r([(A), 6(B)])  for all A,B € M,
if and only if there is a unitary U € M, such that
d(A) = paU(A)U* +val,  for all A € M,,

where pa,va € C with |pal = 1, depending on A, and 1 is one of the following maps: A — A,
Ars A, A At or A — A*,

Proof. The sufficiency can be readily checked. To prove the necessity, let f(A) = r.(A) for
A € M, It is clear that f is a continuous map satisfying (P1) and (P2). Suppose X is a rank one
nilpotent matrix. It follows from Proposition 2.4 in [5] that r.(X) = /€2 + || X||e. Hence, (P3) is
also satisfied. So, we can apply Theorem 2.1 and conclude that ¢ has the form in Theorem 2.1.
To get the desired conclusion, we need to show that the set N is empty. Assume not, and there is
A € N. Since A is normal with non-collinear eigenvalues, there is a unitary V and ~,£ € C such
that

V(@A) = ENV* = ~diag (1, 1, 0, pua, - - - s i),
where 1 ¢ R. Let B € M, be such that

010
B=Vy(B)V*=|a 0 b| ®O,_s,
0 ¢ O

where a = (1 — f)/(1 — ), b> 0 and ¢ = bii/pu. Then

o 1 0 c ~ la® 0 ab
BB*= |0 |a?+[p*> © and B*B= |0 1+]* 0
c 0 |e|? ba 0 |b]?

and we can choose b > 0 so that B is not normal, and neither is B. As a result, ¢(B) =
upU(B)U* +vpl.

Now,
0 1—pu 0
Cr=Vp(A), BV =~ |p—-1 0 bu| ®O0,_3
0  —bz 0

is normal with eigenvalues sy = 4y+/|1 — |2 + b2|u|? so that

re([4, B]) = re([(A), ¥(B)]) = WIV/I1 = ul? + 0[] + <.
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However, [¢(A), ¢(B)] is unitarily similar to

0 l—n 0
Co = pappy |(1—@)*/(n—1) 0 bir| @ On—3.
0 —bp*/p 0

One readily checks that the matrix C5 is normal if and only if y is pure imaginary. In all other
cases, there is a unitary R € M, obtained from I,, by changing the (1,1), (1, 3),(3,1), (3, 3) entries
so that

0 C1 0
RCOR* =5 |ca 0 c3| ®Op_3.
0 0 O

If 5 has singular values s; > so, then
V(e + leal® + lesl?) = tr (CoC3) = tr (C1CF) = |y (s + s2).

Because C is not normal, s; < s, we see that so > s_. Then for any z € C, if C — zI has singular
values s1(z) > s2(z), then

s1(2)? + s2(2)? = 202 + |e1” + [ea| + lea*2|2]? + 57 + 52 = 54.(2)* + 5-(2)°,

where s (z) > s_(z) are the singular values of C; — zI. Again, because Co — zI is not normal,
we see that sy(z) > s1(z) > s2(z) > s_(z). It follows that s (z) > s_(z) for any z € C with
|2 < |3/ + u|? + b2|u|? + e. Thus,

max{z € C:s2(Cy — 2I) < e} <max{z € C:s592(Cy — 2I) < ¢€}.

So, if a normal matrix A with three collinear eigenvalues v + v, yu + v, v, where p is not real and
wu# +i, then A ¢ N. Clearly, if A € N has eigenvalues of the form v+ v,y + iv, 7, then )(A)* can
be viewed as a multiple of ¢(A). Thus, we may assume that A ¢ N by adjusting ps and v4. The
result follows. O

We will use the above theorem to determine the structure of preservers of the pseudo spectrum
of Lie product of matrices. To achieve this, we need a characterization of normal matrices A with
two distinct eigenvalues, i.e., A — bl is a nonzero multiple of a rank k orthogonal projection P with

1 < k < n; see Proposition 3.3 below. The proof depends on the following lemma.

Lemma 3.2. Suppose C' = C1 ® O,,_3, where C1 € M3 has rank < 2 and tr C; = 0. Then for every
e >0, 0.(C) =0-(C1). Furthermore, suppose fort € R,

A1) = det(N5 — (Cy — tI3)*(Cy — tI3)) = X* + pa(t)A* + p1(£)A + po(t)
where p1(t) = q1(t) + at with a # 0 and po(t), qi(t), p2(t) contains only even powers of t. Then
0:(C) # —o-(C).

Proof. Since rank Cy < 2, 0 € ¢(C4). Therefore, 0.(C) = 0-(C1) U 0e(0p—g) = 02(Cy).
Note that for each t € R, f(\,¢) is a cubic polynomial in A with three non-negative real roots

)\1<t) Z )\g(t) Z /\3(t) Z 0 and Smin(cl — tIg) = \/)\3(15).



O©CoO~NOOOITA~AWNPE

UNITARY SIMILARITY FUNCTIONS ON LIE PRODUCTS OF MATRICES 11

Without loss of generality, we may assume that a < 0. Given € > 0, t € 0.(C7) N R if and only
if A\3(t) < €2. Since A3(0) = 0 and tlim A3(t) = oo, there exists tg > 0 such that A\3(tg) = 2. We
— 00

have tg & 0.(C) and f(e2,¢9) = 0. But then
f(%, —to) = f(e%,tg) — 2atpe® > 0
Thus, A\3(—tg) < €% implying that —tg € 0.(C). So, to € —0-(C), and thus o.(C) # —0.(C). O

Proposition 3.3. Let n > 3 and A € M,,. The following condition are equivalent.
(a) A is a normal matriz with at most two distinct eigenvalues.
(b) 0c([A, B]) = —0([A, B]) for all B € M,,.
(c) 0-([A, B]) = —0<([A, B]) for all rank one nilpotent B € M,,.

Proof. Suppose (a) holds. Then there is a unitary V' and v € C such that VAV* —vI = \J with
J =1 ®—1I, . Then for any B € M, such that VBV* = (Bz'j)lgz',j§2 with Bi1 € My, Bao € Bao,

we have

C =V[A,B]V* =2\ [ Ox B ]

—Ba1 Opg
satisfies —C = JCJ*. Thus,

02([A4, B]) = 0.([VAV*, VBV*)) = 0(~J[A, BJ") = 0.(~[, B))
So, condition (b) holds.

The implication (b) = (c) is clear. To prove (c) = (a), we consider the contra-positive. Assume
(a) is not true. We consider 2 cases.

Case 1. Suppose A is normal with more than two distinct eigenvalues. We may assume that
A = diag (a,b,c) ® Ag such that a, b and ¢ are distinct. If Re ((b — a)(c — a)) < 0, then we have
Re((b—c)la—c) =Re((b—a+a—cla—c)=|a—c|> —Re((b—a)(c—a)) > 0. Thus, we may
assume that Re ((b — a)(c — a)) > 0 which implies that

b b—
20— (b+ )P =|b—a)+(c—a))P>|b—al* +|c—a*> > |b—c|* = ’a— —;c | 5 d )
) ) (b+c¢) .
Thus, by replacing A with = A— 5 I |, we may assume that A = diag(a,1,—1) @ Aq
0 —vV2 V2
such that |a| > 1. Consider the rank one nilpotent X = |0 -1 1 | ®0,-3. We have [A, X] =
0 -1 1
0 \/i(l—a) V2(1+a)
C®0,_3, where C = |0 0 2 . Then
0 2 0

det(M3 — (C — tI3)*(C — tI3)) = X3 + po(H) A% + p1(H)A + po(t),

where
p2(t) = —3t2 — 4|a|? - 12,

pi(t) = 3t*+4(1+]al*)t*+16 (1 —|al*) t + 16 (2 + |a|?) ,

po(t) = —t0 48t —16¢2.
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Since |a| > 1, the condition in Lemma 3.2 is satisfied. Therefore, 0.(C) # —o-(C).

Case 2. Assume that A is not normal. We may assume that A = (a;;) is in upper triangular
form such that the (1,2) entry is nonzero; see [13, Lemma 1]. We may replace A by A — assl and
assume that A = (A4;;) with Ay € M,,_3, Aoy = O, and

ail a2 a3
Aii=10 azx ass
0 0 0

Subcase (2.a) Suppose not both [aj3,...,a1,] and [ags,...,a2,] are zero. Then there is a
unitary U = Uy @ Us with Uy € My such that UAU™ = A= (@5), where the second row of A equals
[&21, a22, &23, 0, N ,0] with (~121 € R and &21 75 0 and &23 75 0. Let B = E12. Then

—az1 Q11 — a2 —a3

C=[AB]= 0 as 0 | ®0,_3.
0 0 0
Then
det(Ms — (C = t13)"(C = tI3)) = A° + p2()N* + pr(t)A + polt),
where

po(t) = —3t% — |age — a11]? — |ags|* — 2a3,,
pi(t) = 3t* + (lage — ann|? + |ags|?) t2 — 2a01|ags|* + a3, (a3, + |assl?)
po(t) = —t0+2a3t" — a3 t*.

Since ag; and agg # 0, the condition in Lemma 3.2 is satisfied. Therefore, o.(C) # —o-(C).
Subcase (2.b) Suppose both [ai3,...,a1,] and [ags, ..., as,] are zero.

i) If a11 = age = 0, then we may assume that a;o = 1. Let

1 0 1 1 -1 1
B=|1 0 1|®0,_3 sothat C=[A,B]=10 —1 0| @ Op_3.
-1 0 -1 0 1 0
Then
det(M3 — (C — tI3)*(C — tI3)) = X> + pa(t) A% + p1 ()X + po(t),
where

pa(t) = —3t° =5,
p1(t) = 3t* +3t2 — 2t + 4,

po(t) = —t04+2t1 — 2.

Therefore, the condition in Lemma 3.2 is satisfied and o.(C) # —o-(C).
ii) If either aqq or age # 0, then, applying a unitary similarity, we may assume that a;; # 0.

Replacing A by € A, we may assume that a;; € R. Then we may further assume that ajo = 1. Let
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1 0 1 0 -1 an
B=|0 0 0|®0,_3andC=[A,B]. Then C=C;®0,_3, where C; = | 0 0 0 |. Then
-1 0 —1 all 1 0
det(AI3 — (Cy — tI3)"(Cy — tl3)) = A3 —|—p2(t))\2 + p1(E)A + po(t),
where
pa(t) = —3t% — 2 —2a}y,
pi(t) = 3t* +2t2 — dayit + 242, + aiy,
po(t) = —t6+2a2,t* — af t?.
Therefore, the condition in Lemma 3.2 is satisfied and o.(C) # —o-(C).
The proof is complete. ]

Theorem 3.4. Suppose n >3 and € > 0. Then a surjective map ¢ : M, — M, satisfies
oc([4, B]) = oc([¢(A), 6(B)])  for all A, B € My,

if and only if there exist u € {1,—1}, a unitary matric U € M, and a set T of normal matrices

with at most two distinct eigenvalues such that

S(4) {uU¢(A)U*+uAI ifAe M \T,

(3.1) —pUG(A)U* +val  ifAET,

where vy € C depends on A, and v is one of the maps: Avrs A, A iAl,

Proof. To prove the sufficiency, if ¢ has the first form, then o.([A, B]) = o:([¢p(A), p(B)]) =
wappoe([A, B]) if none, one, or both of A, B € T by Proposition 3.3. If ¢ has the second form,
then o.([A, B]) = o-([¢(A), #(B)]) = —pappo:([Al, BY]) = pappo:([A, B)]) if none, one, or both of
A, B € T by Proposition 3.3.

To prove the necessity, we may compose ¢ by a map of the form X — VXV* and adjust vx if
necessary so that ¢ has the form A ~ pua(A), where v is one of the maps A — A, A — Al A

A, A A*. Focusing on rank one Hermitian matrices, we see that one of the following happens.
(1) For any rank one A = za*, ¢(A) = paA. (2) For any rank one A = za*, ¢p(A4) = psAl.
Suppose (2) holds. We may replace ¢ by the map X + i¢(X)!. Then the modified map will satisfy

condition (1). Thus, we can focus on the case when (1) holds, and prove that ¢ has the asserted
form with ¢(X) = X for all X € M,,.

In the rest of the proof, we assume that (1) holds. Then we have either
i) p(A) = paAforall Ae M,, or ii) ¢(A)=psA* forall Ae M,.
We will show that for some u, we have puy = p for all A € M, \ 7 and pgy = —p for all A€ T.

satisfying (3.1). Clearly, we need only consider non-scalar matrices.

Assertion 1 For every non-scalar matrix A € M,,, psq € {—1,1}.
To prove Assertion 1, let A = zz*. If B = yy* such that 0 # [A, B], then [A, B] is unitarily
similar to diag (ai, —ai) @ Op—o with a = /—tr ([4, B]?)/2 > 0 so that

oe([A4, B]) = D(—ai,e) U D(0,e) U D(ai,¢).
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Because o.([¢p(A), #(B)]) = pappo:([A, B]), we see that paup = £1.
Let 4 = pg,,. Suppose B = zz* for a nonzero x € C". We can find C = yy* such that
[E11,C] # 0 and [B,C] # 0. Then puc, pppc € {1, —1} so that puc = tuppc. It follows that

mB € {p, —p}.
Choose Bj = xjx;f, j =1, 2so that [E11, Bi], [E1, B2 and [By, Ba] # 0. Then
MUBy s HUBy, MBMB; € {17 _1}
Hence, p? € {—1,1}. So we have either
(a) p2 = -1 = up € {—i,i} for all B=az*, or (b)pu®=1= upe {-1,1} for all B = zx*.

Next we will show that ¢(A) = paA for all A € M,,. Assume the contrary that ¢(A) = pus A* for
all A € M,,. Let By = E11 + E13+ E31 + Es3, By = Eoo + Eo3+ Es9+ Es3 and C = Eyq + €™/ .
Then
oe([B1,C]) = D(—i,e) U D(i,e) U D(0,¢)
and
0:([¢(B1), (C)]) = g, peD(—i,€) U D(i,e) U D(0,¢).

Hence, up, nc € {—1, 1}. By a direct computation,
0-([Ba,C]) = D(—e~2™/3 &)U D(e72™/3 ) U D(0,¢)

and
0-([6(B2), 6(C)) = nync (D(—e ™%, 2) UD(e /3 £) U D(0,2) ) .

Since pp, = tup, and pp, pc € {—1, 1}, we have HBy O € {=1, 1}. Hence, o.([¢(B2),#(C)]) #
0e([Be,C]), a contradiction. Therefore, we have ¢(A) = ugA for all A € M,,.

For any non-scalar normal matrix B with spectral decomposition Z?’Zl bjxja; with by =% bo, let
C = yy* with y = x1 + x2. Then [B,C] is unitarily similar to diag (a, —a) ® O,_2. It follows
that upuc € {1,—1}. Because pucp € {1,—1}, we see that up € {u, —pn}. Suppose B is non-
normal. There is a unitary U such that UBU* = H + iG, where G = G* is in diagonal form and
H = H* has a nonzero (1,2) entry. Then for C = UFE1;U*, the matrix [B, C] is unitarily similar
diag (a, —a) ® Op—3. Again, we can conclude that up = +u. So, up € {u, —u} for every B € M,

Consequently, we have

(¢) pp € {—1i,i} for all X € M, or (d) up € {—1,1} for all X € M,,.

We claim that the condition (d) holds. To this end, let D = diag (1,—1) ® O,,—2 and B = E12/2+
Es3 + E31. Then [D, B] = Ej12 — Eo3 — E3; is a unitary matrix with eigenvalues A\; = 1, A\ =
e27/3 N3 = ¢"47/3 Thus,
oe([D, B]) = D(A1,€) U D(A2,e) U D(As,€).

We see that ppup = 1 for such a matrix B. Similarly, if C = — E9; /2+iFE39 —iFE13, then poup = 1.
Thus, pup = pc. Now, [B,C] = (1 +i/4)En + (1 — i/4)Ex — 2E33. Then ppuco-([B,C]) =
o:([B,C]) will imply that upuc = 1. Because, up = uc, we see that up = pc € {—1,1}. Hence,
the condition (d) holds.
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Assertion 2 There is u € {1, —1} such that pug = p if A is not a normal matrix with at most two
distinct eigenvalues.

Proof. First we show that for any nonzero vectors z, y, f such that 1) y, f € =, 2) {y, f}
linearly independent and 3) Re (f*y) # 0, then the following holds.

(3.2) Kz f+ = Hyz*
Note that C' = [zf*,yx*] = (f*y)za* — ||z||?>yf* which has a matrix representation of the form

a 0 0
C=10 —a 0|®0=Xd0
0 B 0

with o = fryllz|?, 8 = [[z|>V/ ISyl — [f*y[? # 0. Then

det(Al3 — (X — tI3)*(X — tI3)) = N> + pa()A> + p1(t)A + po(t),
where
pa(t) = =3t> — (2la> + |B]?),
pi(t) = 3t* + (4(Im(e))? + B*)#* — 2Re () 52t + |af? (Jof* + 52),

po(t) = —t0+ (a® +a2)tt — |a|*?.
Since Re () and 8 # 0, the condition in Lemma 3.2 is satisfied. Therefore, 0.(C) # —o.(C). Since
0:(C) = pgfrpya0:(C), we have pigp«fiyex = 1, and thus pigp+ = frya>.
If 2 f* and zu* are rank-1 nilpotent and if u € f+, then (3.2) ensures that
Pafs = Ifruas = Hour = Hu(erf)s = Hfus = Kot fs = [z
So we have
(33) Mg fx = Pau* = M fr*

whenever the vectors x, f,u are pairwise orthogonal.
Next we show that

(3.4) Mo fc = Mgy for any nonzero vectors f,u € zt.

Suppose f, u are nonzero vectors in z . If u € f*, the equality follows from (3.3). If u = Af

for some nonzero scalar \, taking v € {z, f}* we have

Bz f* = Hxv* = Hzu*-

*

u
ff

If u ¢ f and the vectors u, f are linearly independent, then let v = u — cf, where ¢ = Then

| ul?
f

ve{x, f}*and u'v = uru —

# 0. By (3.2) and (3.3), we have

,U:ru* = ,u"l)ZE* = fo*,

Next, we show that yus = pp for any rank one nilpotent matrices A, B. To this end, A = x f*
and B = yg*, taking unit vector u € {z,y}* and using (3.4), we have

Mg+ = Heux = Hyy* = Hyg*.
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By Proposition 3.3, if A is not a normal matrix with at most two distinct eigenvalues, then there

is a rank one nilpotent B such that

—0c([A, B]) # 0c([B, A]) = pppaoe([B, A).

Thus, papup = 1, which implies pg = pp. The desired conclusion follows. O
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