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PRESERVERS OF UNITARY SIMILARITY FUNCTIONS

ON LIE PRODUCTS OF MATRICES

JIANLIAN CUI, CHI-KWONG LI, AND YIU-TUNG POON

In memory of Professor Hans Schneider.

Abstract. Denote by Mn the set of n×n complex matrices. Let f : Mn → [0,∞) be a continuous

map such that f(µUAU∗) = f(A) for any complex unit µ, A ∈Mn and unitary U ∈Mn, f(X) = 0

if and only if X = 0 and the induced map t 7→ f(tX) is monotonically increasing on [0,∞) for

any rank 1 nilpotent X ∈ Mn. Characterization is given for surjective maps φ on Mn satisfying

f(AB−BA) = f(φ(A)φ(B)− φ(B)φ(A)). The general theorem are then used to deduce results on

special cases when the function is the pseudo spectrum and the pseudo spectral radius.

AMS Subject Classification Primary 15A60, 46B04

Keywords Lie product, unitary similarity invariant function, pseudo spectrum.

1. Introduction

Let Mn be the set of n × n matrices. A function f : Mn → R is a radial unitary similarity

invariant function if

(P1) f(µUAU∗) = f(A) for a complex unit µ, A ∈Mn and unitary U ∈Mn.

In [11], the authors studied unitary similarity invariant functions that are norms on Mn, and

determine the structure of maps φ : Mn →Mn satisfying

(1.1) f(AB −BA) = f(φ(A)φ(B)− φ(B)φ(A)) for all A,B ∈Mn.

In [11, Remark 2.7], it was pointed out that the result actually holds for more general unitary

similarity invariant functions. However, no detail was given, and it is not straightforward to apply

the results to a specific problem. For instance, it is unclear how one can apply the result to study

preservers of pseudo spectrum of Lie product of matrices;1 see the definition in Section 3. To fill

this gap, we extend the result in [11] to continuous radial unitary similarity invariant functions

f : Mn → R satisfying the following properties.

(P2) For any X ∈Mn we have f(X) = f(0n) if and only if X = 0n, the n× n zero matrix.

(P3) For any rank 1 nilpotent X ∈Mn, the map t 7→ f(tX) on [0,∞) is strictly increasing.

For a function f : Mn → [0,∞) satisfying (P1) – (P3), we show that if φ : Mn →Mn is a surjective

map satisfying (1.1), then there is a unitary U ∈ Mn and a subset Nn of normal matrices in Mn

such that φ has the form

φ(A) =

{
µAUA

†U∗ + νAIn A ∈Mn \ Nn
µAU(A†)∗U∗ + νAIn A ∈ Nn,

1This is a question raised by Professor Molnar to the second and third author at the 2014 Summer Conference of
the Canadian Mathematics Society.

1

© 2016. This manuscript version is made available under the Elsevier user license 
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2 JIANLIAN CUI, CHI-KWONG LI, AND YIU-TUNG POON

where

(a) µA, νA ∈ C with |µA| = 1, depending on A,

(b) A† = A, A, At or A∗, and

(c) Nn depends on the given unitarily invariant function f .

The proof of this result will be given in Section 2. In Section 3, we apply the main result to the

case when f is the pseudo spectral radius, and then obtain the result for the case when f is the

pseudo spectrum.

For other preserver problems on different types of products on matrices and operators, one may

see [1, 2, 3, 7, 11, 12] and their references.

2. Main theorem

In this section, we prove Theorem 2.1 extending the result in [11]. We use similar ideas in [11]

with some intricate arguments to make the extension possible.

Theorem 2.1. Let f : Mn → [0,∞) be a function on Mn satisfying (P1) – (P3). Suppose n ≥ 3,

and φ : Mn →Mn is a surjective map satisfying

f([φ(A), φ(B)]) = f([A,B]).

Then there is a unitary matrix U and a subset Nn of normal matrices with non-collinear eigenvalues

such that φ has the form

φ(A) =

{
µAUψ(A)U∗ + νAIn A ∈Mn \ Nn
µAUψ(A)∗U∗ + νAIn A ∈ Nn,

where µA, νA ∈ C with |µA| = 1 depending on A, and ψ is one of the maps: A 7→ A, A 7→ A,

A 7→ At or A 7→ A∗.

A bijective map P on Mn is said to be a locally regular polynomial map [14] if for every A ∈Mn,

there exists a polynomial pA(t) such that P (A) = pA(A) and A have the same commutant. To

prove the above theorem, we need the following result from Šemrl [14].

Theorem 2.2. Suppose n ≥ 3, and φ : Mn →Mn is a bijective map satisfying

[A,B] = 0n ⇐⇒ [φ(A), φ(B)] = 0n.

Let Γ be the set of matrices A such that the Jordan form of A only has Jordan blocks of sizes 1 or

2. Then there are an invertible matrix S, an automorphism τ of the complex field and a regular

locally polynomial map A→ pA(A) such that

φ(A) = S(pA(A†τ ))S−1 for all A ∈ Γ.(2.1)

Here, Xτ is the matrix whose (i, j)-entry is τ(Xij), and A† = A or At.

Our proof strategy is to show that φ(A) has the asserted form described in the theorem for a

special class C1 of matrices A. Then we modify the map φ to φ1 so that it will satisfy the same
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UNITARY SIMILARITY FUNCTIONS ON LIE PRODUCTS OF MATRICES 3

hypothesis of φ with the additional assumption that φ(X) = X for every X ∈ C1. Then we can set

B = φ(A) for a certain matrix A not in C1 and use the condition that

f([A,X]) = f([φ1(A), φ1(X)]) = f([B,X]) for all X ∈ C1

to show that B = φ1(A) also has the asserted form. Thus, φ1 has the asserted form for a larger

class C2 of matrices, and so on and so forth until we show that the modified map will fix every

matrices after a finite number of steps.

In the next few lemmas, we will focus on the relations between a pair of matrices A and B such

that

f([A,X]) = f([B,X]) for all X ∈ C
for a certain subset C of matrices.

Lemma 2.3. Suppose A ∈ Mn is a rank one nilpotent matrix. Then A = xy∗ for some non-zero

orthogonal vectors, x and y. Furthermore, A is unitarily similar to ‖x‖‖y‖E21.

Proof. Suppose A ∈Mn is a rank one matrix. Then A = xy∗ for some non-zero column vectors,

x and y ∈ Cn. If A is nilpotent, then Ak = 0 for some integer k > 1. Then we have

0 = trAk = tr (xy∗)k = (y∗x)k .

Therefore, x and y are orthogonal. Let U be a unitary matrix with
y

‖y‖
and

x

‖x‖
as the first and

second columns respectively. Then U∗AU = ‖x‖‖y‖E21 �

Denote by σ(A) the spectrum of A and N(A) the null space of A.

Lemma 2.4. For any two matrices A and B, if

f([A,X]) = f([B,X]) for all rank one X ∈Mn,(2.2)

then there are µ, ν ∈ C with |µ| = 1 such that one of the following holds with Â = µA+ νIn.

(a) σ(B) = σ(Â) and for any λ ∈ σ(Â),

N(B − λIn) = N(Â− λIn) and N(Bt − λIn) = N(Ât − λIn).

(b) The eigenvalues of A are not collinear, σ(B) = σ(Â) and for any λ ∈ σ(Â),

N(B − λIn) = N(Â− λIn) and N(Bt − λIn) = N(Ât − λIn).

Proof. Note that for any rank one matrix X = xyt, [C,X] = 0 if and only if x and yt are the

right and left eigenvectors of C corresponding to the same eigenvalue. To see this, as [C,X] =

(Cx)yt − x(ytC), then [C,X] = 0 if and only if Cx = λx and ytC = λyt for some λ ∈ C.

Suppose A and B satisfy (2.2). By the above observation on rank one matrices and property (P2)

of f , A and B must have the same set of left and right eigenvectors. Furthermore, x1 and x2 are

the right eigenvectors of A corresponding to the same eigenvalue if and only if the two eigenvectors

correspond to the same eigenvalue of B. Thus, the eigenvalues of A and B have the same geometric

multiplicity.

Let λ1, . . . , λk be the distinct eigenvalues of A with x1, . . . , xk and y1, . . . , yk being the right and

left eigenvectors. Also for each pair of eigenvectors xi and yti , let γi be the corresponding eigenvalue
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4 JIANLIAN CUI, CHI-KWONG LI, AND YIU-TUNG POON

of B. Take Xij = xiy
t
j . Then AXij = λiXij and XijA = λjXij . Using (P1), we see that for any

1 ≤ i, j ≤ n,

f([A,Xij ]) = f(λiXij − λjXij) = f((λi − λj)Xij) = f(|λi − λj |Xij).

Similarly, f([B,Xij ]) = f((γi − γj)Xij) = f(|γi − γj |Xij).

By the fact that f([A,Xij ]) = f([B,Xij ]) and Property (P3),

|λi − λj | = |γi − γj | for all 1 ≤ i, j ≤ k.

As a result, there are µ, ν ∈ C with |µ| = 1 such that either

(1) γi = µλi + ν for all 1 ≤ i ≤ k; or

(2) the eigenvalues of A are non-collinear and γi = µλi + ν for all 1 ≤ i ≤ k.

Then the result follows with Â = µA+ νIn. �

Lemma 2.5. Suppose A and B commute and satisfy (2.2). If A has at least two distinct eigenvalues,

then there are µ, ν ∈ C with |µ| = 1 such that either

(a) B = µA+ νIn, or

(b) A is normal with non-collinear eigenvalues and B = µA∗ + νIn.

Proof. As A and B commute, there is a unitary matrix U such that both U∗AU and U∗BU are

upper triangular, see [9, Theorem 2.3.3]. Replacing (A,B) with (U∗AU,U∗BU), we may assume

that A and B are upper triangular.

As A and B satisfy (2.2), Lemma 2.4 holds. Suppose Lemma 2.4(a) holds with Â = µA + νIn.

Notice that σ(B) = σ(Â) and

f([Â,X]) = f([µA+ νIn, X]) = f([B,X]) for all rank one X ∈Mn.

Suppose λ is an eigenvalue of Â and y ∈ N(Ât−λIn). For any z ∈ Cn, let Z = zyt. Then ZÂ = λZ

and [Â, Z] = (Â − λIn)Z. Note that (Â − λIn)Z has rank at most one and tr ((Â − λIn)Z) =

tr ([Â, Z]) = 0, so (Â− λIn)Z is unitarily similar to ‖(Â− λIn)z‖‖yt‖E12. Thus,

f([Â, Z]) = f(‖(Â− λIn)z‖ ‖yt‖E12).

Similarly, f([B,Z]) = f(‖(B − λIn)z‖ ‖yt‖E12). Hence, by (P1) and (P3),

‖(Â− λIn)z‖ = ‖(B − λIn)z‖ for all z ∈ Cn and λ ∈ σ(Â).

As a result,

z∗Â∗Âz − 2Re (λz∗Âz) + |λ|2z∗z = ‖(Â− λIn)z‖2

= ‖(B − λIn)z‖2 = z∗B∗Bz − 2Re (λz∗Bz) + |λ|2z∗z.

This implies that

2Re (λz∗(Â−B)z) = z∗(Â∗Â−B∗B)z for all z ∈ Cn and λ ∈ σ(Â).

As A has at least two distinct eigenvalues, so does Â. Taking any λ, γ ∈ σ(Â) with λ 6= γ, we have

2Re (λz∗(Â−B)z) = z∗(Â∗Â−B∗B)z = 2Re (γz∗(Â−B)z).

Thus, W ((λ− γ)(Â−B)) ⊆ iR, where W (X) is the numerical range of X.
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UNITARY SIMILARITY FUNCTIONS ON LIE PRODUCTS OF MATRICES 5

Then (λ− γ)(Â−B) is a skew-Hermitian matrix [8]. Since both Â and B are upper triangular,

they must be diagonal matrices. Now for any 1 ≤ i ≤ n, bii ∈ σ(B) = σ(Â). Then

0 = ‖(B − biiIn)ei‖ = ‖(Â− biiIn)ei‖ = ‖(B − biiIn)ei + (Â−B)ei‖‖(Â−B)ei‖

Thus, (Â−B)ei = 0 for all 1 ≤ i ≤ n and hence B = Â.

Now suppose Lemma 2.4(b) holds. Then by a similar argument, we can show that

‖(Â− λIn)z‖ = ‖(B − λIn)z‖ for all λ ∈ σ(Â) and z ∈ Cn(2.3)

and so (λ− γ)Â− (λ−γ)B is a skew-Hermitian matrix. It follows that (λ− γ)TA− (λ−γ)TB = 0,

or equivalently, TB = λ−γ
λ−γTA, where TA and TB are the strictly upper triangular parts of A and B.

Now as the eigenvalues of A and hence Â are not collinear, we can always find another ω ∈ σ(Â)

such that λ−ω
λ−ω 6=

λ−γ
λ−γ . Then the above equation is possible only if TA = TB = 0. In this case, A

and B are both diagonal and hence normal. Then (2.3) implies that Â = B. �

From Lemma 2.5, we have the following consequence for diagonalizable matrices.

Corollary 2.6. Suppose A and B satisfy (2.2) and A is diagonalizable. Then there are µ, ν ∈ C
with |µ| = 1 such that

(a) B = µA+ νIn, or

(b) A is normal with non-collinear eigenvalues and B = µA∗ + νIn.

Proof. Suppose A is diagonalizable. Then A = SDS−1 for some invertible S and diagonal D.

By Lemma 2.4, B = S(µD+ νIn)S−1 or B = S(µD+ νIn)S−1. If A has only one eigenvalue, then

A is a scalar matrix and so is B. Then the result follows. Suppose A has at least two eigenvalues.

As A and B commute, the result now follows by Lemma 2.5. �

Lemma 2.7. For any two matrices A and B, if

f([A,X]) = f([B,X]) for all X ∈Mn,(2.4)

then there are µ, ν ∈ C with |µ| = 1 such that either

(a) B = µA+ νIn, or

(b) A is normal with non-collinear eigenvalues and B = µA∗ + νIn.

Proof. Suppose A and B satisfy (2.4). Then, putting X = B in (2.4), it follows from (P2) that

A and B commute. If A has at least two eigenvalues, then the result follows from Lemma 2.5.

Suppose A has only one eigenvalue, say λ. Then by Lemma 2.4, B has one eigenvalue only, say

γ. Write A = SJS−1 + λIn, where S is invertible and J = Jn1 ⊕ · · · ⊕ Jns is the Jordan form of

A with n1 ≥ · · · ≥ ns. Now as A and B satisfy (2.4), A and B have the same set of commuting

matrices. Then B = Sp(J)S−1 + γIn for some polynomial p of degree at most m = n1 − 1 with

p(0) = 0.

By a similar argument as in Lemma 2.5, we can show that

‖(B − γIn)z‖ = ‖(A− λIn)z‖ for all z ∈ Cn.



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

6 JIANLIAN CUI, CHI-KWONG LI, AND YIU-TUNG POON

Then there is a unitary matrix W such that

Sp(J)S−1 = (B − γIn) = W (A− λIn) = WSJS−1.

Write S = UT for unitary U and upper triangular T , V = U∗WU and p(x) =
∑m

i=1 cix
i. Then we

have

Tp(J)T−1 = V TJT−1.(2.5)

Notice that both Tp(J)T−1 and TJT−1 are strictly upper triangular. Furthermore, the first n1− 1

entries in the super-diagonal of Tp(J)T−1 are c1 times the corresponding n1 − 1 super-diagonal

entries of TJT−1.

As V is unitary, we must have |c1| = 1 and V = c1In1−1 ⊕ V1 for some unitary V1 ∈ Mn−n1+1.

Now comparing the first n1 × n1 principal submatrices in (2.5), we have

T1p(Jn1)T−11 = (c1In1−1 ⊕ [vn1,n1 ])T1Jn1T
−1
1 = c1T1Jn1T

−1
1 ,

where T1 is the n1 × n1 principal submatrix of T . Therefore, T1
(∑m

i=2 ciJ
i
n1

)
T−11 = 0 and so∑m

i=2 ciJ
i
n1

= 0. Hence, c2 = · · · = cm = 0. Then p(x) = c1x and so B = c1A+ (γ − c1λ)In. �

We are now ready to present the following.

Proof of Theorem 2.1.

First we assume that φ is bijective. Suppose φ is a bijective map satisfying

f([A,B]) = f([φ(A), φ(B)]) for all A,B ∈Mn.

Because f(X) = f(0) if and only if X = 0 by (P2), we see that [A,B] = 0 if and only if

[φ(A), φ(B)] = 0. We can apply Theorem 2.2 and conclude that φ has the form (2.1) with A† = A

or At. In particular, for any rank one matrix R ∈Mn, there are µR, νR ∈ C such that

φ(R) = S(µRR
†
τ + νRIn)S−1.

Suppose µR = |µR|eiθR . By replacing φ(R) with e−iθR (φ(R)− νRIn), we may assume that µR > 0

and νR = 0.

Here we consider only the case when A† = A. The case when A† = At is similar. Fixed

an orthonormal basis {x1, . . . , xn} and define Xij = xix
∗
j . Take α = (α1, . . . , αn) ∈ Cn and let

A =
∑n

j=1 αjXj1. For k = 2, . . . , n,

(2.6) f(µAµXkk
τ(αk)S(Xk1)τS

−1) = f([φ(A), φ(Xkk)]) = f([A,Xkk]) = f(αkXk1).

In particular, if Z = µAµX22S(X21)τS
−1, then

f(τ(α)Z) = f(αX21) for all α ∈ C.

Suppose τ is neither the the identity map λ → λ nor the conjugate map λ → λ. By [10,

Theorem 1], the set τ([0, 1]) is an unbounded subset of C. Thus, there exists α ∈ [0, 1] such that

|τ(α)| > |τ(2)|. But then by (P1) and (P3), we have

f (2X21) = f(τ(2)Z) = f(|τ(2)|Z) < f(|τ(α)|Z) = f (τ(α)Z) = f (αX21) < f (2X21) ,

which is a contradiction. Thus, τ is either the identity map or the conjugate map.
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UNITARY SIMILARITY FUNCTIONS ON LIE PRODUCTS OF MATRICES 7

Furthermore, as f([X32, X22]) = f(X32) = f([X32, X33]),

f(µX32µX22S(X32)τS
−1) = f([φ(X32), φ(X22)])

= f([φ(X32), φ(X33)]) = f(µX32µX33S(X32)τS
−1).

Thus, µX22 = µX33 by (P3). By (2.6) and the fact that f(ξX21) = f(ξX31) for all ξ ∈ C, we have

f(S(X21)τS
−1) = f(S(X31)τS

−1).

We now claim that S is a multiple of some unitary matrix. If not, then there is a pair of

orthonormal vectors y2, y3 such that ‖Sy2‖ 6= ‖Sy3‖. Extend y2, y3 to an orthonormal basis

{y1, y2, y3, . . . , yn} and let xj = (yj)τ−1 . Then {x1, . . . , xn} also forms an orthonormal basis. By

the above study, we have

f(‖Sy2‖‖y∗1S−1‖E12) = f(S(X21)τS
−1) = f(S(X31)τS

−1) = f(‖Sy3‖‖y∗1S−1‖E12),

which contradicts that ‖Sy2‖ 6= ‖Sy3‖. Thus, S is a multiple of some unitary matrix. By absorbing

the constant term, we may assume that S is unitary. Now for any rank one matrices R and S,

f([R,S]) = f([φ(R), φ(S)]) = f(µRµS [Rτ , Sτ ]).

By (P1), f([R,S]) = f([Rτ , Sτ ]) whenever [R,S] is a rank one nilpotent matrix, and hence µRµS = 1

in this case.

Now for any rank one matrix A, we can always find two other rank one matrices B and C

such that [A,B], [A,C] and [B,C] are all rank one nilpotents. Then we must have µAµB =

µAµC = µBµC = 1. As all µA, µB, µC are positive real numbers, the equality is possible only when

µA = µB = µC = 1. Then we have φ(A) = SAτS
−1 = SAτS

∗ for all rank one A.

By replacing φ with the map A 7→ S∗φ(A)S, we may assume that φ(X) = X+ for all rank one

matrices X, where X+ = X, X, Xt or X∗. Then

f([A,B]) = f([φ(A), φ(B)]) = f([A+, B+]) = f([A,B]+)

for all rank one A,B ∈Mn. Notice that the set

{X : X = [A,B] for some rank one A and B}

contains the set of trace zero non-nilpotent matrices with rank at most two and so is dense in the

set of trace zero matrices with rank at most two. Thus, by continuity of f we see that

f(X) = f(X+) for all trace zero matrices X with rank at most two.

Now define Φ : Mn → Mn by A 7→ φ(A)+. Then Φ(X) = X for all rank one matrices X. For any

A ∈Mn and rank one matrix X ∈Mn, as [A,X] is a trace zero matrix with rank at most two,

f([A,X]) = f([φ(A), φ(X)]) = f([φ(A), X+]) = f([φ(A)+, X]) = f([Φ(A), X]).

Thus, f([A,X]) = f([Φ(A), X]) for all rank one X. Then Corollary 2.6 implies that Φ(A) =

µAA+ νAIn or Φ(A) = µAA
∗ + νAIn for all diagonalizable matrices A and the latter case happens

only when A is normal with non-collinear eigenvalues.

After absorbing the constants µA and νA, we may assume that Φ(X) = X for all non-normal

diagonalizable matrices X. Then

f([A,B]) = f([φ(A), φ(B)]) = f([Φ(A),Φ(B)]+) = f([A,B]+)



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

8 JIANLIAN CUI, CHI-KWONG LI, AND YIU-TUNG POON

for all non-normal diagonalizable matrices A and B. Since the set of all non-normal diagonalizable

matrices is dense in Mn, we see that f([A,B]) = f([A,B]+) for all A,B ∈ Mn. Then for any

A ∈Mn,

f([A,X]) = f([φ(A), φ(X)]) = f([Φ(A),Φ(X)]+) = f([Φ(A), X])

for all non-normal diagonalizable matrices X, and so f([A,X]) = f([Φ(A), X]) for all X ∈ Mn by

the continuity of f . Now the result follows by Lemma 2.7.

Finally, we show that one only needs the surjective assumption on φ. For any A,B ∈
Mn, we say A ∼ B if

f([A,X]) = f([B,X]) for all X ∈Mn.

Clearly, ∼ is an equivalence relation and for each A ∈ Mn, denote by SA = {B : B ∼ A} the

equivalence class of A. By Lemma 2.7, either

(I) SA is the set of matrices of the form µA+ νI for some µ, ν ∈ C with |µ| = 1, or

(II) A is normal and A ∼ A∗, SA is the set of matrices of the form µA + νI or µA∗ + νI for

some µ, ν ∈ C with |µ| = 1.

Pick a representative for each equivalence class and write A for the set of these representatives.

Since φ is surjective, SA and φ−1(SA) have the same cardinality c for every A ∈ A. Thus there

exists a map ψ : Mn →Mn which maps φ−1(SA) bijectively onto SA for each A ∈ A. Clearly ψ is

bijective and ψ(A) ∼ φ(A) for all A ∈Mn. Then, for any A,B ∈Mn,

f([A,B]) = f([φ(A), φ(B)]) = f([ψ(A), φ(B)]) = f([ψ(A), ψ(B)]).

That is, ψ is bijective map satisfying (2.2). By the proof of Theorem 2.1 with bijective φ in

the previous paragraphs, ψ has the desired form and hence so does φ, as ψ(A) ∼ φ(A) implies

φ(A) = µψ(A) + νI or φ(A) = µψ(A)∗ + νI when ψ(A)∗ is normal and ψ(A)∗ ∼ ψ(A). �

Remark Using the argument in the last part of the proof on the replacement of the bijective

assumption by the surjective assumption on φ, one may further weaken the surjective assumption

on φ by any one of the following (weaker) assumptions on the following modified map φ̃ defined by

φ̃(X) = φ(X)− tr (φ(X))I/n

on the set M0
n of trace zero matrices in Mn.

(a) The map φ̃ : M0
n →M0

n surjective.

(b) For any A ∈M0
n the range of φ̃ contains a matrix of the form eitA for some t ∈ [0, 2π).

3. Pseudo spectrum and pseudo spectral radius

In this section, we use Theorem 2.1 to study maps preserving the pseudo spectral radius (see

the definitions below) of the Lie product of matrices. Then we further deduce the result for maps

preserving the pseudo spectrum. As one shall see, with considerable effort, one will be able to get

more specific structure of the preserving maps.

For ε > 0, define the ε-pseudospectrum σε(A) of A ∈Mn as

σε(A) = {z ∈ σ(A+ E) : E ∈Mn, ‖E‖ < ε} = {z ∈ C : sn(A− zIn) < ε},
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where s1(X) ≥ · · · ≥ sn(X) denote the singular values of X ∈Mn, and the ε-pseudospectral radius

rε(A) of A ∈Mn as

rε(A) = sup{|µ| : µ ∈ σε(A)}.
Note that the pseudo spectral radius is useful in studying the stability of matrices under perturba-

tions, and there are efficient algorithm for its computation; see for example, [6] and its references.

Preservers of pseudo spectrum has been considered for several types of products in [4] (see also

[5]). Here we characterize the preservers of pseudo spectral radius and pseudo spectrum for Lie

products. We first prove the following.

Theorem 3.1. Suppose n ≥ 3 and ε > 0. Then a surjective map φ : Mn →Mn satisfies

rε([A,B]) = rε([φ(A), φ(B)]) for all A,B ∈Mn

if and only if there is a unitary U ∈Mn such that

φ(A) = µAUψ(A)U∗ + νAIn for all A ∈Mn,

where µA, νA ∈ C with |µA| = 1, depending on A, and ψ is one of the following maps: A 7→ A,

A 7→ A, A 7→ At or A 7→ A∗.

Proof. The sufficiency can be readily checked. To prove the necessity, let f(A) = rε(A) for

A ∈Mn. It is clear that f is a continuous map satisfying (P1) and (P2). Suppose X is a rank one

nilpotent matrix. It follows from Proposition 2.4 in [5] that rε(X) =
√
ε2 + ‖X‖ε. Hence, (P3) is

also satisfied. So, we can apply Theorem 2.1 and conclude that φ has the form in Theorem 2.1.

To get the desired conclusion, we need to show that the set N is empty. Assume not, and there is

A ∈ N . Since A is normal with non-collinear eigenvalues, there is a unitary V and γ, ξ ∈ C such

that

V (ψ(A)− ξI)V ∗ = γdiag (1, µ, 0, µ4, . . . , µn),

where µ /∈ R. Let B ∈Mn be such that

B̃ = V ψ(B)V ∗ =

0 1 0
a 0 b
0 c 0

⊕On−3,
where a = (1− µ̄)/(1− µ), b > 0 and c = bµ̄/µ. Then

B̃B̃∗ =

1 0 c̄
0 |a|2 + |b|2 0
c 0 |c|2

 and B̃∗B̃ =

|a|2 0 āb
0 1 + |c|2 0
b̄a 0 |b|2


and we can choose b > 0 so that B̃ is not normal, and neither is B. As a result, φ(B) =

µBUψ(B)U∗ + νBI.

Now,

C1 = V [ψ(A), ψ(B)]V ∗ = γ

 0 1− µ 0
µ̄− 1 0 bµ

0 −bµ̄ 0

⊕On−3
is normal with eigenvalues s± = ±γ

√
|1− µ|2 + b2|µ|2 so that

rε([A,B]) = rε([ψ(A), ψ(B)]) = |γ|
√
|1− µ|2 + b2|µ|2 + ε.
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However, [φ(A), φ(B)] is unitarily similar to

C2 = µAµB γ̄

 0 1− µ 0
(1− µ̄)2/(µ− 1) 0 bµ̄

0 −bµ̄2/µ 0

⊕On−3.
One readily checks that the matrix C2 is normal if and only if µ is pure imaginary. In all other

cases, there is a unitary R ∈Mn obtained from In by changing the (1, 1), (1, 3), (3, 1), (3, 3) entries

so that

RC2R
∗ = γ̄

 0 c1 0
c2 0 c3
0 0 0

⊕On−3.
If C2 has singular values s1 ≥ s2, then

|γ|2(|c1|2 + |c2|2 + |c3|2) = tr (C2C
∗
2 ) = tr (C1C

∗
1 ) = |γ|2(s2+ + s2−).

Because C2 is not normal, s1 < s+, we see that s2 > s−. Then for any z ∈ C, if C̃− zI has singular

values s1(z) ≥ s2(z), then

s1(z)
2 + s2(z)

2 = 2|z|2 + |c1|2 + |c2|2 + |c3|22|z|2 + s2+ + s2− = s+(z)2 + s−(z)2,

where s+(z) ≥ s−(z) are the singular values of C1 − zI. Again, because C2 − zI is not normal,

we see that s+(z) > s1(z) ≥ s2(z) > s−(z). It follows that s+(z) > s−(z) for any z ∈ C with

|z| ≤ |γ|
√
|1 + µ|2 + b2|µ|2 + ε. Thus,

max{z ∈ C : s2(C2 − zI) ≤ ε} < max{z ∈ C : s2(C1 − zI) ≤ ε}.

So, if a normal matrix A with three collinear eigenvalues γ + ν, γµ + ν, ν, where µ is not real and

µ 6= ±i, then A /∈ N . Clearly, if A ∈ N has eigenvalues of the form γ+ ν, γ+ iν, γ, then ψ(A)∗ can

be viewed as a multiple of ψ(A). Thus, we may assume that A /∈ N by adjusting µA and νA. The

result follows. �

We will use the above theorem to determine the structure of preservers of the pseudo spectrum

of Lie product of matrices. To achieve this, we need a characterization of normal matrices A with

two distinct eigenvalues, i.e., A− bI is a nonzero multiple of a rank k orthogonal projection P with

1 ≤ k < n; see Proposition 3.3 below. The proof depends on the following lemma.

Lemma 3.2. Suppose C = C1⊕On−3, where C1 ∈M3 has rank ≤ 2 and trC1 = 0. Then for every

ε > 0, σε(C) = σε(C1). Furthermore, suppose for t ∈ R,

f(λ, t) = det(λI3 − (C1 − tI3)∗(C1 − tI3)) = λ3 + p2(t)λ
2 + p1(t)λ+ p0(t)

where p1(t) = q1(t) + at with a 6= 0 and p0(t), q1(t), p2(t) contains only even powers of t. Then

σε(C) 6= −σε(C).

Proof. Since rank C1 ≤ 2, 0 ∈ σ(C1). Therefore, σε(C) = σε(C1) ∪ σε(0n−k) = σε(C1).

Note that for each t ∈ R, f(λ, t) is a cubic polynomial in λ with three non-negative real roots

λ1(t) ≥ λ2(t) ≥ λ3(t) ≥ 0 and smin(C1 − tI3) =
√
λ3(t).
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Without loss of generality, we may assume that a < 0. Given ε > 0, t ∈ σε(C1) ∩ R if and only

if λ3(t) < ε2. Since λ3(0) = 0 and lim
t→∞

λ3(t) = ∞, there exists t0 > 0 such that λ3(t0) = ε2. We

have t0 6∈ σε(C) and f(ε2, t0) = 0. But then

f(ε2,−t0) = f(ε2, t0)− 2at0ε
2 > 0

Thus, λ3(−t0) < ε2 implying that −t0 ∈ σε(C). So, t0 ∈ −σε(C), and thus σε(C) 6= −σε(C). �

Proposition 3.3. Let n ≥ 3 and A ∈Mn. The following condition are equivalent.

(a) A is a normal matrix with at most two distinct eigenvalues.

(b) σε([A,B]) = −σε([A,B]) for all B ∈Mn.

(c) σε([A,B]) = −σε([A,B]) for all rank one nilpotent B ∈Mn.

Proof. Suppose (a) holds. Then there is a unitary V and ν ∈ C such that V AV ∗− νI = λJ with

J = Ik ⊕−In−k. Then for any B ∈Mn such that V BV ∗ = (Bij)1≤i,j≤2 with B11 ∈Mk, B22 ∈ B22,

we have

C = V [A,B]V ∗ = 2λ

[
Ok B12

−B21 On−k

]
satisfies −C = JCJ∗. Thus,

σε([A,B]) = σε([V AV
∗, V BV ∗]) = σε(−J [A,B]J∗) = σε(−[A,B]).

So, condition (b) holds.

The implication (b) ⇒ (c) is clear. To prove (c) ⇒ (a), we consider the contra-positive. Assume

(a) is not true. We consider 2 cases.

Case 1. Suppose A is normal with more than two distinct eigenvalues. We may assume that

A = diag (a, b, c) ⊕ A2 such that a, b and c are distinct. If Re ((b − a)(c− a)) ≤ 0, then we have

Re ((b − c)a− c) = Re ((b − a + a − c)a− c) = |a − c|2 − Re ((b − a)(c− a)) > 0. Thus, we may

assume that Re ((b− a)(c− a)) > 0 which implies that

|2a− (b+ c)|2 = |(b− a) + (c− a)|2 > |b− a|2 + |c− a|2 > |b− c|2 ⇒
∣∣∣∣a− b+ c

2

∣∣∣∣ > |b− c|2
.

Thus, by replacing A with
2

(b− c)

(
A− (b+ c)

2
I

)
, we may assume that A = diag (a, 1,−1) ⊕ A2

such that |a| > 1. Consider the rank one nilpotent X =

[
0 −

√
2
√

2
0 −1 1
0 −1 1

]
⊕ 0n−3. We have [A,X] =

C ⊕ 0n−3, where C =

[
0
√

2(1− a)
√

2(1 + a)
0 0 2
0 2 0

]
. Then

det(λI3 − (C − tI3)∗(C − tI3)) = λ3 + p2(t)λ
2 + p1(t)λ+ p0(t),

where
p2(t) = −3t2 − 4|a|2 − 12,

p1(t) = 3t4 + 4
(
1 + |a|2

)
t2 + 16

(
1− |a|2

)
t+ 16

(
2 + |a|2

)
,

p0(t) = −t6 + 8t4 − 16t2 .
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Since |a| > 1, the condition in Lemma 3.2 is satisfied. Therefore, σε(C) 6= −σε(C).

Case 2. Assume that A is not normal. We may assume that A = (aij) is in upper triangular

form such that the (1, 2) entry is nonzero; see [13, Lemma 1]. We may replace A by A− a33I and

assume that A = (Aij) with A22 ∈Mn−3, A21 = O, and

A11 =

a11 a12 a13
0 a22 a23
0 0 0

 .
Subcase (2.a) Suppose not both [a13, . . . , a1n] and [a23, . . . , a2n] are zero. Then there is a

unitary U = U1⊕U2 with U1 ∈M2 such that UAU∗ = Ã = (ãij), where the second row of Ã equals

[ã21, ã22, ã23, 0, . . . , 0] with ã21 ∈ R and ã21 6= 0 and ã23 6= 0. Let B = E12. Then

C = [Ã, B] =

−ã21 ã11 − ã22 −ã23
0 ã21 0
0 0 0

⊕On−3.
Then

det(λI3 − (C − tI3)∗(C − tI3)) = λ3 + p2(t)λ
2 + p1(t)λ+ p0(t),

where

p2(t) = −3t2 − |ã22 − ã11|2 − |ã23|2 − 2ã221,

p1(t) = 3t4 +
(
|ã22 − ã11|2 + |ã23|2

)
t2 − 2ã21|ã23|2t+ ã221

(
ã221 + |ã23|2

)
,

p0(t) = −t6 + 2ã221t
4 − ã421t2 .

Since a21 and ã23 6= 0, the condition in Lemma 3.2 is satisfied. Therefore, σε(C) 6= −σε(C).

Subcase (2.b) Suppose both [a13, . . . , a1n] and [a23, . . . , a2n] are zero.

i) If a11 = a22 = 0, then we may assume that a12 = 1. Let

B =

 1 0 1
1 0 1
−1 0 −1

⊕On−3 so that C = [A,B] =

1 −1 1
0 −1 0
0 1 0

⊕On−3.
Then

det(λI3 − (C − tI3)∗(C − tI3)) = λ3 + p2(t)λ
2 + p1(t)λ+ p0(t),

where

p2(t) = −3t2 − 5,

p1(t) = 3t4 + 3t2 − 2t+ 4,

p0(t) = −t6 + 2t4 − t2 .

Therefore, the condition in Lemma 3.2 is satisfied and σε(C) 6= −σε(C).

ii) If either a11 or a22 6= 0, then, applying a unitary similarity, we may assume that a11 6= 0.

Replacing A by eiθA, we may assume that a11 ∈ R. Then we may further assume that a12 = 1. Let
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B =

[
1 0 1
0 0 0
−1 0 −1

]
⊕On−3 and C = [A,B]. Then C = C1⊕ 0n−3, where C1 =

[
0 −1 a11
0 0 0
a11 1 0

]
. Then

det(λI3 − (C1 − tI3)∗(C1 − tI3)) = λ3 + p2(t)λ
2 + p1(t)λ+ p0(t),

where
p2(t) = −3t2 − 2− 2a211,

p1(t) = 3t4 + 2t2 − 4a11t+ 2a211 + a411,

p0(t) = −t6 + 2a211t
4 − a411t2 .

Therefore, the condition in Lemma 3.2 is satisfied and σε(C) 6= −σε(C).

The proof is complete. �

Theorem 3.4. Suppose n ≥ 3 and ε > 0. Then a surjective map φ : Mn →Mn satisfies

σε([A,B]) = σε([φ(A), φ(B)]) for all A,B ∈Mn

if and only if there exist µ ∈ {1,−1}, a unitary matrix U ∈ Mn, and a set T of normal matrices

with at most two distinct eigenvalues such that

(3.1) φ(A) =

{
µUψ(A)U∗ + νAI if A ∈Mn \ T ,
−µUψ(A)U∗ + νAI if A ∈ T ,

where νA ∈ C depends on A, and ψ is one of the maps: A 7→ A, A 7→ iAt.

Proof. To prove the sufficiency, if ψ has the first form, then σε([A,B]) = σε([φ(A), φ(B)]) =

µAµBσε([A,B]) if none, one, or both of A,B ∈ T by Proposition 3.3. If ψ has the second form,

then σε([A,B]) = σε([φ(A), φ(B)]) = −µAµBσε([At, Bt]) = µAµBσε([A,B]) if none, one, or both of

A,B ∈ T by Proposition 3.3.

To prove the necessity, we may compose φ by a map of the form X 7→ V XV ∗ and adjust νX if

necessary so that φ has the form A 7→ µAψ(A), where ψ is one of the maps A 7→ A,A 7→ At, A 7→
A,A 7→ A∗. Focusing on rank one Hermitian matrices, we see that one of the following happens.

(1) For any rank one A = xx∗, φ(A) = µAA. (2) For any rank one A = xx∗, φ(A) = µAA
t.

Suppose (2) holds. We may replace φ by the map X 7→ iφ(X)t. Then the modified map will satisfy

condition (1). Thus, we can focus on the case when (1) holds, and prove that φ has the asserted

form with ψ(X) = X for all X ∈Mn.

In the rest of the proof, we assume that (1) holds. Then we have either

i) φ(A) = µAA for all A ∈Mn, or ii) φ(A) = µAA
∗ for all A ∈Mn.

We will show that for some µ, we have µA = µ for all A ∈Mn \ T and µA = −µ for all A ∈ T .

satisfying (3.1). Clearly, we need only consider non-scalar matrices.

Assertion 1 For every non-scalar matrix A ∈Mn, µA ∈ {−1, 1}.
To prove Assertion 1, let A = xx∗. If B = yy∗ such that 0 6= [A,B], then [A,B] is unitarily

similar to diag (ai,−ai)⊕On−2 with a =
√
−tr ([A,B]2)/2 > 0 so that

σε([A,B]) = D(−ai, ε) ∪D(0, ε) ∪D(ai, ε).
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Because σε([φ(A), φ(B)]) = µAµBσε([A,B]), we see that µAµB = ±1.

Let µ = µE11 . Suppose B = xx∗ for a nonzero x ∈ Cn. We can find C = yy∗ such that

[E11, C] 6= 0 and [B,C] 6= 0. Then µµC , µBµC ∈ {1,−1} so that µµC = ±µBµC . It follows that

µB ∈ {µ,−µ}.
Choose Bj = xjx

∗
j , j = 1, 2 so that [E11, B1], [E11, B2] and [B1, B2] 6= 0. Then

µµB1 , µµB2 , µB2µB1 ∈ {1, −1}.

Hence, µ2 ∈ {−1, 1}. So we have either

(a) µ2 = −1 ⇒ µB ∈ {−i, i} for all B = xx∗, or (b) µ2 = 1 ⇒ µB ∈ {−1, 1} for all B = xx∗.

Next we will show that φ(A) = µAA for all A ∈ Mn. Assume the contrary that φ(A) = µAA
∗ for

all A ∈Mn. Let B1 = E11 +E13 +E31 +E33, B2 = E22 +E23 +E32 +E33 and C = E11 + eiπ/6E22.

Then

σε([B1, C]) = D(−i, ε) ∪D(i, ε) ∪D(0, ε)

and

σε([φ(B1), φ(C)]) = µB1µCD(−i, ε) ∪D(i, ε) ∪D(0, ε).

Hence, µB1µC ∈ {−1, 1}. By a direct computation,

σε([B2, C]) = D(−e−2πi/3, ε) ∪D(e−2πi/3, ε) ∪D(0, ε)

and

σε([φ(B2), φ(C)]) = µB2µC

(
D(−e−πi/3, ε) ∪D(e−πi/3, ε) ∪D(0, ε)

)
.

Since µB1 = ±µB2 and µB1µC ∈ {−1, 1}, we have µB2µC ∈ {−1, 1}. Hence, σε([φ(B2), φ(C)]) 6=
σε([B2, C]), a contradiction. Therefore, we have φ(A) = µAA for all A ∈Mn.

For any non-scalar normal matrix B with spectral decomposition
∑n

j=1 bjxjx
∗
j with b1 6= b2, let

C = yy∗ with y = x1 + x2. Then [B,C] is unitarily similar to diag (a,−a) ⊕ On−2. It follows

that µBµC ∈ {1,−1}. Because µCµ ∈ {1,−1}, we see that µB ∈ {µ,−µ}. Suppose B is non-

normal. There is a unitary U such that UBU∗ = H + iG, where G = G∗ is in diagonal form and

H = H∗ has a nonzero (1, 2) entry. Then for C = UE11U
∗, the matrix [B,C] is unitarily similar

diag (a,−a)⊕On−2. Again, we can conclude that µB = ±µ. So, µB ∈ {µ,−µ} for every B ∈ Mn.

Consequently, we have

(c) µB ∈ {−i, i} for all X ∈Mn, or (d) µB ∈ {−1, 1} for all X ∈Mn.

We claim that the condition (d) holds. To this end, let D = diag (1,−1)⊕On−2 and B = E12/2 +

E23 + E31. Then [D,B] = E12 − E23 − E31 is a unitary matrix with eigenvalues λ1 = 1, λ2 =

ei2π/3, λ3 = ei4π/3. Thus,

σε([D,B]) = D(λ1, ε) ∪D(λ2, ε) ∪D(λ3, ε).

We see that µBµD = 1 for such a matrix B. Similarly, if C = −E21/2+iE32−iE13, then µCµD = 1.

Thus, µB = µC . Now, [B,C] = (1 + i/4)E11 + (1 − i/4)E22 − 2E33. Then µBµCσε([B,C]) =

σε([B,C]) will imply that µBµC = 1. Because, µB = µC , we see that µB = µC ∈ {−1, 1}. Hence,

the condition (d) holds.
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Assertion 2 There is µ ∈ {1,−1} such that µA = µ if A is not a normal matrix with at most two

distinct eigenvalues.

Proof. First we show that for any nonzero vectors x, y, f such that 1) y, f ∈ x⊥, 2) {y, f}
linearly independent and 3) Re (f∗y) 6= 0, then the following holds.

(3.2) µxf∗ = µyx∗

Note that C = [xf∗, yx∗] = (f∗y)xx∗ − ‖x‖2yf∗ which has a matrix representation of the form

C =

 α 0 0
0 −α 0
0 β 0

⊕ 0 = X ⊕ 0

with α = f∗y‖x‖2, β = ‖x‖2
√
‖f‖2‖y‖2 − |f∗y|2 6= 0. Then

det(λI3 − (X − tI3)∗(X − tI3)) = λ3 + p2(t)λ
2 + p1(t)λ+ p0(t),

where
p2(t) = −3t2 − (2|α|2 + |β|2),

p1(t) = 3t4 + (4(Im(α))2 + β2)t2 − 2Re (α)β2t+ |α|2
(
|α|2 + β2

)
,

p0(t) = −t6 + (α2 + α2)t4 − |α|4t2 .
Since Re (α) and β 6= 0, the condition in Lemma 3.2 is satisfied. Therefore, σε(C) 6= −σε(C). Since

σε(C) = µxf∗µyx∗σε(C), we have µxf∗µyx∗ = 1, and thus µxf∗ = µyx∗ .

If xf∗ and xu∗ are rank-1 nilpotent and if u ∈ f⊥, then (3.2) ensures that

µxf∗ = µ(f+u)x∗ = µxu∗ = µu(x+f)∗ = µfu∗ = µ(x+u)f∗ = µfx∗ .

So we have

(3.3) µxf∗ = µxu∗ = µfx∗

whenever the vectors x, f, u are pairwise orthogonal.

Next we show that

(3.4) µxf∗ = µxu∗ for any nonzero vectors f, u ∈ x⊥.

Suppose f, u are nonzero vectors in x⊥. If u ∈ f⊥, the equality follows from (3.3). If u = λf

for some nonzero scalar λ, taking v ∈ {x, f}⊥ we have

µxf∗ = µxv∗ = µxu∗ .

If u /∈ f⊥ and the vectors u, f are linearly independent, then let v = u− cf , where c =
f∗u

f∗f
. Then

v ∈ {x, f}⊥ and u∗v = u∗u− |f
∗u|2

f∗f
6= 0. By (3.2) and (3.3), we have

µxu∗ = µvx∗ = µxf∗ .

Next, we show that µA = µB for any rank one nilpotent matrices A,B. To this end, A = xf∗

and B = yg∗, taking unit vector u ∈ {x, y}⊥ and using (3.4), we have

µxf∗ = µxu∗ = µyu∗ = µyg∗ .
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By Proposition 3.3, if A is not a normal matrix with at most two distinct eigenvalues, then there

is a rank one nilpotent B such that

−σε([A,B]) 6= σε([B,A]) = µBµAσε([B,A]).

Thus, µAµB = 1, which implies µA = µB. The desired conclusion follows. �
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