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Abstract

This paper proves the global existence and boundedness of solutions to a general reaction–diffusion 
predator–prey system with prey-taxis defined on a smooth bounded domain with no-flux boundary condi-
tion. The result holds for domains in arbitrary spatial dimension and small prey-taxis sensitivity coefficient. 
This paper also proves the existence of a global attractor and the uniform persistence of the system under 
some additional conditions. Applications to models from ecology and chemotaxis are discussed.
© 2016 Elsevier Inc. All rights reserved.

MSC: 35K57; 35K59; 35B45; 92D25
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1. Introduction

Predator–prey interaction is one of fundamental building blocks in a complex ecological sys-
tem, and it has been extensively studied in various forms and contexts [35,39,40,47]. The spatial 
dispersal of the predator and prey species may lead to further complication of the spatiotemporal 
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dynamics [13–15,33,45,46,60]. In spatial predator–prey models, the predator and prey species 
usually are assumed to move randomly in their habitat, that is modeled by diffusion equations. 
It has been recognized that in the spatial predator–prey interaction, in addition to the random 
diffusion of predator and prey, the spatiotemporal variations of the predator velocity are affected 
by the prey gradient [1,27,32]. Hence a reaction–diffusion predator–prey model with prey-taxis 
can be formulated as⎧⎪⎨

⎪⎩
∂u

∂t
= d1�u − ∇ · (χ(u)∇v) − au + bg(v)u, x ∈ �, t > 0,

∂v

∂t
= d2�v + k(v) − g(v)u, x ∈ �, t > 0.

(1.1)

Here u(x, t) and v(x, t) represent the densities of predator and prey at place x and time t , the 
functions −au + bg(v)u and k(v) − g(v)u provide typical predator–prey interaction kinetics, 
and the term −∇ · (χ(u)∇v) shows the tendency of predator moving toward the increasing prey 
gradient direction.

With some appropriate boundary conditions, the existence of weak solutions and uniqueness 
of solutions to (1.1) was studied by [1] (see also [7] for multi-species case), and the global 
existence and uniqueness of classical solutions in a smooth bounded domain � ⊂R

n (n = 1, 2, 3) 
were obtained in [42]. Pattern formation induced by the prey-taxis in (1.1) was discussed in [32]
for a variety of non-linear functional responses, linear and non-linear predator death terms, linear 
and non-linear prey-taxis sensitivities, and logistic growth or growth with an Allee effect for the 
prey. In [51], the existence, bounds and bifurcation of steady state solutions to (1.1) were studied. 
In these work, specific forms of functions χ(u), g(v) and k(v) were used.

In this present paper, we consider a general form of reaction–diffusion predator–prey system 
with prey-taxis as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= d1�u − χ∇ · (q(u)∇v) + cφ(u, v) − g(u), x ∈ �, t > 0,

∂v

∂t
= d2�v + f (v) − φ(u, v), x ∈ �, t > 0,

∂u(x, t)

∂ν
= ∂v(x, t)

∂ν
= 0, x ∈ ∂�, t > 0,

u(x,0) = u0(x) ≥ 0, v(x,0) = v0(x) ≥ 0, x ∈ �.

(1.2)

Here u(x, t) and v(x, t) represent the densities of predator and prey at location x ∈ � and time t ; 
the habitat of both species � is a bounded domain in Rn (n ≥ 1) with smooth boundary ∂�; for 
x ∈ ∂�, ν is the outer normal direction, and homogeneous Neumann boundary condition (no-flux 
boundary condition) is imposed for both u and v, so the system is a closed one. The random 
movement of two species is modeled by passive diffusion represented by Laplacian operator �; 
d1 and d2 are the diffusion coefficients of the predator and prey, respectively; the function f (v)

is the growth rate of prey, and the function g(u) represents the mortality rate of the predator; 
the function φ(u, v) measures the predation rate, and the positive parameter c is the conversion 
rate. In addition to the random movement, we also assume that the predators are attracted by 
the preys, so they move in the direction proportional to the negative gradient of prey population. 
That is modeled by a prey-taxis term −χ∇ · (q(u)∇v), where χ is the prey-taxis coefficient, and 
the movement is also predator density dependent which is indicated by the function q(u). With 
some rescaling and relabeling, (1.2) can be reduced to
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= �u − χ∇ · (q(u)∇v) + cφ(u, v) − g(u), x ∈ �, t > 0,

∂v

∂t
= d�v + f (v) − φ(u, v), x ∈ �, t > 0,

∂u(x, t)

∂ν
= ∂v(x, t)

∂ν
= 0, x ∈ ∂�, t > 0,

u(x,0) = u0(x) ≥ 0, v(x,0) = v0(x) ≥ 0, x ∈ �,

(1.3)

where χ, c are similar constants as before, d > 0 is the rescaled diffusion coefficient for the prey 
and the diffusion coefficient of the predator is now rescaled as 1. Throughout the rest of this 
paper, we shall deal with (1.3).

In (1.3), the prey growth rate f (v) is typically negative when v is large due to the crowding 
effect, and examples are

(logistic) f (v) = Dv
(

1 − v

N

)
, (Allee effect) f (v) = Dv

(
1 − v

N

)( v

G
− 1

)
, (1.4)

where D > 0, 0 < G < N ; the predator mortality rate g(u) is typically

(linear) g(u) = ku, (quadratic) g(u) = ku + lu2, (1.5)

where k, l > 0; the predation rate φ(u, v) is usually in a form of φ(u, v) = u�(v) where �(v) is 
the predator functional response function, which takes form like

(type I) �(v) = Bv, (type II) �(v) = Bv

h + v
,

(type III) �(v) = Bvm

hm + vm
, (Ivlev type) �(v) = B(1 − e−hv), (1.6)

where h, B > 0, m > 1; the sensitivity function q(u) can take the form

(linear) q(u) = u, (saturated) q(u) = u

1 + εum
, (Ricker) q(u) = ue−εu, (1.7)

where ε > 0, m ≥ 1.
For many properties of system (1.3), the specific algebraic forms of functions f (v), g(u), 

φ(u, v) and q(u) are not essential, so in this paper, we assume these functions satisfy the follow-
ing more general hypotheses:

(H ∗
0 ) The functions g, q : [0, ∞) → [0, ∞), f : [0, ∞) → R and φ : [0, ∞) × [0, ∞) → [0, ∞)

are continuously differentiable; f (0) = 0, g(0) = 0, q(0) = 0; φ(u, 0) = 0 and φ(0, v) = 0
for any u, v ≥ 0.

(H ∗
1 ) q(u) ≤ u for any u ≥ 0.

(H ∗
2 ) There exists B > 0 such that φ(u, v) ≤ Bu for any u, v ≥ 0.

(H ∗
3 ) There exists C > 0 such that g(u) ≥ Cu for any u, v ≥ 0.

(H ∗
4 ) There exists D > 0 such that f (v) ≤ Dv for any v ≥ 0, moreover, there exists N > 0 such 

that f (v) < 0 for v > N .
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Apparently the examples given in (1.4)–(1.7) satisfy these assumptions. Here q(u) is assumed 
to be less than u instead of Au for some A > 0 since A can be combined with χ in the equa-
tion (1.3).

Our main results on the global existence and boundedness of solutions of system (1.3) are as 
follows:

Theorem 1.1. Let � be a bounded domain in Rn (n ≥ 1) with smooth boundary ∂�. Suppose 
that d, c > 0, f (v), g(u), q(u), φ(u, v) satisfy (H ∗

0 )–(H ∗
4 ).

1. For any (u0, v0) ∈ [W 1,p(�)]2 where p > n, satisfying u0(x) ≥ 0, v0(x) ≥ 0 for x ∈ �, if χ
satisfies

0 ≤ χ ≤ d

3(n + 2)(d + 1)N0
, where N0 = max{||v0||∞,N}, (1.8)

then the system (1.3) possesses a unique global classical solution (u(x, t), v(x, t)) sat-
isfying (u, v) ∈ (C([0, ∞); W 1,p(�)) ∩ C2,1(� × (0, ∞)))2, and (u(x, t), v(x, t)) is uni-
formly bounded in � × (0, ∞), i.e. there exists a constant M1(u0, v0) > 0 such that 
||u(·, t)||∞ + ||v(·, t)||∞ ≤ M1(u0, v0) for all t ∈ [0, ∞).

2. There is a constant M2 > 0 independent of (u0, v0) ∈ [W 1,p(�)]2 (p > n) with u0(x) ≥ 0, 
v0(x) ≥ 0 for x ∈ �, such that if

0 ≤ χ ≤ d

3(n + 2)(d + 1)N
, (1.9)

then there exists T0 > 0 such that ||u(·, t)||∞ + ||v(·, t)||∞ ≤ M2 for all t ∈ (T0, ∞).

Note that the bound in Part 1 of Theorem 1.1 may depend on the initial condition but it holds 
for all t ∈ [0, ∞), and the bound in Part 2 is independent of initial conditions but it holds for large 
t only. The result in Part 2 is sometimes called “ultimately uniformly boundedness” of solutions, 
which is important for the asymptotical dynamics of (1.3).

Under some additional assumptions on the nonlinearities, we also obtain the existence of a 
global attractor and the uniform persistence of the system (1.3) for nonnegative initial values. 
More precisely we put the following hypotheses:

(H ∗
5 ) φu(0, 0) = φv(0, 0) = φv(0, N) = 0;

(H ∗
6 ) cφu(0, N) − g′(0) > 0;

(H ∗
7 ) f (N) = 0, f ′(0) > 0 and f (v)(v − N) < 0 for v ∈ (0, ∞)\{N};

(H ∗
8 ) there exists a nonnegative continuous function R(v) such that

|cφ(u, v) − g(u)| ≤ R(v)(1 + u), | (f (v) − φ(u, v))up| ≤ R(v)(1 + up+1),

for any u, v ≥ 0 and p > 0.

Then we have the following result on the existence of a global attractor and the uniform persis-
tence of solutions to (1.3) for nonnegative initial values:
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Theorem 1.2. Assume that all the assumptions in Theorem 1.1 are satisfied.

1. If in addition (H ∗
8 ) is satisfied, then there exists a compact global attractor for the solutions 

of (1.3) in the nonnegative cone of [W 1,p(�)]2 with p > n.
2. If in addition (H ∗

5 )–(H ∗
8 ) are satisfied, then the system (1.3) is uniformly persistent with all 

initial value (u0, v0) such that u0 ≥ (�≡)0 and v0 ≥ (�≡)0.

In Section 5 we will show several examples of the global existence, global attractor and 
uniform persistence for solutions of (1.3). For predator–prey systems, the uniform persistence 
property does not always hold as for some parameter ranges, and in that case, boundary equilib-
ria of system (1.3) can be stable ones.

Remark 1.3. We remark that results in Theorems 1.1 and 1.2 also hold if q(u) is replaced by 
q(u, v) satisfying qv(0, v) ≤ 0 and in (H ∗

1 ), q(u, v) ≤ u for any u, v ≥ 0. For example the case 
that q(u, v) = u/(1 + αv)2 as in [53] is covered by our result. But our result here does not cover 
the singular case that q(u, v) = u/v2 as in [16].

The global existence and boundedness result in Theorem 1.1 can be viewed as generalization 
of earlier result of Alikakos [2] which was in a similar setting but without prey-taxis (that is, 
χ = 0 in (1.3)). Our work here for the prey-taxis system (1.3) is motivated by recent extensive 
work on reaction–diffusion–chemotaxis systems. Chemotaxis is a chemosensitive movement of 
species which may detect and response to chemical substances in the environment. In the fol-
lowing models, we always assume no-flux boundary condition. The first chemotaxis model (now 
called the minimal model) was proposed by Keller and Segel [28],

⎧⎪⎨
⎪⎩

∂u

∂t
= �u − χ∇ · (u∇v), x ∈ �, t > 0,

∂v

∂t
= d�v − v + u, x ∈ �, t > 0,

(1.10)

which describes the aggregation process of the slime mold formation in Dictyostelium Discoid-
ium, where v is the concentration of a chemical signal, u is the concentration of cell. The 
remarkable characteristics of (1.10) is that solution blow-up may occur in a finite time and 
whether blow-up occur or not not only depends on the initial data, but also the dimension and 
geometry of the region � ⊆ R

n. It is known that when n = 1, all the solutions are global and 
bounded [38], while for n ≥ 2, finite time blow-up may happen [19,23,36,56]. On the other 
hand, when n ≥ 2, the global existence and boundedness of the solution were also obtained in 
[36,54] under certain assumptions. Similar global existence and boundedness results were also 
shown in [16,53] when the sensitivity constant χ in (1.10) is signal-dependent.

If the chemotaxis model also allows a growth term in the cell equation, then a more general 
model in form

⎧⎪⎨
⎪⎩

∂u

∂t
= �u − χ∇ · (u∇v) + f (u), x ∈ �, t > 0,

τ
∂v

∂t
= �v − v + u, x ∈ �, t > 0,

(1.11)
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has been studied. Winkler [55] (see also [52]) proved the global existence and boundedness of 
solutions to (1.11) when f (u) ≤ a −buα , a, b > 0 and α = 2 is of logistic type growth and � is a 
convex bounded smooth domain in Rn with arbitrary dimension n ≥ 2. Moreover the solution al-
ways approaches to a unique positive equilibrium when b is large [57]. On the other hand, it was 
also showed that blow-up is still possible for (1.11) if n and α are chosen in certain way [56]. 
Global existence, boundedness or blowup of solutions in more general quasilinear parabolic–
parabolic chemotaxis systems with nonlinear sensitivity functions and source term have been 
studied extensively, see for example, [11,12,25,26,34,44,48,49,59,61,62]. Various chemotaxis 
models and mathematical theory of Keller–Segel type models have been surveyed in [6,20–22].

We shall mention that a system in form of (1.3) has also been considered in the chemotaxis 
context. In [29,30], a model in the following form was proposed:

⎧⎪⎨
⎪⎩

∂u

∂t
= �u − χ∇ · (q(u)∇v) + cϕ(v)u − ku, x ∈ �, t > 0,

∂v

∂t
= d�v − ϕ(v)u, x ∈ �, t > 0,

(1.12)

where u and v are the concentrations of bacteria and substrate, respectively; the substrate con-
sumption rate is in a form of ϕ(v)u and ϕ(v) is assumed to be Michaelis–Menten (or Monod) 
kinetics. We notice that (1.12) is a special case of (1.3). The global existence and boundedness of 
solutions to (1.12) for spatial dimension n = 1 case under a nonlinear boundary condition and a 
nonlinear sensitivity function were proved in [50]. We will discuss the application of our general 
results proved here to (1.12) for higher dimensional domains in Section 5.

The uniform persistence result shown in Theorem 1.2 has not been proved for most sys-
tems with chemotaxis or prey-taxis. Here we follow the abstract formulation in [18], and also the 
implementation to reaction–diffusion systems in [9,10,41]. We comment that for chemotaxis sys-
tems like (1.11), the uniform persistence question is much easier as there is usually no non-trivial 
boundary dynamics when u ≡ 0 or v ≡ 0.

The organization of the remaining part of the paper is as follows. In Section 2 we recall some 
analytic tools and obtain some preliminary results. The global existence and uniform bounded-
ness of the solutions are proved in Section 3. In Section 4 we prove the existence of the global 
attractor and also the uniform persistence property. We demonstrate our results for several exam-
ples in Section 5. In this paper we use ‖ · ‖p as the norm of Lp(�), 1 ≤ p ≤ ∞; and ‖ · ‖m,p as 
the norm of Wm,p(�), m = 1, 2, 1 ≤ p ≤ ∞.

2. Local existence and preliminaries

First we state the local-in-time existence result of classical solutions of (1.3), which can be 
proved by using the abstract theory of quasilinear parabolic systems in [4].

Lemma 2.1. Assume that the initial data (u0, v0) ∈ (W 1,p(�))2 for p > n, u0 ≥ 0, v0 ≥ 0, and 
conditions (H ∗

0 ) and (H ∗
4 ) hold. Then

1. There exists a positive constant Tmax (the maximal existence time) such that the sys-
tem (1.3) has a unique nonnegative classical solution (u(x, t), v(x, t)) satisfying (u, v) ∈
(C([0, Tmax); W 1,p(�)) ∩ C2,1(� × (0, Tmax)))

2, and u, v satisfy

0 ≤ u(x, t), 0 ≤ v(x, t) ≤ max{||v0||∞,N} := N0, x ∈ �, 0 ≤ t < Tmax. (2.1)
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2. If for each T > 0 there exists a constant M0(T ) such that

||(u(t), v(t))||∞ ≤ M0(T ), 0 < t < min{T ,Tmax}, (2.2)

where M0(T ) is a constant depending on T and ||(u0, v0)||1,p , then Tmax = +∞.

Proof. Let ω = (u, v). Then the system (1.3) can be rewritten as

⎧⎪⎪⎨
⎪⎪⎩

ωt = ∇ · (a(ω)∇ω) + �(ω), x ∈ �, t > 0,
∂ω

∂ν
= 0, x ∈ ∂�, t > 0,

ω(·,0) = (u0, v0), x ∈ �,

(2.3)

where

a(ω) =
(

1 −χq(u)

0 d

)
, �(ω) =

(
cφ(u, v) − g(u)

f (v) − φ(u, v)

)
.

Then from [4, Theorems 14.4 and 14.6], we obtain the local existence of (u(x, t), v(x, t)). To 
prove (2.1), from (1.3), we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u

∂t
= �u − χq ′(u)∇u · ∇v − χq(u)�v + cφ(u, v) − g(u), x ∈ �, t > 0,

∂u(x, t)

∂ν
= 0, x ∈ ∂�, t > 0,

u(x,0) = u0(x) ≥ 0, x ∈ �.

(2.4)

Treating (2.4) as a scalar linear equation in u, and using (H ∗
0 ), we find that u = 0 is a lower 

solution to (2.4), therefore we can apply the maximum principle for parabolic equation to obtain 
that u(x, t) ≥ 0. Similarly we can obtain that v(x, t) ≥ 0. Also from (1.3) and u ≥ 0, we obtain 
that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂v

∂t
− d�v = f (v) − φ(u, v) ≤ f (v), x ∈ �, t > 0,

∂v(x, t)

∂ν
= 0, x ∈ ∂�, t > 0,

v(x,0) = v0(x), x ∈ �.

(2.5)

Using the comparison principle again, we obtain that v(x, t) ≤ max{||v0||∞, N} := N0, which 
proves Part 1. Since the system (2.3) is a lower triangular system, then Part 2 follows from [5, 
Theorem 15.5] so we have Tmax = ∞. �

Next we show that the solution u(x, t) is bounded in L1(�).
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Lemma 2.2. Assume that (H ∗
0 )–(H ∗

4 ) hold. Then there exists a constant C0 > 0 such that the 
first component of the solution of (1.3) satisfies the following estimate∫

�

u(x, t) ≤ C0 for all t ∈ (0, Tmax). (2.6)

Proof. Let 
∫
�

u(x, t) = Q1(t), 
∫
�

v(x, t) = Q2(t). From Lemma 2.1, v(x, t) is uniformly 

bounded. Then we have

(Q1 + cQ2)t = dQ1

dt
+ c

dQ2

dt
=

∫
�

ut + c

∫
�

vt = c

∫
�

f (v) −
∫
�

g(u)

≤ Dc

∫
�

v − C

∫
�

u = −CQ1 + DcQ2

= −C(Q1 + cQ2) + c(C + D)Q2. (2.7)

Since v(x, t) ≤ N0, then we have Q2(t) ≤ N0|�| and consequently∫
�

u(x, t)dx = Q1(t) < Q1(t) + cQ2(t)

≤ max

⎧⎨
⎩ (C + D)c

C
N0|�|,

∫
�

(u0 + cv0)

⎫⎬
⎭ := C0. � (2.8)

Next we recall some preliminary estimates which will be used in our proof. First we review 
some well-known estimates for the diffusion semigroup with homogeneous Neumann boundary 
conditions (see [24]). For p ∈ (1, ∞), let A denote the sectorial operator defined by

Au := −�u for u ∈ D(A) :=
{
ω ∈ W 2,p(�) : ∂ω

∂n
= 0 on ∂�

}
. (2.9)

Similarly, we let Adu = −d�u, which satisfies the same properties as A with a scaling. Then 
we only collect the properties of A here while the same properties for Ad will be applied in the 
following analysis.

Lemma 2.3. Assume that m ∈ {0, 1}, p ∈ [1, ∞] and q ∈ (1, ∞). Then there exists some positive 
constant C1, such that

||u||m,p ≤ C1||(A + 1)θu||q, (2.10)

for any u ∈ D((A + 1)θ ) where θ ∈ (0, 1) satisfies

m − n

p
< 2θ − n

q
.
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If in addition q ≥ p, then there exist C2 > 0 and γ > 0 such that for any u ∈ Lp(�),

||(A + 1)θ e−t (A+1)u||q ≤ C2t
−θ− n

2 ( 1
p
− 1

q
)
e−γ t ||u||p, (2.11)

where the associated diffusion semigroup {e−t (A+1)}t≥0 maps Lp(�) into D((A + 1)θ ). More-
over, for any p ∈ (1, ∞) and ε > 0, there exist C3 > 0 and μ > 0 such that

||(A + 1)θ e−tA∇ · u||p ≤ C3t
−θ− 1

2 −εe−μt ||u||p (2.12)

is valid for all Rn-valued u ∈ Lp(�).

The following Gagliardo–Nirenberg interpolation inequality also plays a key role in our proof 
(see [24,37] for detail).

Lemma 2.4. There exists a constant C4 > 0 such that for all u ∈ W 1,q (�),

||u||p ≤ C4||u||η1,q ||u||1−η
m , (2.13)

where p, q ≥ 1 which satisfies p(n − q) < nq , m ∈ (0, p) with

η =
n
m

− n
p

n
m

+ 1 − n
q

∈ (0,1).

We will also use the following variant of the Poincaré’s inequality [24].

Lemma 2.5. There exists a constant C5 > 0 such that for all u ∈ W 1,q (�),

||u||1,p ≤ C5(||∇u||p + ||u||q), (2.14)

where p > 1 and q > 0.

Finally we recall the following elementary inequality [58].

Lemma 2.6. Assume that y(t) ≥ 0 satisfy

{
y′(t) ≤ −a1y

b(t) + a2y(t) + a3, t > 0,

y(0) = y0,
(2.15)

where a1, a2, a3 > 0 and b > 1. Then there exist constants c1(y0) and c2(a1, a2, a3, b) such that

y(t) ≤ max{c1(y0), c2(a1, a2, a3, b)}. (2.16)



5856 S. Wu et al. / J. Differential Equations 260 (2016) 5847–5874

3. Global existence and boundedness

In this section we prove the global existence and boundedness of solutions in Theorem 1.1. 
The first step towards the main result is to establish a uniform bound of u(x, t) in Ln+2(�). We 
will use a weight function ϕ(v) similar to the one in [43,53] in the energy estimate.

Lemma 3.1. Assume that (H ∗
0 )–(H ∗

4 ) are satisfied and χ satisfies (1.8), and let (u(x, t), v(x, t))
be a solution of (1.3), then there exists a positive constant E > 0 such that

||u(·, t)||n+2 ≤ E for t ∈ (0, Tmax). (3.1)

Proof. We define constants

k := n + 2, β :=
√

(k − 1)d

6k
· 1

(d + 1)N0
, (3.2)

and a weight function

ϕ(v) := e(βv)2
, 0 ≤ v ≤ N0, (3.3)

then we have

1 ≤ ϕ(v) ≤ e(βN0)
2 := h > 1, 0 ≤ v ≤ N0. (3.4)

From the system (1.3), by (H ∗
0 )–(H ∗

4 ), we obtain

1

k

d

dt

∫
�

ukϕ(v) =
∫
�

uk−1ϕ(v)ut + 1

k

∫
�

ukϕ′(v)vt

=
∫
�

uk−1ϕ(v)�u −
∫
�

uk−1ϕ(v)χ∇ · (q(u)∇v) + c

∫
�

uk−1ϕ(v)φ(u, v) −
∫
�

uk−1ϕ(v)g(u)

+ d

k

∫
�

ukϕ′(v)�v + 1

k

∫
�

ukϕ′(v)f (v) − 1

k

∫
�

ukϕ′(v)φ(u, v)

≤ −(k − 1)

∫
�

uk−2ϕ(v)|∇u|2 −
∫
�

uk−1ϕ′(v)∇u · ∇v + χ(k − 1)

∫
�

uk−2q(u)ϕ(v)∇u · ∇v

+ χ

∫
�

uk−1q(u)ϕ′(v)|∇v|2 − d

k

∫
�

ukϕ′′(v)|∇v|2 + Bc

∫
�

ukϕ(v) − d

∫
�

uk−1ϕ′(v)∇u · ∇v

+ 2β2 D

k

∫
�

ukϕ(v)v2,

which implies that
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1

k

d

dt

∫
�

ukϕ(v) + (k − 1)

∫
�

uk−2ϕ(v)|∇u|2 + d

k

∫
�

ukϕ′′(v)|∇v|2

≤ −(d + 1)

∫
�

uk−1ϕ′(v)∇u · ∇v + χ(k − 1)

∫
�

uk−2q(u)ϕ(v)∇u · ∇v

+ χ

∫
�

ukϕ′(v)|∇v|2 + Bc

∫
�

ukϕ(v) + 2β2 D

k

∫
�

ukϕ(v)v2. (3.5)

By using Young’s inequality, we obtain

− (d + 1)

∫
�

uk−1ϕ′(v)∇u · ∇v

≤ k − 1

4

∫
�

uk−2ϕ(v)|∇u|2 + (d + 1)2

k − 1

∫
�

uk ϕ′2(v)

ϕ(v)
|∇v|2 (3.6)

and

χ(k − 1)

∫
�

uk−2q(u)ϕ(v)∇u · ∇v

≤ k − 1

4

∫
�

uk−3q(u)ϕ(v)|∇u|2 + χ2(k − 1)

∫
�

uk−1q(u)ϕ(v)|∇v|2

≤ k − 1

4

∫
�

uk−2ϕ(v)|∇u|2 + χ2(k − 1)

∫
�

ukϕ(v)|∇v|2. (3.7)

Substituting (3.6) and (3.7) into (3.5), we have

1

k

d

dt

∫
�

ukϕ(v) + k − 1

2

∫
�

uk−2ϕ(v)|∇u|2 + d

k

∫
�

ukϕ′′(v)|∇v|2

≤ (d + 1)2

k − 1

∫
�

uk ϕ′2(v)

ϕ(v)
|∇v|2 + χ2(k − 1)

∫
�

ukϕ(v)|∇v|2

+ χ

∫
�

ukϕ′(v)|∇v|2 + Bc

∫
�

ukϕ(v) + 2β2N2
0
D

k

∫
�

ukϕ(v). (3.8)

Next we do some computations to show that the first three terms on the right-hand side of (3.8)
are dominated by 

∫
�

ukϕ′′(v)|∇v|2. For s ≥ 0, define
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j1(s) = 4
(d + 1)2

k − 1
β4s2ϕ(s), j2(s) = χ2(k − 1)ϕ(s),

j3(s) = 2χβ2sϕ(s), j4(s) = 2
d

k
β2ϕ(s) + 4

d

k
β4s2ϕ(s). (3.9)

By a direct calculation, we have that, for 0 ≤ s ≤ N0,

j1(s)

(1/3)j4(s)
≤ 6k

k − 1

(d + 1)2

d
(βs)2 ≤ 6k

k − 1

(d + 1)2

d
(βN0)

2 = 1, (3.10)

j2(s)

(1/3)j4(s)
≤ 3k(k − 1)χ2

2dβ2
≤ 3k(k − 1)

2d

6k(d + 1)2N0
2

(k − 1)d

d2

9k2N2
0 (d + 1)

2
≤ 1, (3.11)

and

j3(s)

(1/3)j4(s)
≤ 3kχs

d
≤ 3N0k

d

d

3(d + 1)kN0
= 1

d + 1
< 1, (3.12)

where β and χ satisfy (3.2) and (1.8) respectively. Combining (3.10), (3.11) and (3.12), we obtain 
that

(d + 1)2

(k − 1)

∫
�

uk ϕ′2(v)

ϕ(v)
|∇v|2 + χ2(k − 1)

∫
�

ukϕ(v)|∇v|2 + χ

∫
�

ukϕ′(v)|∇v|2

≤ d

k

∫
�

ukϕ′′(v)|∇v|2. (3.13)

Inserting (3.13) into (3.8), we have

1

k

d

dt

∫
�

ukϕ(v) + k − 1

2

∫
�

uk−2ϕ(v)|∇u|2

≤
(

Bc + 2β2 DN2
0

k

)∫
�

ukϕ(v) := C6

∫
�

ukϕ(v), (3.14)

where C6 = Bc + 2β2DN2
0 k−1. By Lemma 2.4, Lemma 2.5, (2.6) and (3.4), we find that
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∫
�

ukϕ(v) ≤ h

∫
�

uk = h

∣∣∣∣∣∣uk
2

∣∣∣∣∣∣2

2
≤ hC4

∣∣∣∣∣∣uk
2

∣∣∣∣∣∣2η

1,2

∣∣∣∣∣∣uk
2

∣∣∣∣∣∣2(1−η)

2
k

≤ hC4

(
C5

(
2

k

))2η (∣∣∣∣∣∣∇u
k
2

∣∣∣∣∣∣
2
+

∣∣∣∣∣∣uk
2

∣∣∣∣∣∣ 2
k

)2η ∣∣∣∣∣∣uk
2

∣∣∣∣∣∣2(1−η)

2
k

= hC4

(
C5

(
2

k

))2η (∣∣∣∣∣∣∇u
k
2

∣∣∣∣∣∣
2
+ ||u||

k
2
1

)2η

||u||k(1−η)
1

≤ C7

(∣∣∣∣∣∣∇u
k
2

∣∣∣∣∣∣2

2
+ 1

)η

(3.15)

hold with some positive constant

η =
kn
2 − n

2
kn
2 + 1 − n

2

∈ (0,1).

Now from (3.4) and (3.15), we have

∫
�

uk−2ϕ(v)|∇u|2 ≥
∫
�

uk−2|∇u|2 = 4

k2

∫
�

∣∣∣∇u
k
2

∣∣∣2 ≥ 4

k2C
1
η

7

⎛
⎝∫

�

ukϕ(v)

⎞
⎠

1
η

− 4

k2
. (3.16)

Hence from (3.14) and (3.16) we obtain

1

k

d

dt

∫
�

ukϕ(v) ≤ −2(k − 1)

k2C
1
η

7

⎛
⎝∫

�

ukϕ(v)

⎞
⎠

1
η

+ C6

∫
�

ukϕ(v) + 2(k − 1)

k2
(3.17)

for all t ∈ (0, Tmax), where 1/η > 1. By using Lemma 2.6 and (3.4), we conclude that there exists 
E > 0, such that

||u(·, t)||k ≤
⎛
⎝∫

�

ukϕ(v)

⎞
⎠

1/k

≤ E for t ∈ (0, Tmax), (3.18)

which is the desired result. �
Next we establish the L∞ bound of u(x, t) using the result in Lemma 3.1.

Lemma 3.2. Assume that (H ∗
0 )–(H ∗

4 ) are satisfied and χ satisfies (1.8), and let (u(x, t), v(x, t))
be a solution of (1.3). Then there exists a positive constant I > 0 such that

||u(·, t)||∞ ≤ I for t ∈ (0, Tmax). (3.19)
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Proof. We use semigroup arguments (see for example [24,53,54]) to obtain the L∞-bound of u. 
First we show that for any τ ∈ (0, Tmax), there exists a constant F(τ) > 0 such that

||v(·, t)||1,∞ ≤ F(τ) for all t ∈ (τ, Tmax). (3.20)

Let τ ∈ (0, Tmax) be given such that τ < 1, and choose q := n + 2 and θ ∈
(

1

2
(1 + n

q
),1

)
. The 

second equation of (1.3) can be rewritten as

vt = d�v − v + ϕ(u, v), (3.21)

where ϕ(u, v) = f (v) + v −φ(u, v). Then from the variation of constants formula for (3.21), we 
have

v(·, t) = e−t (Ad+1)v0 +
t∫

0

e−(t−s)(Ad+1)ϕ(u(·, t), v(·, t))ds.

From (2.10) and (2.11) we have

||v(·, t)||1,∞ ≤ C1||(Ad + 1)θ v(·, t)||q

≤ C1

t∫
0

(t − s)−θ e−γ (t−s)||ϕ(u(·, t), v(·, t))||qds + C1t
−θ e−γ t ||v0||q

≤ C1

t∫
0

(t − s)−θ e−γ (t−s)||f (v(·, t)) + v(·, t) − φ(u(·, t), v(·, t))||qds + C1t
−θ e−γ t ||v0||q

≤ C1

t∫
0

(t − s)−θ e−γ (t−s)
(||f (v(·, t))||q + ||v(·, t)||q + ||φ(u(·, t), v(·, t))||q

)
ds

+ C1t
−θ e−γ t ||v0||q

≤ C1

t∫
0

(t − s)−θ e−γ (t−s)
(||f (v(·, t))||q + ||v(·, t)||q + ||u(·, t)||q

)
ds + C1t

−θ e−γ t ||v0||q

≤ C1

t∫
0

(t − s)−θ e−γ (t−s)
(||v(·, t)||∞ + ||u(·, t)||q

)
ds + C1t

−θ e−γ t ||v0||q

≤ C1t
−θ + C1

t∫
0

(t − s)−θ e−γ (t−s)ds

≤ C1t
−θ + C1

∞∫
0

σ−θ e−γ σ dσ

≤ C1(τ
−θ + 1) := F(τ) for all t ∈ (τ, Tmax), (3.22)
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where C1 denotes a generic constant that may vary from line to line and γ > 0. Next, by using 
the variation of constants formula, we have

u(·, t) = e−t (A+1)u0 − χ

t∫
0

e−(t−s)(A+1)∇ · (q(u(·, t))∇v(·, t))

+
t∫

0

e−(t−s)(A+1)ψ(u(·, t), v(·, t))ds

:= U1 + U2 + U3, (3.23)

where ψ(u(·, t), v(·, t)) = cφ(u(·, t), v(·, t)) + u(·, t) − g(u(·, t)). Then we estimate the 
L∞-bound for each of U1, U2 and U3 separately. For U1, we find that

||U1(·, t)||∞ ≤ C8τ
−κe−εt ||u0||∞ ≤ C8τ

−κ ||u0||∞ for all t ∈ (τ, Tmax), (3.24)

where κ ∈
(

n

2q
,1

)
and ε > 0.

For U2, set m = 0, q := n + 2 and p = ∞ in Lemma 2.3, so we can choose ρ ∈
(

n

2q
,

1

2

)
. In 

this case, we have ε ∈ (0, 12 − ρ). Then there exist positive constants C1 and μ such that

||U2(·, t)||∞ ≤ C1||(A + 1)ρU2(·, t)||q

≤ χC1

t∫
0

||(A + 1)ρe−(t−s)(A+1)∇ · (q(u(·, t))∇v(·, t))||qds

≤ χC1

t∫
0

e−(t−s)||(A + 1)ρe−(t−s)A∇ · (q(u(·, t))∇v(·, t))||qds

≤ C9

t∫
0

(t − s)−ρ− 1
2 −εe−(μ+1)(t−s)||q(u(·, t))∇v(·, t)||qds (3.25)

for all t ∈ (0, Tmax). From (3.22), we have

||∇v(·, t)||∞ ≤ F(τ) for all t ∈ (τ, Tmax). (3.26)

Hence, there exists C10 > 0 such that

||q(u(·, t))∇v(·, t)||q ≤ C10 for all t ∈ (τ, Tmax). (3.27)

Therefore, we obtain that for all t ∈ (τ, Tmax),
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||U2(·, t)||∞ ≤ C10C11

t∫
0

(t − s)−ρ− 1
2 −εe−(μ+1)(t−s)ds

≤ C10C11

∞∫
0

σ−ρ− 1
2 −εe−(μ+1)σ dσ ≤ C12�

(
1

2
− ρ − ε

)
, (3.28)

where �(x) is the Gamma function and μ > 0. Since 
1

2
−ρ −ε > 0, then �( 1

2 −ρ −ε) is positive 

and real.
Finally, for U3, by using (2.10) and (2.11), let m = 1, q := n + 2 and p ∈ (n, ∞], so we can 

choose δ ∈
(

1

2
(1 − n

p
+ n

q
),1

)
. Then we have

||U3(·, t)||1,p ≤ C1||(A + 1)δU3(·, t)||q

≤ C13

t∫
0

(t − s)−δe−α(t−s)||ψ(u(·, t), v(·, t))||qds

≤ C13

t∫
0

(t − s)−δe−α(t−s)||cφ(u(·, t), v(·, t)) + u(·, t) − g(u(·, t))||qds

≤ C13

t∫
0

(t − s)−δe−α(t−s)||u(·, t)||qds

≤ C13

t∫
0

(t − s)−δe−α(t−s)ds

≤ C13

∞∫
0

σ δe−ασ dσ ≤ C13�(1 − δ) for all t ∈ (τ, Tmax), (3.29)

where �(1 − δ) > 0 for 1 − δ > 0, α > 0 and C13 denotes a generic constant that may vary from 
line to line. For p > n, from the Sobolev embedding theorem, we have

||U3(·, t)||∞ ≤ C14�(1 − δ) for all t ∈ (τ, Tmax). (3.30)

Therefore, by (3.24), (3.28) and (3.30), we obtain that ||u(·, t)||∞ is bounded for t ∈ (τ, Tmax). 
Along with Lemma 2.1 part 2, this proves that Tmax = ∞ and therefore (u(x, t), v(x, t)) is 
bounded for (x, t) ∈ � × (0, ∞). �

Now we complete the proof of Theorem 1.1.
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Proof of Theorem 1.1. For the first part, we obtain the L∞ boundedness of v(·, t) from Part 1 
of Lemma 2.1, and the one for u(·, t) from Lemma 3.2. Now from Part 2 of Lemma 2.1, we 
conclude that Tmax = ∞ and ||u(·, t)||∞ + ||v(·, t)||∞ ≤ M1(u0, v0) for all t ∈ [0, ∞).

For the second part, we notice that in the proof of Lemma 2.1, for any positive constant ε0, 
there exists T1 > 0 and such that

||v(·, t)||L∞(�) ≤ N + ε0 for all t ∈ (T1,∞). (3.31)

Hence we can replace N0 in (2.1) by N + ε0 for t ∈ (T1, ∞). Similarly in Lemma 2.2, C0 can 

be chosen to be independent of (u0, v0) so 
∫
�

u(·, t) ≤ C0 for t ∈ (T2, ∞) for some T2 > T1. 

Again in Lemma 3.1, we notice that one can replace N0 by N + ε0 in the proof and also using 
the assumption for χ in (1.8) by the one in (1.9), so there exists T3 > T2 such that

||u(·, t)||n+2 ≤ E0 for all t ∈ (T3,∞), (3.32)

where E0 is independent of (u0, v0). From (3.24), we know that there exists T4 > T3 such that

U1(·, t) ≤ ε1 for all t ∈ (T4,∞), (3.33)

where ε1 is independent of (u0, v0) and U1 is the function defined in (3.23). Now from the proof 
of Lemmas 3.1 and 3.2, let T0 := T4, there exists a constant M2 such that

||u(·, t)||∞ + ||v(·, t)||∞ ≤ M2 for all t ∈ (T0,∞), (3.34)

where M2 is independent of (u0, v0). This completes the proof of Theorem 1.1. �
4. Attractor and uniform persistence

In this section we first prove the existence of a compact attractor for the dynamics of (1.3), and 
secondly we prove the uniform persistence of system (1.3) under some additional assumptions. 
First we recall some definitions from, for example, [9,17]. Assume that (Z, d) is a complete 
metric space with metric d . Let R+ = [0, ∞). If π : Z ×R

+ → Z is a continuous mapping and 
satisfies

(i) π(u, 0) = u for all u ∈ Z,
(ii) π(π(u, t), s) = π(u, t + s) for all u ∈ Z and s, t ∈R

+,

then the triple (Z, π, R+) is said to be a continuous semiflow. First we recall the definition of 
dissipative system and attractor.

Definition 4.1. Let (Z, π, R+) be a continuous semiflow. The semiflow is said to be point dissi-
pative if there is a bounded subset U of Z such that

lim
t→∞d(π(u, t),U) = 0, for all u ∈ Z. (4.1)

Moreover if U is a compact invariant set for the semiflow and
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lim sup
t→∞

d(π(V, t),U) = 0 (4.2)

for any bounded subset V of Z, then U is said to be the global attractor of the semiflow.

We will use [31, Theorem 2.2] to obtain a compact global attractor of the system (1.3). In 
order to get our result, we review the definition of ultimately uniformly bounded functions (see 
[31,41]).

Definition 4.2. Let Z be a Banach space with norm || · ||Z , and let Z+ be a closed subset of Z. 
Let σ : [0, a) × Z+ → R be a function where a ∈ (0, ∞]. If there exists a continuous function 
C0 :R+ →R

+ such that

|σ(t, x)| ≤ C0(||x||Z) for all (t, x) ∈ [0, a) × Z+, (4.3)

and if a = ∞, then there exists a positive constant C∞ such that

lim sup
t→∞

|σ(t, x)| ≤ C∞ for all x ∈ Z+, (4.4)

then we say that σ is ultimately uniformly bounded with respect to Z+.

Let Y := [W 1,p(�)]2 := W 1,p(�) × W 1,p(�) be the vector Sobolev space with norm

||(u, v)||Y = ||u||1,p + ||v||1,p. (4.5)

We also define Y+ := [W 1,p
+ (�)]2 = {(u, v) ∈ Y : u ≥ 0, v ≥ 0}, which is the nonnegative cone 

in Y . Here we always assume that p > n. Let P be the set of ultimately uniformly bounded 
functions with respect to Y+.

In order to obtain the compact global attractor of (1.3), we recall Theorem 2.2 in [31] and 
Theorem 3.1 of [8].

Theorem 4.3. Let � be a smooth bounded domain of Rn, and assume that (H ∗
0 )–(H ∗

4 ) and 
(H ∗

8 ) hold. Let (u(·, t), v(·, t)) be the unique solution to (1.3) for t ∈ (0, ∞). If ||v(·, t)||∞ and 
||u(·, t)||n are in P , then there exists ν > 1 such that

||v(·, t)||Cν(�̄), ||u(·, t)||Cν(�̄) ∈P . (4.6)

Theorem 4.4. Suppose that (Z, d) is a complete metric space with metric d , and π : Z×R
+ → Z

is a continuous semiflow which is point dissipative. Assume that there is a t0 ≥ 0 such that π(·, t)
is compact for t > t0. Then there exists a non-empty global attractor A.

Now by using the result in Part 2 of Theorem 1.1 and Theorem 4.3, we obtain the following 
result about the existence of global attractor of (1.3) in Y+.

Theorem 4.5. Let � be a smooth bounded domain of Rn, and assume that conditions (H ∗
0 )–(H ∗

4 ) 
and (H ∗

8 ) hold. Let (u(·, t), v(·, t)) be the unique solution to (1.3) with its initial conditions in Y+. 
Then there exists ν > 1 such that
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||v(·, t)||Cν(�̄), ||u(·, t)||Cν(�̄) ∈P . (4.7)

Furthermore the system (1.3) defines a continuous semiflow on Y+ and this semiflow possesses a 
compact global attractor.

Proof. From Part 1 of Theorem 1.1, we obtain the global existence of solution of (1.3). Accord-
ing to [3, Theorem 1], the system (1.3) generates a semiflow π(·, t) on Z = Y+. From Part 2 
of Theorem 1.1, we obtain that ||v(·, t)||∞ and ||u(·, t)||n are in P . Then from Theorem 4.3, 
(4.7) holds. Since Cν(�̄) is embedded compactly into W 1,p(�), then [Cν(�̄)]2 is embedded 
compactly into Y+. Thus (4.7) shows that the semiflow is point dissipative, and the operator 
π(·, t) is compact on Y+ also because of the compact embedding. Hence, in a complete metric 
space Z = Y+, the semiflow π on Y+ is point dissipative and π(·, t) is compact for any t > 0, 
then from Theorem 4.4, a global attractor for the semiflow generated by (1.3) exists. �

Theorem 4.5 proves the result in Part 1 of Theorem 1.2. Next we consider the uniform persis-
tence property of the system (1.3). First we recall the definition of uniform persistence [18].

Definition 4.6. Suppose that (Z, d) is a complete metric space with metric d , and π : Z ×
R

+ → Z is a continuous semiflow. Assume that Z = Z0 ∪ ∂Z0, Z0 is the interior of Z and 
is open, ∂Z0 is the boundary of Z0, Z0 and ∂Z0 are forward invariant under the semiflow. Then 
(Z, π, R+) is said to be uniformly persistent if there exists a bounded subset U that is bounded 
away from ∂Z0 such that

lim
t→∞d(π(v, t),U) = 0, for any v ∈ Z0. (4.8)

And we also recall the following definitions which will be useful in our proof [10,18].

Definition 4.7. Suppose that (Z, d) is a complete metric space with metric d , and π : Z ×
R

+ → Z is a continuous semiflow. Let ω(x) and α(x) be the ω-limit set and the α-limit set 
of a point x under π (see definitions in [18]).

1. If S is a subset of Z, then we define ω(S) =
⋃
x∈S

ω(x).

2. If U is a compact invariant subset of Z under π , then we define the stable set of U which is 
defined by

Ws(U) = {x : x ∈ Z,ω(x) �= ∅,ω(x) ⊆ U}, (4.9)

and the unstable set of U defined by

Wu(U) = {x : x ∈ Z,α(x) �= ∅, α(x) ⊆ U}. (4.10)

3. Let J be a non-empty invariant set under π , which is said to be an isolated invariant set if it 
has a neighborhood O , such that J is the maximal invariant subset of O .

4. Assume that Z = Z0 ∪ ∂Z0, Z0 is the interior of Z and is open, ∂Z0 is the boundary of Z0, 
Z0 and ∂Z0 are forward invariant under the semiflow. Let M be an invariant set for π∂ (that 
is π restricted to ∂Z0). We say that the set ω(M) is isolated if there exists a finite covering 
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U =
k⋃

i=1

Ui of M , where Ui (1 ≤ i ≤ k) are pairwise disjoint compact invariant sets for π∂ , 

which are also isolated invariant sets for π . And U is called an isolated covering of ω(M).
5. Let U1, U2 be isolated invariant subsets under π . Then U1 is said to be chained to U2, and 

we write U1 → U2, if there exists an x /∈ U1 ∪ U2 such that x ∈ Wu(U1) 
⋂

Ws(U2). A finite 
sequence U1, U2, · · · , Uk of isolated invariant sets forms a chain if U1 → U2 → ·· · → Uk , 
then the chain is called a cycle if U1 = Uk . The set ω(M) is acyclic if there is an isolated 

covering U =
k⋃

i=1

Ui of ω(M) such that no subset of {Ui : 1 ≤ i ≤ k} forms a cycle.

As pointed out in [9,10], if a global attractor of π exists, then it is sufficient to consider the 
dynamics near the attractor. Let A be the global attractor of π . We define

X̃ = π(B(A, ε), t0), (4.11)

where

B(A, ε) = {y ∈ Z : d(y,A) < ε}, (4.12)

then define X by

X = π(X̃, t1), M = X
⋂

∂Z0, (4.13)

where t1 > t0 > 0. Then X and M are compact subsets of Z, and X, M and X\M are forward 
invariant under π .

With these definitions, we recall the following result in [10,18,41]:

Theorem 4.8. Suppose that the conditions in Theorem 4.4 are satisfied, and let X, M be defined 
as in (4.11)–(4.13). In addition assume that

1. ω(M) is isolated and acyclic;
2. Ws(Ui) 

⋂
(X\M) = ∅ for 1 ≤ i ≤ k.

Then π is uniformly persistent.

Now we apply the definitions above and Theorem 4.8 to (1.3). Our basic strategy is similar 
to the one in [41]. Again let π be the semiflow on Z = Y+ generated by (1.3), and let A be 
the global attractor of π , which was shown to exist in Theorem 4.5. Define Y 0+ to be the set of 
functions (u, v) ∈ Y+ which are strictly positive in �̄, and define ∂Y 0+ = Y+\Y 0+, which is the 
boundary of Y 0+. Let X, M be defined as in (4.11)–(4.13) with Z = Y+ and ∂Z0 = ∂Y 0+. From 
the strong maximum principle of parabolic equations, for each element (u, v) in M , at least one 
component is identically zero.

Now to apply Theorem 4.8, we first study the dynamics of (1.3) on M . For that purpose, 
we prove the following lemma.
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Lemma 4.9. Assume that conditions (H ∗
0 )–(H ∗

4 ) and (H ∗
7 )–(H ∗

8 ) hold. Suppose that (u(x, t), 
v(x, t)) is the solution of (1.3).

1. If u0(x) ≡ 0 and v0(x) ≥ (�≡)0, then ω((0, v0)) = {(0, N)}.
2. If v0(x) ≡ 0 and u0(x) ≥ 0, then ω((u0, 0)) = {(0, 0)}.

Proof. 1. First we consider the case that u0(x) ≡ 0 and v0(x) ≥ (�≡)0. From u0(x) ≡ 0, we have 
u(x, t) ≡ 0, and thus system (1.3) is reduced to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂v

∂t
= d�v + f (v), x ∈ �, t > 0,

∂v(x, t)

∂ν
= 0, x ∈ ∂�, t > 0,

v(x,0) = v0(x) ≥ 0, x ∈ �.

(4.14)

Assume that v(x, t) is the solution of (4.14). From v0(x) ≥ (�≡)0 and the strong maximum princi-
ple, there exists a constant t0 > 0 such that v(x, t0) > 0 for x ∈ �̄. Let vm = minx∈�̄ v(x, κ) > 0
and let vM = maxx∈�̄ v(x, κ) > 0. Assume that v(x, t) and v(x, t) are the solutions of (4.14)
satisfying v(x, t) = vm and v(x, t) = vM . Then by the comparison principle, we have

v(x, t) ≤ v(x, t) ≤ v(x, t). (4.15)

From (H ∗
7 ) we know that

lim
t→∞v(x, t) = lim

t→∞v(x, t) = N, uniformly for x ∈ �̄. (4.16)

Therefore from (4.15) and (4.16), we obtain ω((0, v0)) = {(0, N)}.
2. Next we consider the case that v0(x) ≡ 0 and u0(x) ≥ 0. From v0(x) ≡ 0, we have 

v(x, t) ≡ 0, and system (1.3) is reduced to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u

∂t
= �u − g(u), x ∈ �, t > 0,

∂u(x, t)

∂ν
= 0, x ∈ ∂�, t > 0,

u(x,0) = u0(x) ≥ 0, x ∈ �.

(4.17)

Assume that u(x, t) is the solution of (4.17). If u0(x) ≡ 0, then obviously u(x, t) ≡ 0. If uM =
maxx∈�̄ u0(x) > 0, then we consider the following problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u

∂t
= �u − Cu, x ∈ �, t > 0,

∂u(x, t)

∂ν
= 0, x ∈ ∂�, t > 0,

u(x,0) = uM > 0, x ∈ �.

(4.18)

From (H ∗
3 ) and the comparison principle, we have
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0 ≤ u(x, t) ≤ u(x, t) = uMe−Ct , (4.19)

which implies that ω((u0, 0)) = {(0, 0)}. �
Now we can complete the proof of Theorem 1.2 by proving the uniform persistence.

Proof of Part 2 of Theorem 1.2. From Theorem 4.5 or Part 1 of Theorem 1.2, a global attractor 
exists for the semiflow generated by the solutions of (1.3). Hence the sets X and M can be defined 
as in (4.11)–(4.13) with Z = Y+ and ∂Z0 = ∂Y 0+. From Lemma 4.9, we know that an isolated 
covering of ω(M) is U = ⋃2

i=1 Ui = {(0, 0), (0, N)} where U1 = {(0, 0)} and U2 = {(0, N)}. 
Let x = (0, N/2). Then x /∈ U1

⋃
U2 and x ∈ Wu(U1) 

⋂
Ws(U2). So U1 → U2.

To prove that U2 is not chained to U1 (so ω(M) is acyclic), we prove that

(i) Ws(U1) = Ws((0, 0)) = W
1,p
+ (�) × {0} = V0, and

(ii) Wu(U2) = Wu((0, N)) satisfies Wu((0, N)) 
⋂

V0 = ∅.

For (i), we have proved in Lemma 4.9 that V0 ⊆ Ws(U1). Assume that there exist (u0, v0) /∈ V0
and (u0, v0) ∈ Ws(U1). Then v0(x) �≡ 0. Since (u0, v0) ∈ Ws(U1), then

lim
t→∞(‖u(·, t)‖1,p + ‖v(·, t)‖1,p) = 0. (4.20)

From (H ∗
5 ) and (H ∗

7 ), we know that f ′(0) − φv(0, 0) > 0, hence there exist δ > 0 and μ1 > 0
such that f ′(v) − φv(u, v) > μ1 > 0 for any (u, v) ∈ R

2 satisfying |u| + |v| < δ. From (4.20), 
there exists a t1 > 0 such that ‖u(·, t)‖1,p + ‖v(·, t)‖1,p ≤ δ for all t > t1. Integrating the second 
equation of (1.3) in x over �, and using the Mean Value Theorem, we have for t > t1,

d

dt

∫
�

v =
∫
�

(f (v) − φ(u, v)) =
∫
�

[f ′(ζ(u)) − φv(u, ζ(u))]v > μ1

∫
�

v, (4.21)

where 0 ≤ ζ(u) ≤ v. But (4.21) contradicts with (4.20). Hence Ws(U1) = Ws((0, 0)) = V0. This 
proves (i). For (ii), if (u0, v0) ∈ V0, then v0 ≡ 0. Then v(x, t) ≡ 0 for t ∈ R, which shows that 
v(x, t) → 0 as t → ∞ so (u0, v0) /∈ Wu((0, N)). Therefore Wu((0, N)) 

⋂
V0 = ∅. From (i) 

and (ii), U2 is not chained to U1 so ω(M) is acyclic.
Finally we prove that Ws(Ui) 

⋂
(X\M) = ∅ for i = 1, 2. First we show that Ws((0, N)) 

⋂
(X\M) = ∅. Suppose there exists (u0, v0) ∈ Ws((0, N)) 

⋂
(X\M) such that

lim
t→∞(‖u(·, t)‖1,p + ‖v(·, t) − N‖1,p) = 0. (4.22)

From (H ∗
6 ), we know that cφu(0, N) − g′(0) > 0, hence there exist η > 0 and μ2 > 0 such that 

cφu(u, v) − g′(u) > μ2 > 0 for any (u, v) ∈ R
2 satisfying |u| + |v − N | < η. From (4.22), there 

exists t2 > 0 such that ‖u(·, t)‖1,p + ‖v(·, t) − N‖1,p ≤ η for all t > t2. Integrating the first 
equation of (1.3) in x over �, and using the mean value theorem, we have for t > t2,

d

dt

∫
�

u =
∫
�

(cφ(u, v) − g(u)) =
∫
�

[cφu(ξ(v), v) − g′(ξ(v))]u > μ2

∫
�

u, (4.23)
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where 0 ≤ ξ(v) ≤ u. That is a contradiction with (4.22). Hence we get Ws((0, N)) 
⋂

(X\M) = ∅. 
To prove that Ws((0, 0)) 

⋂
(X\M) = ∅, we observe that we have proved that Ws(U1) =

Ws((0, 0)) = W
1,p
+ (�) × {0} = V0 above, and V0

⋂
(X\M) = ∅. So Ws((0, 0)) 

⋂
(X\M) = ∅.

Now both conditions in Theorem 4.8 are verified, so the semiflow π is uniformly persis-
tent. �
Remark 4.10. The condition (H ∗

6 ) is equivalent to that the constant equilibrium (0, N) of (1.3)
is unstable, or equivalently the principal eigenvalue λ1 = cφu(0, N) − g′(0) of the eigenvalue 
problem

⎧⎨
⎩

�ϕ + (cφu(0,N) − g′(0))ϕ = λϕ, x ∈ �,

∂ϕ

∂ν
= 0, x ∈ ∂�

(4.24)

is positive. So when λ1 = cφu(0, N) − g′(0) < 0, the constant equilibrium (0, N) is locally 
asymptotically stable for (1.3). In that case, the system (1.3) is not uniformly persistent.

5. Examples

In this section we consider several examples to illustrate applications of Theorems 1.1 and 1.2.

Example 5.1. First we consider the diffusive Rosenzweig–MacArthur predator–prey model with 
prey-taxis:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= �u − χ∇ · (u∇v) + c

Buv

h + v
− ku, x ∈ �, t > 0,

∂v

∂t
= d�v + Dv

(
1 − v

N

)
− Buv

h + v
, x ∈ �, t > 0,

∂u(x, t)

∂ν
= ∂v(x, t)

∂ν
= 0, x ∈ ∂�, t > 0,

u(x,0) = u0(x), v(x,0) = v0(x), x ∈ �.

(5.1)

Note that when χ = 0, (5.1) has been studied in [60] and the global existence of solutions follows 
from [2]. For the case of χ > 0, now we have the following corollary of Theorems 1.1 and 1.2.

Corollary 5.2. Consider the system (5.1), and assume that c, d, h, k, B, D, N > 0 and χ satis-
fies (1.8). Then the results in Theorem 1.1 hold for (5.1) and there exists a global attractor for 
solutions of (5.1). Moreover

1. if c, h, k, B, N satisfy

cBN

h + N
− k > 0, (5.2)

then the system (5.1) is uniformly persistent;
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2. if c, h, k, B, N satisfy

cBN

h + N
− k ≤ 0, (5.3)

then the attractor for all initial values (u0, v0) with v0 �≡ 0 is {(0, N)}. That is, the equilib-
rium (0, N) is globally asymptotically stable for all initial values (u0, v0) with v0 �≡ 0.

Proof. For system (5.1), we define

φ(u, v) = Buv

h + v
, q(u) = u, g(u) = ku, f (v) = Dv

(
1 − v

N

)
. (5.4)

Then it is easy to verify that hypotheses (H ∗
0 )–(H ∗

5 ) and (H ∗
7 ) hold. (H ∗

6 ) is satisfied when (5.2)
holds. Finally (H ∗

8 ) can also be verified as u terms in all functions here are not more than lin-
ear growth. Therefore Theorems 1.1 and 1.2 can be applied to obtain the global existence and 
boundedness of solutions, the existence of attractor and the uniform persistence under the condi-
tion (5.2).

We prove the global stability of (0, N) for a more general situation that φ(u, v) = �(v)u, 
� : R+ → R

+ satisfies �(0) = 0 and �′(v) > 0 for v > 0. We also assume that c�(N) − k ≤ 0
which generalizes (5.3). We use the Lyapunov functional V : Y+ → R:

V (u, v) = c

∫
�

v(x)∫
N

�(s) − �(N)

�(s)
dsdx +

∫
�

u(x)dx.

If (u(·, t), v(·, t)) is a solution of (5.1) with more general φ(u, v) as above, and v0 �≡ 0, then

V̇ (u(·, t), v(·, t)) = c

∫
�

�(v) − �(N)

�(v)
vtdx +

∫
�

utdx

= −c�(N)d

∫
�

�′(v)

�2(v)
|∇v|2dx + c

∫
�

(�(v) − �(N))
f (v)

�(v)
dx + (c�(N) − k)

∫
�

udx.

Now since �(v) > 0 and �′(v) > 0 for v > 0, f (v)(v − N) < 0 for all v �= N , and c�(N) −
k ≤ 0, then we find that V̇ (u(·, t), v(·, t)) ≤ 0. Moreover V̇ = 0 implies that u ≡ 0, and v ≡ N or 
v ≡ 0. So from the LaSalle invariance principle, we have ω((u0, v0)) ⊆ {(0, 0), (0, N)}. From the 
proof of Part 2 of Theorem 1.2, we know that Ws((0, 0)) = W

1,p
+ (�) ×{0}. Since we assume that 

v0 �≡ 0, then (0, 0) /∈ ω((u0, v0)). Hence ω((u0, v0)) = {(0, N)}. This proves that the attractor for 
all initial values (u0, v0) with v0 �≡ 0 is {(0, N)}. �

The proof of global stability using Lyapunov functional is the same as the one in [60] for the 
case of χ = 0. Here the prey-taxis term does not affect the result due to the no-flux boundary 
condition. If φ(u, v) is in a more general form, then this proof does not work and we would only 
know that (0, N) is locally asymptotically stable as mentioned in Remark 4.10.
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Example 5.3. Secondly we consider the diffusive predator–prey model with strong Allee effect 
in prey growth and prey-taxis:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= �u − χ∇ · (u∇v) + c

Buv

h + v
− ku, x ∈ �, t > 0,

∂v

∂t
= d�v + Dv

(
1 − v

N

)( v

G
− 1

)
− Buv

h + v
, x ∈ �, t > 0,

∂u(x, t)

∂ν
= ∂v(x, t)

∂ν
= 0, x ∈ ∂�, t > 0,

u(x,0) = u0(x), v(x,0) = v0(x), x ∈ �.

(5.5)

Here 0 < G < N and all other parameters are positive. When χ = 0, (5.5) has been studied in 
[46] and the global existence of solutions follows from [2]. For (5.5) with χ > 0, we have the 
following corollary.

Corollary 5.4. Consider the system (5.5), and assume that c, d, h, k, B, D > 0, N > G > 0 and 
χ satisfies (1.8). Then the results in Theorem 1.1 hold for (5.5) and there exists a global attractor 
for solutions of (5.5).

Proof. This is similar to (5.1) except that

f (v) = Dv
(

1 − v

N

)( v

G
− 1

)
. (5.6)

Then it is easy to verify the hypotheses (H ∗
0 )–(H ∗

4 ) and (H ∗
8 ). Therefore Theorem 1.1 and Part 1 

of Theorem 1.2 can be applied. �
From [46], we know that the constant equilibrium (0, 0) is always locally asymptotically 

stable, or one can observe that for (5.6), f ′(0) < 0 so (H ∗
7 ) does not hold. Therefore for (5.5) the 

uniform persistence never holds.

Example 5.5. Finally we consider the model in [29,30], that is,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= �u − χ∇ · (q(u)∇v) + cϕ(v)u − ku, x ∈ �, t > 0,

∂v

∂t
= d�v − ϕ(v)u, x ∈ �, t > 0,

∂u(x, t)

∂ν
= ∂v(x, t)

∂ν
= 0, x ∈ ∂�, t > 0,

u(x,0) = u0(x), v(x,0) = v0(x), x ∈ �.

(5.7)

For this model, we have the following corollary.

Corollary 5.6. Consider the system (5.7), and assume that c, d, k > 0, n ≥ 1, ϕ(0) = 0, ϕ(v) is 
bounded for v ≥ 0, q(u) satisfies (H ∗

2 ) and χ satisfies (1.8). Then the results in Theorem 1.1 hold 
for (5.7) and there exists a global attractor for solutions of (5.7).
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Proof. To fit (5.7) into (1.3), we have

φ(u, v) = ϕ(v)u, g(u) = ku, f (v) = 0. (5.8)

Then it is easy to verify the hypotheses (H ∗
0 )–(H ∗

4 ) and (H ∗
8 ). Therefore Theorem 1.1 and Part 1 

of Theorem 1.2 can be applied. �
When n = 1, the global existence and boundedness of solutions to (5.7) under a nonlinear 

boundary condition and a nonlinear sensitivity function were proved in [50]. Our result here 
holds for any spatial dimension with χ satisfying (1.8).

The uniform persistence does not hold for (5.7). Indeed any (0, v) for constant v ≥ 0 is a 
nonnegative equilibrium of (5.7). Then as shown in Remark 4.10, the stability of (0, v) depends 
on the sign of cϕ′(0)v − k. But for small v ≥ 0, we have cϕ′(0)v − k < 0 so the equilibrium 
(0, v) for v small can attract some (u0, v0) in the interior.

Acknowledgments

This work was completed when the first author visited College of William and Mary in 
2014–2015, and she would like to thank CWM for warm hospitality. The authors thank Professor
Zhi-An Wang for some helpful comments which corrected a mistake in an earlier version of the 
manuscript and thank the anonymous referee for the helpful constructive comments of this paper.

References

[1] B.E. Ainseba, M. Bendahmane, A. Noussair, A reaction–diffusion system modeling predator–prey with prey-taxis, 
Nonlinear Anal. Real World Appl. 9 (5) (2008) 2086–2105.

[2] N.D. Alikakos, Lp bounds of solutions of reaction–diffusion equations, Comm. Partial Differential Equations 4 (8) 
(1979) 827–868.

[3] H. Amann, Dynamic theory of quasilinear parabolic systems. III. Global existence, Math. Z. 202 (2) (1989) 
219–250.

[4] H. Amann, Dynamic theory of quasilinear parabolic equations. II. Reaction–diffusion systems, Differential Integral 
Equations 3 (1) (1990) 13–75.

[5] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in: Function 
Spaces, Differential Operators and Nonlinear Analysis, Friedrichroda, 1992, in: Teubner-Texte Math., vol. 133, 
Teubner, Stuttgart, 1993, pp. 9–126.

[6] N. Bellomo, A. Bellouquid, Y.S. Tao, M. Winkler, Towards a mathematical theory of Keller–Segel models of pattern 
formation in biological tissues, Math. Models Methods Appl. Sci. 25 (9) (2015) 1663–1763.

[7] M. Bendahmane, Analysis of a reaction–diffusion system modeling predator–prey with prey-taxis, Netw. Heterog. 
Media 3 (4) (2008) 863–879.

[8] J.E. Billotti, J.P. LaSalle, Dissipative periodic processes, Bull. Amer. Math. Soc. 77 (1971) 1082–1088.
[9] R.S. Cantrell, C. Cosner, V. Hutson, Permanence in ecological systems with spatial heterogeneity, Proc. Roy. Soc. 

Edinburgh Sect. A 123 (3) (1993) 533–559.
[10] R.S. Cantrell, C. Cosner, V. Hutson, Permanence in some diffusive Lotka–Volterra models for three interacting 

species, Dynam. Systems Appl. 2 (4) (1993) 505–530.
[11] T. Cieślak, C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasi-

linear Keller–Segel system in higher dimensions, J. Differential Equations 252 (10) (2012) 5832–5851.
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