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Abstract A mixing model derived from first principles describes the bulk density (BD) of intertidal
wetland sediments as a function of loss on ignition (LOI). The model assumes that the bulk volume of sedi-
ment equates to the sum of self-packing volumes of organic and mineral components or BD = 1/[LOI/k1 +
(1-LOI)/k2], where k1 and k2 are the self-packing densities of the pure organic and inorganic components,
respectively. The model explained 78% of the variability in total BD when fitted to 5075 measurements
drawn from 33 wetlands distributed around the conterminous United States. The values of k1 and k2 were
estimated to be 0.085± 0.0007 g cm−3 and 1.99± 0.028 g cm−3, respectively. Based on the fitted organic
density (k1) and constrained by primary production, the model suggests that the maximum steady state
accretion arising from the sequestration of refractory organic matter is≤ 0.3 cm yr−1. Thus, tidal peatlands
are unlikely to indefinitely survive a higher rate of sea-level rise in the absence of a significant source of
mineral sediment. Application of k2 to a mineral sediment load typical of East and eastern Gulf Coast estu-
aries gives a vertical accretion rate from inorganic sediment of 0.2 cm yr−1. Total steady state accretion
is the sum of the parts and therefore should not be greater than 0.5 cm yr−1 under the assumptions of
the model. Accretion rates could deviate from this value depending on variation in plant productivity,
root:shoot ratio, suspended sediment concentration, sediment-capture efficiency, and episodic events.

1. Introduction

Tidal wetlands have survived in place within the intertidal zone for millennia of rising sea level through
biophysical processes that lead to the accumulation of mineral and organic matter, thereby increasing soil
volume and surface elevation. Long-term wetland stability requires that the soil surface elevation must
increase at a rate similar to the local rate of relative sea-level rise (SLR), i.e., they must be in equilibrium
with the sea level. Many contemporary tidal wetlands formed during the late Holocene and accumulated
up to several meters of deposits at a time when rates of SLR were relatively slow [Redfield and Rubin, 1962;
Kelley et al., 1988; Engelhart and Horton, 2012; Engelhart et al., 2015]. With accelerating rates of relative SLR
[Vermeer and Rahmstorf , 2009; Horton et al., 2014] and many examples of tidal wetlands converting to open
water [Craft et al., 2009], there is an increasing need to understand the limits of the biophysical processes
that expand soil volume and elevation.

Wetland elevation and its rate of change represent a balance between local rates of accretion and erosion
as these factors ultimately determine the net change in sediment volume per unit area. Sediment volume
decreases as a consequence of organic matter decomposition, compaction, and erosion. Sediment volume
increases with additions of refractory root and rhizome tissue and deposition onto the sediment surface of
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mineral and refractory organic particles, which in turn is influenced by aboveground plant biomass. Empir-
ical studies [e.g., Nyman et al., 1993; Turner et al., 2000; Neubauer, 2008] and simulation models [e.g., Kirwan
et al., 2010] have illustrated the interactive roles of organic matter and mineral inputs on wetland accretion
rates.

The annual surface deposition of mineral and organic material creates a lamination that can be concep-
tualized as a sediment cohort [Morris and Bowden, 1986], the volume of which will change over time as a
consequence of compaction and the subsequent ingrowth and turnover of roots and rhizomes. The final
volume of a cohort is achieved when its organic matter content has stabilized, a process that occurs over
many years of burial by generations of younger cohorts until the cohort has reached a depth below the root
zone [Morris and Bowden, 1986; Davis et al., 2015]. When the wetland is in equilibrium with a constant rate of
SLR (i.e., the system is in steady state), the final mass of a cohort and its bulk density will determine the rate
of vertical accretion. Many studies have described a variety of transient perturbations—including nutrient
pollution, changing atmospheric chemistry, abrupt sea-level change, and watershed development—that
can alter or disrupt steady-state accretion processes of tidal wetlands [Langley et al., 2009; Kirwan et al., 2011;
Deegan et al., 2012; Kirwan and Megonigal, 2013; Mariotti and Fagherazzi, 2013; Weston, 2014; Ratliff et al.,
2015]. Nevertheless, in light of the persistence of marsh habitat over centuries of rising sea level [Kemp et al.,
2011, 2013], wetland survival must be viewed in the context of the steady state. Transient perturbations
return to equilibrium with mean sea level, or they lead to wetland loss and a state change.

A central requirement in many empirical and mechanistic studies of wetland accretion is the need to con-
vert mineral and organic mass to a volume (and therefore thickness) of sediment. The analysis presented
here was motivated by the simple objective of describing the physical relationship between sediment dry
bulk density (BD) and organic matter concentration expressed as loss on ignition (LOI) in coastal wetlands.
A number of publications have explored this relationship for upland or wetland soils, using either empir-
ical models or first principles [Jeffrey, 1970; Stewart et al., 1970; Adams, 1973; Harrison and Bocock, 1981;
Gosselink et al., 1984; Grigal et al., 1989; Honeysett and Ratkowsky, 1989; Manrique and Jones, 1991; Federer
et al., 1993; Turner et al., 2000; Neubauer, 2008; Périé and Ouime, 2008]. Common limitations of this previous
work include datasets that are limited geographically, by a narrow range of possible soil conditions, and by
sample size. Herein, we extend these previous analyses to a wide sample of herbaceous and forested tidal
wetland ecosystems (>5000 samples across 33 riverine and estuarine systems) from the coastal region of
the conterminous United States. The present study tests a quantitative mixing model wherein the propor-
tions and compositions of the two end-member components, organic and inorganic material, govern the
density and volume of tidal wetland sediments and therefore influence steady-state rates of vertical accre-
tion in tidal wetlands. The results suggest a simple and robust rule for setting upper limits on steady-state
vertical accretion rates in coastal wetlands, a rule that is defensible from first principles.

2. Data and Methods

2.1. Sampling Protocol

We compiled a database of 5075 samples of sediment BD and LOI from 33 wetland sites in estuaries in
Maine, Massachusetts, New York, Rhode Island, Delaware, Maryland, Virginia, North and South Carolina,
Florida, Alabama, Mississippi, Louisiana, and California. The data were either unpublished and provided by
the authors or published and publically available.

The methods for estimating bulk density and LOI in sediment vary in details, such as the operation, type, and
dimension of the coring device, the volume of samples analyzed, etc. Despite this variation, they all share
a common protocol of drying samples of known wet volume, weighing the dried samples, combusting the
samples in a furnace, and reweighing to obtain the weight loss on ignition (LOI) [e.g., Dean, 1974; Percival and
Lindsay, 1997]. There are numerous opportunities for error, including compression of the sediment when
taking the core and/or when extracting the core from the core tube, imprecise sectioning of the core into
known volumes, variation in drying temperature, furnace temperature, and presence of salts that precipitate
when the pore water is evaporated from the sample [Heiri et al., 2001]. We think that compression during
the coring operation is the most significant source of error, but to our knowledge, the relative sizes of these
errors have not been evaluated.
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2.2. Statistics

The Marquardt-Levenberg method [Levenberg, 1944] of the SAS 9.4 PROC MODEL was used to estimate
the unknown parameters in several alternative nonlinear models describing the relationship between sed-
iment BD and LOI. PROC MODEL is an iterative procedure that finds the combination of parameters that
minimizes the sum of squares of residuals. The procedure reports an adjusted R2 value for the model being
fitted and significance tests with associated probabilities that the parameters differ significantly from zero.
Nonlinear regression analysis has an advantage over linear regression, which requires that nonlinear data
must first be linearized. Linear transformation introduces a bias by changing the relative weights of individ-
ual observations. Additional tests were performed (PROC REG, PROC GLM) with log-transformed data to test
for differences across sites, including homogeneity of slopes and LOI-by-site interactions. A massive dataset
(N > 6000) from the Louisiana Coastwide Reference Monitoring System (CRMS) was randomly subsampled
using PROC SURVEYSELECT to bring it in line with the number of samples from other sites and to prevent a
deltaic bias.

3. Results

3.1. Site Characteristics

The 33 sites analyzed (Table 1) represented varied climatic conditions, tidal amplitudes, soil compositions,
and species. Most samples are from the near surface (50 cm), except for cores from Sand Hill, NC that were
nearly 3 m in length and cores from Maine, Patuxent River, MD, and Otter Point, MD, where 1–2 m of sedi-
ment was sampled. Sediments were predominately siliciclastic, with varying amounts of organic matter, but
also included calcareous sediments from the coastal Everglades (FCE). The sites spanned 14 degrees of lati-
tude. Across sites, mean sediment LOI ranged from 0.12 g g−1 at Grand Bay, MS; China Camp, CA; and Otter
Creek, MD to 0.79 g g−1 at GCREW near Edgewater, MD. Mean dry bulk density ranged from 0.12 g cm−3 at
GCREW to 0.78 g cm−3 at North Inlet, SC.

The dominant species vary among sites, with Spartina patens and Spartina alterniflora most common in
northeastern and southeastern estuaries, respectively; Spartina foliosa and Schoenoplectus in the San Fran-
cisco estuary; a mix of Spartina species and brackish species (S. cynosuroides and/or Juncus roemerianus) in
the Gulf Coast and North Carolina estuaries; and the red mangrove Rhizophora mangle in several Everglades
sites. The tidal freshwater wetlands typically contained a diverse mixture of herbaceous species, including
Peltandra virginica, Pontederia cordata, Zizania aquatica, and Zizaniopsis miliacea, with some locations also
containing trees (e.g., Nyssa aquatica, Taxodium distichum). There was a weak, but insignificant (p= 0.25)
decline of mean LOI by site with increasing latitude (−0.01 per degree) and a weak decline in LOI with tidal
amplitude (−0.002 per cm, R2 = 0.27, p= 0.05).

Tests of homogeneity of slopes of log-normalized data were significant (p< 0.0001). Likewise, an analy-
sis of covariance established that LOI varies among sites: the independent variables site, ln(LOI), and the
ln(LOI) x site interaction term were all significant (p< 0.0001) for type I and type III errors, meaning that
there is no reasonable chance that these samples behave in the same way with respect to the dependence
of log-transformed BD on log-transformed LOI.

3.2. Model 1 Power Function

The first model tested (Figure 1) is one that is commonly used to estimate bulk density (BD) from LOI mea-
surements. It is an empirical power function of the form

BD = aLOIb (1)

where a and b are empirical constants. The equation was fitted with an R2 of 0.73. Parameter a= 0.141±
0.002 (p< 0.0001) and b=−0.59± 0.004 (p< 0.0001).

3.3. Model 2 Power Function With Intercept

This model differs from the first only in having a nonzero intercept c. It is an empirical power function of the
form

BD = aLOIb + c (2)

where a, b, and c are empirical constants. The equation was fitted with an R2 of 0.77. Parameter
a= 0.569± 0.03 (p< 0.0001), b=−0.31± 0.01 (p< 0.0001), and c =−0.55± 0.04 (p< 0.0001).
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Figure 1. Best fits of the power function ( ) BD= a LOIb and ideal mixing model ( ) BD= 1/[LOI/k1 + (1− LOI)/k2)] to the
complete collection of 5075 sediment samples from 33 tidal marshes and mangroves distributed around the United States. The data in
Figure 1 are available in Appendix S1, Supporting Information

3.4. Model 3 Ideal Mixing Model

Stewart et al. [1970] suggested that in natural soils containing organic matter, there is a relationship
between soil apparent density and organic matter content, namely that the bulk volume of a soil approx-
imates to the summed self-packing volumes of the organic and mineral components. In other words, it is
assumed that the bulk densities of pure organic matter and pure mineral matter are assumed constants,
and in a mixture, the volumes occupied by the organic and mineral components are additive [Federer
et al., 1993]. For example, starting with dry weights Wo and Wi of organic and inorganic matter having
bulk densities of k1 and k2, and volumes Vo =Wo/k1 and Vi =Wi/k2, when the two are mixed, the resulting
bulk density BD= (Wo +Wi)/(Wo/k1 +Wi/k2). The mixture will have a loss on ignition LOI=Wo/(Wo +W i).
Rearranging Wo +W i =Wo/LOI and substituting gives BD= (Wo/LOI)/(Wo/k1 +Wi/k2). Substituting for Wi

gives BD= (Wo/LOI)/[Wo/k1 + (Wo/LOI−Wo)/k2] , which reduces to

BD = 1∕
[
LOI∕k1 + (1 − LOI) ∕k2)

]
(3)

This is known as the ideal mixing model [Adams, 1973]. Coefficients k1 and k2 are the bulk, self-packing
densities of pure organic and mineral matter, respectively.

The best fit over all sites (R2 = 0.78) gave k1 and k2 coefficients of 0.085± 0.0007 g cm−3 (p< 0.0001) and
1.99± 0.028 g cm−3 (p< 0.0001), respectively (Figure 1). Note that when LOI= 0, Eq. 3 reduces to BD= k2,
and Eq. 3 reduces to BD= k1 when LOI= 1. When fitted specifically to each site, the resulting k1 values var-
ied from 0.05 to 0.168 g cm−3 and k2 from 0.59 to 2.87 g cm−3. Parameter estimates made from site-specific
data were unreliable because few sites possessed the full spectrum of BD and LOI values needed for a
good fit.
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3.5. Vertical Accretion

There have been several analyses of the relative contribution of organic and inorganic accretion to vertical
accretion using a top–down approach [Nyman et al., 1993, 2006; Turner et al., 2000; Neubauer, 2008]. Start-
ing with known accretion rates and composition, Turner et al. [2000] and Neubauer [2008] calculated the
densities of organic and mineral matter that best fit the total accretion rates by linear regression. From
their published inventories of mineral and organic matter above the 1963 137Cs maxima, we calculated
vertical accretion by dividing the mass accretion rates (g cm−2 yr−1) by the k1 and k2 densities, 0.085 and
1.99 g cm−3, respectively, from the present study. Our calculated vertical accretion rates and their measured
rates (Figure 2) were highly correlated (r2 = 0.6, p< 0.0001).

Figure 2. Mixing model-calculated accretion rates and
reported 137Cs-based vertical accretion rates. Calculations used
published mass accretion rates (g m−2 yr−1) of inorganic and
organic matter as reported in Nyman et al. [1993, 2006], Turner
et al. [2000], and Neubauer [2008].

With estimates of k1 and k2, using a bottom–up
approach, it is possible to parse vertical accretion
between its organic and mineral fractions and to rea-
sonably estimate rates of vertical accretion across
a range of suspended sediment concentrations and
LOI (Figure 3). We used suspended sediment (TSS)
concentrations ranging from 10 to 200 mg L−1 and
assumed depths of high water over the marsh sur-
face of 1, 5, and 20 cm—flood depths representa-
tive of high, mid, and low marsh. Following the logic
of Krone [1987], the depth of high water determines
the volume of water over the marsh surface and,
together with the tide range, approximately defines
the hydroperiod or duration of flooding, but as we
are assuming a 100% capture efficiency, the explicit
calculation of the hydroperiod is avoided. A marsh
surface that captures all of the suspended sediment

when flooded semi-diurnally (704 floods per year) by 20 cm of water at high tide would receive an annual
deposit of 0.42 g cm−2 yr−1 (=3× 10−5 g cm−3 × 20 cm× 704 yr−1), using a flow-weighted, average sus-
pended sediment concentration of 30 mg/liter for East and eastern Gulf Coast estuaries [Weston, 2014].
Dividing by k2 (1.99 g cm−3) gives 0.2 cm/yr.

As the production of the vegetation is also sensitive to flood depth [Morris et al., 2002, 2013], we assumed
belowground productivities of 800, 1600, and 2500 g dry weight m−2 yr−1 in high, mid, and low marsh,
respectively, with 10% preservation. The organic contribution to vertical accretion is determined by the
input of the refractory organic production, which should be nearly equal to the production of lignin. Using
a lignin concentration of 10% [Hodson et al., 1984; Wilson et al., 1986; Buth and Voesenek, 1987], the ver-
tical accretion due to a theoretical maximum belowground dry weight production of 2500 g m−2 yr−1 for
Spartina alterniflora [Morris et al., 1984] should be about 0.3 cm yr−1 ≈ (0.25 g cm−2 yr−1 × 0.1 g lignin/g dry
weight)/ 0.085 g cm−3. Shown here (Figure 3) are the vertical accretion rate and LOI resulting from various
combinations of inputs. The results show that the highest vertical accretion rates are possible only at the
highest TSS concentrations, that is, the highest inputs of mineral matter (Figure 3). However, for conditions
typical of East Coast estuaries (high production, low TSS), organic matter probably contributes about 3/5 or
60% to vertical accretion, which is in line with Neubauer’s [2008] estimate of 62%.

4. Discussion

The variability in BD not explained by the mixing model can be due to sampling and analytical errors, as
discussed earlier, and to violations of the model assumptions, namely that k1 and k2 are constant and their
volumes additive. Additivity is not strictly true because organic molecules encapsulated within the lattices
of clay minerals or sorbed to the surfaces of clay minerals [Mortland, 1970; van Veen and Kuikman, 1990;
Mayer, 1994; Hedges and Keil, 1995; Bergamaschi et al., 1997; Mayer et al., 2004] may raise the LOI without
adding to the total volume. Furthermore, a portion of the variability also could be due to compaction or
differences in sediment grain size. The mass per unit volume of the solid inorganic component, that is,
excluding voids and water, is commonly taken to be 2.65 g cm−3 [Skopp, 2000; Blanco-Canqui et al., 2004].
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The difference between the solid inorganic density and k2 equates to an average porosity of 25%, but poros-
ity and bulk density are functions of grain size [Manrique and Jones, 1991; Jackson et al., 2014], which is
variable. However, the fidelity of the mixing model (Figure 1) suggests that these deviations from the model
assumptions are minor, at least within the universe of data analyzed here.

Figure 3. A curve family describing relationships among
vertical accretion, soil organic content (LOI), and total
suspended inorganic sediment (TSS) in hypothetical high-,
mid-, and low-marsh habitats. Calculations of vertical accretion
due to organic production and mineral sedimentation are
based on the pure packing densities k1 and k2 (see text) derived
from a fit of the mixing model to the entire dataset. High, mid,
and low marshes were defined as having high tides that flood
the surface semi-diurnally, with average water depths of 1, 5,
and 20 cm, and with belowground refractory organic matter
inputs of 80, 160, and 250 dry g m−2 yr−1, respectively. The grey
area is the domain of peat formation, truncated at LOI= 0.6.

There was a weak, but insignificant (p= 0.25) decline
of mean LOI by site with increasing latitude (−0.01
per degree). If the concentration of organic matter
in sediment was reduced by rising temperature, per-
haps due to an increase in decay rate [Kirschbaum,
1995], then we would have expected an increase in
LOI with latitude. Alternatively, a decline with latitude
would be consistent with a trend of decreasing above-
ground productivity in salt marshes with increasing
latitude [Kirwan et al., 2009]. This decline with latitude
is also consistent with the interpretation of Philben
et al. [2014, 2015] who found that peat formed at more
southerly latitudes and, during the Holocene Climatic
Optimum, did not appear to be any more decomposed
than peat formed in cooler latitudes or during subse-
quent cooler periods in younger sections of the cores.
They suggested that decomposition in peatlands was
regulated primarily by oxygen-exposure time, not by
temperature.

We found a weakly negative (−0.002 cm−1) but signif-
icant (p= 0.05) effect of tidal amplitude on LOI. Tidal
amplitude could affect LOI in a number of ways, for
example, by affecting dewatering and oxygen expo-

sure, hydroperiod, and/or the effect of tidal energy on mineral sediment transport. For a fixed input of
organic matter, the resulting LOI will be determined by the input of mineral matter. The latter would be
controlled by the concentration of suspended sediment as well as the hydroperiod or settling time for
suspended sediment.

Mixing model parameters k1 and k2 were used to parse total vertical accretion into its organic and mineral
fractions and to place upper limits on vertical accretion. With respect to the contributions from organic
production, it can be assumed that only belowground biomass contributes to soil organic matter in tidal salt
marshes because we do not observe the accumulation of a litter layer on the marsh surface. Furthermore,
excluding sites of marsh restoration or newly emerging marshes where the live biomass may build over
a period of years, the input of labile organic matter does not add new volume because its production and
decay rate are in equilibrium, that is, the volume of living and labile organic matter exists in steady state. The
refractory fraction of belowground production, however, does contribute to the change in soil volume, and
we can equate this to the production of lignin, which is considered to be the most refractory part of plant
tissue and is a significant component of soil organic matter in anaerobic environments such as peatlands
[Morita, 1962]. Its decomposition depends primarily on the supply of oxygen [Andriesse, 1988; Williams and
Yavitt, 2003]. An upper limit for belowground dry weight production of 2500 g m−2 yr−1 containing 10%
lignin gives a theoretical steady-state vertical accretion of about 0.3 cm yr−1 (3 mm yr−1). Thus, peat marshes
are not likely to indefinitely survive an accelerating SLR without a source of mineral sediment.

Empirical measures of belowground production sometimes exceed the generalized estimate above
2500 g m−2 yr−1, for example, 3500 g m−2 yr−1 in Great Sippewissett marsh [Valiela et al., 1976], 6500 g m−2

yr−1 in Delaware Bay [Roman and Daiber, 1984], and 7900 g m−2 yr−1 in Narragansett Bay [Wigand, 2008].
Measurements of belowground production are subject to significant sampling error [Singh et al., 1984],
but theoretical estimates associated with model assumptions also have uncertainty. Moreover, maximum
productivity varies greatly among plant communities and species. The productivity of tidal freshwater
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marshes, for example, exceeds that of salt marshes [Odum, 1988]. Primary production can also vary strongly
with factors such as interannual variation in sea level [Morris et al., 2002], nitrogen loading, and atmo-
spheric CO2 concentration [Langley et al., 2009]. Therefore, belowground production might provide greater
accretion than the 0.3 cm yr−1 estimated here and also potentially greater rates of carbon sequestration.

The relative importance of inorganic and organic contributions to vertical accretion is dynamic over long
timescales [Kearney et al., 1994; Drexler, 2011] and can vary spatially in contemporary settings [Craft et al.,
1993]. Vertical accretion is ultimately limited by the mass inputs of mineral and refractory organic material,
constrained by their bulk densities. Mass accretion rates of mineral and organic matter in tidal freshwater
and salt water wetlands and 137Cs-based vertical accretion have been reported by Nyman et al. [1993, 2006],
Turner et al. [2000], and Neubauer [2008] among others, and these authors have advanced the argument that
organic matter accretion is the principal means by which marshes accrete vertically. Our analysis supports
this view, considering the low TSS concentrations typical of many estuaries, but we would argue that vertical
accretion is limited by low availability of mineral sediment. Using a top–down approach, Turner et al. [2000]
regressed the vertical accretion rate against organic matter accumulation and found a slope of 11 cm3 g−1.
Its reciprocal is k1 and, ignoring a regression intercept, is equivalent to 0.09 g cm−3. His regression of ver-
tical accretion rate against inorganic accumulation rate gave a slope of 1.36 cm3 g−1 or 0.73 g cm−3, which
is significantly less than k2 derived in our study. Using multiple linear regression of vertical accretion rate
against organic plus mineral accumulation, Neubauer [2008] derived densities equivalent to 0.182 g cm−3

and 0.847 g cm−3 for the organic and mineral fractions, respectively. The differences between coefficients
derived by Turner et al. [2000] and Neubauer [2008] and our calculated values of k1 and k2 reflect the limited
range of soil properties in those other studies, notably a near absence of high LOI samples.

Several generalities emerge from our bottom–up calculations of vertical accretion (Figure 3). Firstly, the the-
oretical maximum vertical accretion rate at steady state for a typical marsh on the East Coast and eastern Gulf
is probably not greater than 0.5 cm yr−1. This is the expected vertical accretion from the combined inputs
of organics and inorganics at the highest loading rates, that is, complete capture of 30 mg L−1 suspended
sediment under 20 cm of water flooding the surface semi-diurnally and with the addition of 250 g dry
weight m−2 yr−1 of refractory organic matter. However, a significantly higher sediment load, like that avail-
able in a deltaic environment, for example, 200 mg L−1, could support a vertical accretion rate of 1.7 cm yr−1

(Figure 3). Secondly, the lowest concentration of sediment organic matter or LOI occurs at the highest ver-
tical accretion rates for a marsh at steady-state equilibrium with sea level, reflecting low marsh conditions
with high mineral inputs. Conversely, the highest LOI occurs at the lowest accretion rates and in high marsh
habitat with little flooding (Figure 3). High marsh habitat has the lowest opportunity for mineral loading
from tidal flooding and, thus, little supplement to organic accretion by inorganic material.

Our analysis addresses marshes operating in steady state with typical rates of plant production and sed-
iment availability. However, marshes often accrete sediment at different rates (Figure 2) because they are
not always constrained by the limits we have assumed on mineral and organic matter accretion. Locally,
there may be erosion of marsh edge and redeposition onto the remaining marsh platform [Wilson et al.,
2014] or episodes of rapid sedimentation following hurricanes [Cahoon et al., 1995; Turner et al., 2006; McKee
and Cherry, 2009; Baustian and Mendelssohn, 2015]. However, storm impacts also can be negative [Chabreck
and Palmisano, 1973; Cahoon, 2006; Howes et al., 2010; Morton and Barras, 2011; Leonardi et al., 2016], and
it seems unlikely that storms could contribute globally to a positive, steady-state accretion or that they
could accommodate an acceleration in sea-level rise. There are also situations when a system may be far
removed from the local equilibrium state. What follows is a rapid recovery and accretion toward the equi-
librium [French and Burningham, 2003]. This could happen following a wetland restoration, an emergence
of a bar at the mouth of a delta, or a sudden loss in relative elevation due to storm-induced erosion or
to mechanical means. These are transient conditions that could affect short-term accretion rates but that
should not affect the steady-state accretion rate. Also possible are changes in state following a change in
nutrient loading, which could affect organic matter production and preservation or a change in sediment
loading. These could increase or decrease the steady-state accretion rate, therefore affecting the ability of
tidal wetlands to maintain elevation relative to a rising sea level.

A tidal wetland with a high LOI and low accretion rate is not necessarily at its maximum rate of ver-
tical accretion because the mineral loading rate and primary productivity will depend on its relative
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elevation, depth of flooding, and suspended sediment concentration. With an accelerated rate of
SLR, the relative, equilibrium marsh elevation will fall, and the vertical accretion rate will rise [Morris
et al., 2002]. It is only when the equilibrium elevation falls below the optimum for primary produc-
tion that the marsh will fail to keep up with the acceleration in SLR. Our analysis, which assumes only
chronic inputs, suggests that this will most likely occur when the local rate of SLR (including subsi-
dence) exceeds about 0.5 cm yr−1 in most East Coast estuaries or 1.7 cm yr−1 in a sediment-rich estuary.
Thus, even current rates of SLR along the East Coast (mean= 0.34 cm yr−1, range= 0.18–0.60 cm yr−1)
(http://tidesandcurrents.noaa.gov/sltrends/sltrends.html) are near the point that will lead to long-term
elevation loss and eventual drowning of coastal wetlands.
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