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Effect of atomic diffusion on the Raman-Ramsey CPT resonances

Elena Kuchina,1 Eugeniy E. Mikhailov,2 and Irina Novikova2, ∗

1Thomas Nelson Community College, Hampton VA 23666, USA
2Department of Physics, College of William & Mary, Williamsburg, Virginia 23187, USA

(Dated: March 14, 2016)

We experimentally investigated the characteristics of two-photon transmission resonances in Rb
vapor cells with different amount of buffer gas under the conditions of steady-state coherent popula-
tion trapping (CPT) and pulsed Raman-Ramsey (RR-) CPT interrogation scheme. We particularly
focused on the influence of the Rb atoms diffusing in and out of the laser beam. We showed that
this effect modifies the shape of both CPT and Raman-Ramsey resonances, as well as their pro-
jected performance for CPT clock applications. In particular we found that at moderate buffer gas
pressures RR-CPT did not improved the projected atomic clock stability compare to the regular
steady-state CPT resonance.

I. INTRODUCTION

Precise measurements of the energy level splittings in
atoms and molecules are in hearts of many devices. Long-
lived transitions between the ground-state hyperfine sub-
levels of alkali atoms are particularly attractive for prac-
tical purposes due to their high quality factor. Since their
transition frequencies are typically in a few GHz range,
there has been a lot of interest in investigating all-optical
interrogation methods for development of compact fre-
quency standards and magnetometers [1].

Coherent population trapping (CPT) [2] is a two-
photon optical effect, in which two optical fields form
a resonant Λ-system based on the two ground hyperfine
states, as shown in Fig. 1. Under the two-photon reso-
nance conditions ωbc+ν1−ν2, i.e., when the difference of
the two optical field frequencies ν1,2 matches the energy
splitting of the two ground states ωbc, the combined ac-
tion of the two optical fields optically pumps the atoms
into a non-interacting coherent superposition of these two
states known as a “dark state” |D〉:

|D〉 = N (Ω1|c〉 − Ω2|b〉) , (1)

where Ω1,2 are the Rabi frequencies of the two applied

optical fields, and N = 1/
√

Ω2
1 + Ω2

2 is the normalization
constant. Under the CPT conditions the absorption of
the atomic medium is suppressed, and one observes a
narrow transmission resonance with width γCPT:

γCPT = γ0 + |Ω|2/Γ, (2)

where the first term represents the dark state decoher-
ence rate γ0, and the second term demonstrates the CPT
resonance power broadening, as |Ω|2 = |Ω1|2 + |Ω2|2, and
Γ is an effective excited state decay rate [3]. In a dilute
alkali metal vapor the decoherence rates of the ground-
state sublevels are often governed by the thermal motion
of the atoms, leading to relatively long dark state life
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time: a few hundreds microsecond for a vapor cell with
a buffer gas, and up to hundreds of milliseconds for the
cell with anti-relaxation wall coating [4–6].

FIG. 1. (Color online) Schematic of the experimental setup.
The power and polarization of the optical field before the Rb
vapor cell is controlled using an acousto-optical modulator
(AOM), a polarizing beam splitter (PBS) and a quarter wave
plate (λ/4). To stabilize the frequency of the VCSEL, ap-
proximately 20% of its output is reflected into the DAVLL
block, consisting of an auxiliary vapor cell in strong magnetic
field, a quarter wave-plate and a balanced photodetector [7].
Inset shows the simplified level structure of Rb atoms.

In the last few decades CPT resonances have been
successfully implemented for both compact and chip-
scale atomic clocks and magnetometers [8, 9]. A tradi-
tional scheme for a CPT-based frequency standard oper-
ation [8] includes a phase-modulated laser (typically VC-
SEL), that produces necessary optical fields interacting
with atoms in a desired Λ configuration. If the phase
modulation frequency is adjusted precisely to the fre-
quency difference between the two atomic ground levels,
the optical transmission peaks, allowing the frequency of
the laser modulation source to be locked to the atomic
frequency. For atomic clocks the external source is typi-
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cally locked to the magnetic-field insensitive atomic tran-
sition, whereas for CPT-based magnetometers the fre-
quency difference between two magnetic-sensitive transi-
tions is measured to extract information about magnetic
field value.

There is an on-going effort to improve the characteris-
tics of CPT resonances, for example to reduce their sensi-
tivity to various technical noises (laser intensity and fre-
quency noise, fluctuations of environmental conditions),
to increase their contrast, etc. It has been demon-
strated, for example, that by tracking the time evolution
of the dark state (similar to the more traditional Ramsey
scheme with two separated interrogation zones [10]) of-
fer several important advantages over traditional steady-
state CPT transmission measurements. This so-called
Raman-Ramsey interaction [11] works as followed: first,
the bi-chromatic optical field is turned on for long enough
time to prepare atoms in the dark state; then, the optical
field is turned off for the time τRR, and the dark state is
allowed to freely evolve in the dark; finally, the optical
fields are turned on again, and their transmission after
the time τm is monitored. In case of non-zero two-photon
detuning, the dark state is not stationary, but it acquires
an extra relative phase during its time evolution:

|D(δR)〉 = N
(
Ω1|c〉 − Ω2e

iδR·τRR |b〉
)
, (3)

where δR = ωbc − ν1 + ν2 is the two-photon Raman de-
tuning. It is easy to see now that after the time τRR =
π/δR the original dark state evolves into the strongly-
interacting bright state, and if the relative phases of the
two optical fields are maintained, instead of enhanced
transmission, one observes enhanced absorption. It is
also clear that the oscillations between extra transmis-
sion and absorption should be a periodic function of the
evolution time τRR, as long as this time is shorter than
the ground-state coherence life-time. Assuming the ho-
mogeneity of the ground-state decoherence (i.e., that all
atoms experience the same ground-state decay rate γ0), it
is possible to calculate the expected RR-CPT absorption
coefficient κRR [12]:

κRR = α
(
1 + βe−γ0τRRcos(δRτRR − Φ)

)
, (4)

where the values of the coefficients α, β and Φ are calcu-
lated in Ref. [12].

Several publications theoretically and experimentally
demonstrated the advantages of the Raman-Ramsey
interrogation method compared to the traditional cw
CPT [13–17]. In addition to typically having a larger con-
trast, an attractive feature of Raman-Ramsey CPT reso-
nance (RR-CPT) is that the width of the observed reso-
nances is determined only by the evolution time, and does
not depend on laser power, unlike the regular CPT reso-
nance. Thus, such resonances are not susceptible to the
power broadening and light shifts, as was demonstrated
in several publications [14, 17, 18]. In particular, one can
show that for a homogeneously power-broadened CPT
resonance, in which all atoms have the same ground-
state decoherence rate, the expected enhancement in the

signal-to-noise ratio is:

SNRRR

SNRCPT
= 2(πτRRγ0)2

CRR
CCPT

√
τmIRR
TcICPT

, (5)

where Tc is the total duration of one Ramsey pulse se-
quence, CRR and CCPT are the contrasts of the Raman-
Ramsey and traditional CPT resonances, correspond-
ingly, and IRR and ICPT are the corresponding aver-
age background intensities. It is easy to estimate, that
the RR-CPT arrangement is the most advantageous for
τRR ∼ 1/γ0.

In this paper, we consider the case of “inhomoge-
neously” broadened ground state coherence, in which dif-
ferent atoms can have substantially different decoherence
rate Γ0. This situation often occurs in atomic vapor cells
with buffer gas, in which atoms can diffuse out of the
interaction volume, and then come back after spending
some time outside of the laser beams without dephas-
ing its ground-state coherence. Such diffusion process
introduces atoms with wide range of lifetimes inside the
interaction region, causing strong modifications in the
CPT lineshape, in particular, the appearance of a sharp
“pointy” top [19, 20]. It was shown that such behavior
can be qualitatively described similarly to the Raman-
Ramsey resonances [5, 20, 21], but by averaging over the
possible values of the evolution in the dark time, deter-
mined by dynamics of the atomic diffusion.

Below, we experimentally study this different regime
for Raman-Ramsey CPT effect, in which an atom un-
dergo both controlled and random evolution in the dark:
one due to turning the light fields on and off, and the
other due to the atom temporarily leaving the interac-
tion region. We compare the spectral lineshapes of regu-
lar CPT resonances (continuous laser interrogation) and
Raman-Ramsey CPT resonances (pulsed interrogation)
in two different Rb vapor cells with different amount of
buffer gas (5 Torr and 30 Torr of Ne) and observe a sig-
nificant modification of the RR-CPT lineshape from the
Eq. 4. We present a brief comparison of the expected
sensitivity for the frequency measurements using steady-
state CPT and RR-CPT resonances for the Rb vapor
cells with different buffer gas pressure, and demonstrate
that the diffusion-induced lineshape modifications change
the relative figure of merit between the two interrogation
methods.

II. EXPERIMENTAL ARRANGEMENTS

In our experiment, we used a temperature-stabilized
vertical cavity surface-emitting diode laser (VCSEL) op-
erating at the Rb D1 line (λ = 795 nm). The laser
was current-modulated at νrf = 6.8347 GHz such that
the laser carrier frequency and the first modulation side-
band were tuned to the 5S1/2F = 2 → 5P1/2F

′ = 1

and 5S1/2F = 1 → 5P1/2F
′ = 1 transitions of 87Rb

correspondingly. The two-photon Raman detuning δR
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was controlled by adjusting the laser microwave mod-
ulation frequency νrf around the value of the 87Rb
hyperfine splitting using a computer-controlled home-
made microwave source [22], such that δR = νrf −
6.834687135 GHz. The intensity ratio between the side-
band and the carrier was adjusted by changing the modu-
lation power sent to the VCSEL, and kept the sideband to
carrier ratio equal to 60%. The optical frequency of the
laser was stabilized using a dichroic-atomic-vapor laser
lock (DAVLL) [7]. The details of the construction and
operation of the home-made laser system are provided in
[23].

The circularly-polarized laser beam with maximum to-
tal power 90 µW and a slightly elliptical Gaussian profile
[1.8 mm and 1.4 mm full width half maximum (FWHM)]
traversed a cylindrical Pyrex cell (length 75 mm; diame-
ter 22 mm) containing isotopically enriched 87Rb vapor
and either 5 Torr or 30 Torr of Ne buffer gas. The cell
was mounted inside a three-layer magnetic shielding and
actively temperature-stabilized at 53◦C. To isolate the
magnetic field-insensitive CPT resonance, we applied a
homogeneous longitudinal magnetic field of 520 mG using
a solenoid mounted inside the innermost magnetic shield.
Changes in the total laser transmission were recorded us-
ing a photodetector (PD), placed after the Rb cell.

For the Raman-Ramsey CPT measurements, we
turned the laser beam on and off using an acousto-optical
modulator (AOM), placed before the vapor cell, modu-
lated with a square wave at the frequency fmod. We
verified that each “on” half-cycle was long enough to
achieve the steady state CPT conditions. The follow-
ing half-cycle, which corresponded to the AOM “off” pe-
riod, served as the dark evolution time τRR = (2fmod)

−1.
To reproduce the Raman-Ramsey signal, shown in Fig.
2(c-f) the values of the laser transmission were recorded
τm = 20 µs after the laser was turned on again.

III. EXPERIMENTAL RESULTS

Fig. 2(a,b) presents sample spectra of steady-state
CPT resonances recorded in the Rb vapor cells with dif-
ferent amount of the buffer gas under otherwise identical
experimental conditions. For atoms traversing the illumi-
nated interaction region only once, the dark state lifetime
can be estimated from the average diffusion time through
the laser beam of radius a [24], implying the decoherence
rate to be:

γ0 ' (2.405)2D0
p0
p

1

a2
, (6)

where D0 = 0.2 cm2/s is the diffusion constant of Rb
atoms in Ne at the atmospheric pressure p0 = 760 Torr,
and p is the buffer gas pressure inside the cell. Also,
since in this case all atoms experience approximately the
same ground-state decoherence rate, the CPT lineshape
is expected to be Lorentzian (this is the necessary as-
sumption for deriving Eq. 5). In this model the expected

minimum full width half maximum (FWHM) values for
the CPT resonance in the cells with 5 Torr and 30 Torr
of Ne buffer gas are 5.6 kHz and 930 Hz correspondingly.
In our experiments, however, the measured FWHM val-
ues for the CPT resonances were quite similar in both
cells: ≈ 1300 Hz and ≈ 1100 Hz. Also, the shapes of
the resonances were clearly non-Lorentzian, indicating
the contributions from atoms with a wide range of the
ground state decoherence rates.

FIG. 2. Examples of steady-state CPT resonances (top row)
and Raman-Ramsey resonances obtained for different mod-
ulation frequencies fmod and, hence, for different dark time
intervals (two bottom rows). The left column corresponds to
the signals obtained in the Rb cell with 30 Torr of Ne buffer
gas, and the right one - in the Rb cell with 50 Torr of Ne
buffer gas. In all graphs the vertical axis represents the rela-
tive optical transmission (I(δR)/Ibackground − 1.

The pointy lineshape analysis of these resonances re-
veals a strong influence of atomic diffusion in and out of
the laser beam [5, 19–21]. To understand the origin of
the CPT linewidth narrowing, one must take into account
the possibility of an atom to leave the interaction region
and then return after some time without dephasing its
quantum state. Such repeated interaction model, devel-
oped in Ref. [20, 21], draws on parallels between the atom
multiple interactions with the laser beams interspersed
with the “evolution in the dark” while the atom is out-
side of the interaction region with the Raman-Ramsey
CPT resonances where the time of the evolution in the
dark is controlled by turning on and off the laser fields.
However, since now the evolution time is governed by
the diffusion dynamics and thus stochastic, the resulting
signal is effectively averaged over the distribution of the
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evolution times, which interfere constructively only for
δR = 0, leading to a “peaky” CPT resonance.

Next, we analyze the effect of such diffusive atomic
motion on the Raman-Ramsey CPT resonances. The ex-
amples of RR-CPT fringes recorded in both vapor cells
at two different AOM modulation frequencies are shown
in Fig.2(c-f). For the fmod = 600 Hz (τRR = 830 µs),
the recorded transmission signals resemble the traditional
RR-CPT fringes, for which the dark evolution time is
comparable to the dark state decoherence time: a few
higher-contrast fringes near δR = 0, and the reduced con-
trast fringes for larger Raman detunings. Interestingly,
the relative heights of the central fringe in the two cells
are almost the same, even though one might not have
expected to see any fringes for such long dark time for
the cell with 5 Torr of Ne, since the diffusion time of Rb
atoms through the laser beams is only ≈ 60 µs. Thus,
the observed RR-fringes are mainly due to the atoms that
diffuse back to the interaction region after τRR time.

In the RR-CPT spectra recorded for the shorter dark
evolution time (modulation frequency fmod = 2400 Hz,
τRR = 210 µs) the shape of the fringes changes: there
is a clear sharp peak at zero Raman detuning, similar to
the sharp peak observed for CPT resonances, with some
additional sharp dispersion-like structures for δR equal
to the multiple of fmod. The shape of the central fringe
implies significant contribution from the atoms with the
diffusion times longer than τRR. Since these atoms expe-
rience similar distributions of dark evolution times, and
their sensitivity to small changes of δR is similar for both
steady-state CPT or RR-CPT detection schemes.

FIG. 3. Estimated value of the error signal slope for atomic
clock locking based on the analysis of the measured trans-
mission resonances. Data points corresponding to zero mod-
ulation frequency correspond to the steady-state CPT reso-
nances. Each data point is the result of averaging over 5-10
RR-CPT spectra, and error bars represent one standard de-
viation spread.

To verify this statement and to estimate the projected
performance of a possible frequency standard, we calcu-
late the maximum slope of the first derivative of the laser

transmission (∂I/∂δR)/I|δR=0, where I is the measured
transmitted intensity. Since the background transmis-
sion values in the both cells were similar, the value of
this slope can be used to estimate the error signal for
the feedback loop when locking the microwave modula-
tion source to a CPT or RR-CPT resonance. The values
of measured slopes for the two vapor cells are shown in
Fig. 3. It is clear that RR-CPT resonances in the 5 Torr
vapor cell do not provide any improvement in perfor-
mance compare to the standard steady-state CPT ar-
rangement, as the slope values are independent of the
Raman-Ramsey modulation frequency fm. Indeed, in
this regime the longest dark state evolution time is pro-
vided by the atom physically diffusing out of the laser
beam and coming back, that contribute similarly in the
sharpness of the central spectral feature for both CPT
and RR-CPT resonances. Thus, having longer or shorter
τRR only affects of the number of probed atoms, without
changing the resonance linewidth.

Our measurements in the 30 Torr cell, however, indi-
cated that for lower modulation frequencies there is a
clear advantage of using RR-CPT detection method, as
we observed almost 6-fold increase of the error signal for
fm = 300 Hz. The higher buffer gas pressure slows the
diffusion dynamics, and it takes much longer for atoms
to leave the interaction region. Still, for shorter dark
evolution times τRR (i.e. for higher modulation frequen-
cies fm > 1000 Hz) the measured maximum slopes of the
laser transmission near δR = 0 again become comparable
to those of the regular CPT resonances, indicating the
return to the regime in which the highest spectral sen-
sitivity is determined by the diffusing atoms reentering
the laser beam.

IV. CONCLUSIONS

We analyzed the Raman-Ramsey CPT spectra,
recorded in the Rb vapor cells with 5 and 30 Torr of Ne
buffer gas in the regime where the diffusion of the atoms
in and out of the illuminated interaction region played
significant role. Previous studies have shown the superi-
ority of the RR-CPT detection compare to the traditional
CPT transmission resonances for precise frequency detec-
tion in the case of homogeneous ground-state atomic de-
coherence. In the conditions of our experiments, however,
we found that the ratio between the evolution in the dark
time of the Raman-Ramsey sequence τRR and the aver-
age dark state evolution time of diffusing atoms becomes
an important parameter for evaluating the advantages of
RR-CPT method. In particular, we found that in case of
shorter τRR the most sensitive frequency response to the
changes of the two-photon Raman detuning is provided
by the atoms with long diffusion times, and thus using a
more complicated RR-CPT method does not lead to any
increase in sensitivity.
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