Seasonal nitrogen uptake and regeneration in the western coastal Arctic

SE Baer
Virginia Institute of Marine Science

RE Sipler
Virginia Institute of Marine Science

QN Roberts
Virginia Institute of Marine Science

PL Yager

ME Frischer

See next page for additional authors

Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles

Part of the [Aquaculture and Fisheries Commons](https://scholarworks.wm.edu/vimsarticles)

Recommended Citation

Baer, SE; Sipler, RE; Roberts, QN; Yager, PL; Frischer, ME; and Bronk, D, "Seasonal nitrogen uptake and regeneration in the western coastal Arctic" (2017). *VIMS Articles*. 759.

https://scholarworks.wm.edu/vimsarticles/759

This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
Seasonal nitrogen uptake and regeneration in the western coastal Arctic

Steven E. Baer,1,∗a Rachel E. Sipler,1 Quinn N. Roberts,1 Patricia L. Yager,2 Marc E. Frischer,3 Deborah A. Bronk1
1Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, Virginia
2Department of Marine Sciences, University of Georgia, Athens, Georgia
3University of Georgia, Skidaway Institute of Oceanography, Savannah, Georgia

Abstract

Here, we present the first study to investigate the seasonal importance of amino acid-nitrogen (N) to Arctic near shore microbial communities. We measured primary productivity and the uptake of ammonium, nitrate, urea, and amino acids in two size fractions (> 3 μm and approximately 0.7–3 μm), as well as ammonium regeneration and nitrification using 15N and 13C tracer approaches in the near-shore waters of the Chukchi Sea, during January, April, and August for two consecutive years. At discrete depths, nitrate comprised 46–78% of the total dissolved N pool during January and April but only 2–6% during August. Dissolved organic N (DON) concentrations increased between January and August though the carbon (C) : N (mol : mol) of the DON pool declined. Of the substrates tested, amino acids supported the bulk of both N and C nutrition in both size fractions during January and April (ice-covered). Urea generally had the lowest uptake rate under ice-covered conditions; uptake of urea-C was only detectable in August. Though previous Arctic studies focused largely on nitrate, we found nitrate uptake was generally lower than other substrates tested. The sharp decline in nitrate concentration between January and August though the carbon (C) : N (mol : mol) of the DON pool declined. Of the substrates tested, amino acids supported the bulk of both N and C nutrition in both size fractions during January and April (ice-covered). Urea generally had the lowest uptake rate under ice-covered conditions; uptake of urea-C was only detectable in August. Though previous Arctic studies focused largely on nitrate, we found nitrate uptake was generally lower than other substrates tested. The sharp decline in nitrate concentration between April and August, however, indicates a drawdown of nitrate during that period. Rates of ammonium uptake were highest in August, when it was the dominant N substrate used. During all sample periods, rates of ammonium regeneration were sufficient to supply ammonium demand. Rates of nitrification varied between sample periods, however, with much higher rates seen in January and April.

Low temperatures have historically been thought to constrain microbial activity, however, several recent studies have shown that this inhibition is not universal and that the Arctic has an abundant and well adapted community of psychrotolerant and psychrophilic (i.e., cold-loving) microorganisms (Yager et al. 2001; Hodges et al. 2005; Connelly et al. 2006). This abundant microbial activity is especially pronounced in coastal communities, where high overall production has been demonstrated (Bates et al. 2005). In the western coastal Arctic, primary and secondary production are principally supported by nitrogen (N) inputs from the Pacific Ocean via the Bering Strait. In this system, N is drawn down to limiting levels during the summer when primary productivity is highest (Codispoti et al. 2005; Ortega- Retuerta et al. 2012). In contrast, heterotrophic bacterial communities are believed to be carbon (C) limited when a surplus supply of dissolved organic matter (DOM) is not produced by phytoplankton (Kirchman et al. 2005, 2009a). Spring inputs of riverine DOM may also provide labile material (Letscher et al. 2011), which is likely important to both primary and secondary producers (Kirchman et al. 2009b; Wickland et al. 2012). As such, the uptake of N and C are subject to intense competition by autotrophic and heterotrophic microorganisms (Fouilland et al. 2007). This balance between autotrophs and heterotrophs is a fundamental driver of ecological parameters in the Arctic marine environment and has important implications for food web dynamics and C exchange with the atmosphere.

In addition to the importance of N and C uptake in the Arctic ecosystem, the balance of these nutrients is potentially changing. The Arctic Ocean is undergoing dramatic

*LIMNOLOGY and OCEANOGRAPHY

© 2017 Association for the Sciences of Limnology and Oceanography
doi: 10.1002/lno.10580

Additional Supporting Information may be found in the online version of this article.

∗Correspondence: sbaer@bigelow.org

aPresent address: Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine

2463
changes including increases in air and water temperature, melting of permafrost in the coastal zone, and declines in sea ice (Wassmann et al. 2011). As the amount of open water in the Arctic increases and freshens, primary productivity, especially along the coasts, is expected to rise as a result of enhanced light penetration (Arrigo et al. 2008; Pabi et al. 2008). If nutrient limitation is not alleviated by increased upwelling on the shelves (Carmack and Chapman 2003), increased delivery of labile terrigenous DOM, or active N fixation, primary production would be increasingly limited by N supply, thereby reducing the ability of the Arctic Ocean to act as a sink of carbon dioxide (Cai et al. 2010). A thorough understanding of N uptake and regeneration is needed to determine how the system is currently structured, and how it may react to changes in nutrient supply and removal processes brought on by the rapid changes observed and predicted in the Arctic.

Recent investigations of microbial population dynamics and productivity in the Arctic have shown that heterotrophs remain active during winter, when decoupled from phytoplankton activity (Alonso-Sáez et al. 2008; Garneau et al. 2008). The logistical difficulties of sampling in the remote Arctic environment have restricted studies of the nutrient concentrations and concomitant uptake to support growth, especially over a full seasonal cycle, although there are some notable exceptions in the Canadian Arctic (Simpson et al. 2008, 2013a; Tremblay et al. 2008; Martin et al. 2012). With months of no direct sunlight, temperatures that remain well below freezing for much of the year, and an unstable sea-ice landscape subject to shifting currents and winds, the majority of studies investigating N uptake have focused on areas amenable to research vessels and have sampled during the late spring or summer months. However, the Arctic continental shelf accounts for 20% of the global continental shelf and Arctic coastal regions with water depths 1–18 m account for 17% of Arctic shelf area. This project sought to fill the data gap by quantifying nutrient inventories and size-fractionated uptake and regeneration rates of N and C during January, April, and August in the coastal waters of the Chukchi Sea near Barrow, Alaska.

Methods

Field sample collection

Sampling was performed during three sampling periods over two successive years centered on 71°21′ N, 156°41′ W, which is approximately 2.5 km northwest of Barrow, Alaska (Table 1). To capture the extreme Arctic light and physical conditions, sampling took place during January (26–30 January 2011 and 16–21 January 2012), April (22–25 April 2010 and 26 April 2011–02 May 2011) and August (25–29 August 2010 and 15–20 August 2011). During January and April the sample site was covered by landfast ice; during August the site was in open water. Each of the sampling efforts included two trips to the sampling site and the data collected were averaged.

January and April sampling was accomplished by cutting through the landfast sea-ice with a 20 cm diameter auger to sample the seawater below, while August sampling was accomplished from a small boat. Instantaneous readings of photosynthetically active radiation (PAR) was measured using a LI-193 Spherical Quantum Sensor (LI-COR Biosciences, Lincoln, Nebraska); the sensor was mounted on a 0.5 m extending arm to measure light levels under the ice during January and April and to avoid shading from the boat during August. Instantaneous readings were not as variable as would be expected in more temperate locations due to the high level of turbidity present in the Arctic winter waters.
to the sun’s position low on or below the horizon, depending on the season. Once we accessed the water column, sample collection was performed from a tent placed above the hole. Depth profiles of temperature and salinity were measured using a hand-deployed water quality sonde. A YSI sonde was used during the first three field trips; beginning in April 2011 we used a Manta 2 multi-sonde. Both instruments were initially calibrated by, and then maintained, as recommended by the manufacturers. Internal calibrations, checked against reference standards, were conducted before each deployment. For the Manta 2, temperature accuracy was ±0.1°C and resolution was 0.01°C; salinity accuracy was ±1% of reading and resolution was four digits. Depths at the sites visited during this study ranged from 7.0 m to 17.7 m with rate measurements done at a single depth each day in waters ranging from 1–2 m in January, 4–8 m in April, and 2–8 m in August (Table 1). Water samples for analysis of depth profiles of chlorophyll a (Chl a), bacterial abundance and a suite of ambient nutrients were collected using a hand-deployed 1 L Niskin bottle on a metered rope. These discrete samples were taken to characterize the water column and provide context for the rate measurements. Larger volumes necessary for studies of N uptake were collected with a low-pressure submersible electric pump (Johnson Pump model #16004) powered by a portable generator. The use of the pump allowed rapid collection, thus preventing the water from changing temperature. Sampling depths were chosen that were below any fresh water inputs from surface ice melt and above any contaminating inputs from the sediments (see Table 1).

Incubations for rate measurements

Water was collected into a series of 2 L acid-washed PETG bottles. All samples were run in duplicate and were inoculated with additions of 15N labeled ammonium chloride (15NH4Cl; 98.85% 15N), potassium nitrate (K15NO3; 98%), dual-labeled 15N- and 13C-urea (98%), or a 15N- and 13C-labeled algal amino acid mixture comprised of 16 amino acids (96–99%; Cambridge Isotope Laboratories, Andover, Massachusetts). Labeled bicarbonate (H13CO3−; Cambridge Isotope Laboratories) was also added to the bottles that received 15NH4Cl and K15NO3 additions. Literature values were used to estimate N tracer additions (Pomeroy et al. 1990; Wheeler et al. 1997) and alkalinity was used to derive ambient HCO3− concentrations. During January and April, 15N additions were 0.09 µmol N L−1, 0.4 µmol N L−1, 0.04 µmol N L−1, and 0.04 µmol N L−1 for NH4+, NO3−, urea, and amino acids, respectively. During August, all incubations received 0.05 µmol N L−1 of the relevant substrate. HCO3− additions were 170 µmol C L−1 during every sampling trip. For all sampling periods, these additions corresponded to average atom percent enrichments of 11%±7% for NH4+, 11%±10% for NO3−, 22%±11% for urea, 29%±9% for the amino acid mixture, and 7%±0.5% for HCO3−. We note that kinetic curves were run for NH4+, NO3−, and amino acids when ambient substrates concentrations were low enough to produce reasonable curves (Bronk, unpubl. data). The uptake rates of NH4+, NO3−, and amino acids measured with 10 µmol N L−1 saturating additions were only an average of 6.88% ± 15%, 24.3% ± 3%, and 41.7% ± 57% higher respectively, than those measured with the lowest additions used.

To reduce temperature fluctuations the bottles were placed in insulated coolers, surrounded by ambient seawater, and brought to the laboratory within 2 h of collection. Separate bottles were filled in the same manner and used to track temperature at 60 s intervals with a submerged HOBO TidbiT v2 water temperature data logger (Onset Computer Corporation, Bourne, Massachusetts); fluctuations were limited to an overall average standard deviation of 0.3°C during all trips.

Samples were incubated for 24 h at ambient light and temperature conditions (Table 1) in a temperature-controlled chamber. To mimic spectral attenuation and wavelength, light levels were maintained by fluorescent lights covered with GamColor blue films (GAM Products, Los Angeles, California) and confirmed using the PAR sensor. At the termination of the incubations, the samples were filtered through 3.0 µm silver (Sterlitech Corporation) or precombusted (450°C for 2 h) Whatman GF/F (nominal pore size of 0.7 µm) filters. The filters were placed in cryovials and frozen until analysis. During our first field excursion (April 2010), we used 0.2 µm silver filters instead of GF/F filters to collect a larger percentage of the bacterial community, and 5.0 µm instead of 3.0 µm silver filters. Chronic quality control problems with the 0.2 µm silver filters resulted in extremely low or negligible flow rates, which subsequently required a switch to GF/F filters for the remainder of the study. For analysis of total dissolved N (TDN) and dissolved organic carbon (DOC), a 40 mL aliquot of filtrate was poured into acid-washed and muffled glass EPA vials and immediately frozen; the remaining filtrate was poured into polypropylene tubes and frozen until analysis of the remaining nutrients.

Sample analyses

Concentrations of Chl a and phaeophytin were estimated from replicate samples after acetone extraction using a Turner Design Model 10-AU fluorometer (Arar and Collins 1997); detection limit of 0.025 μg L−1. Chlorophyll standards were derived from spinach (Sigma-Aldrich) diluted in 90% acetone. Bacterial abundance was determined from triplicate whole water fixed in the field with additions of paraformaldehyde at a final concentration of 0.2% w/v, kept for 15 min at 5°C to ensure complete fixation, and stored at −80°C for less than 3 months before laboratory analysis at the University of Georgia. Each sample was run in duplicate on a FACScalibur flow cytometer (Becton Dickinson, San Jose, California) after staining with SYBR Green (Life Technologies, Grand Island, New York) and the addition of reference beads (Spherotech, Fluorescent Yellow Particles, 1.7–2.2 um).
Concentrations of NH₄⁺ were measured in triplicate by the phenol-hypochlorite method (Koroleff 1983), with ammonium sulfate as the primary standard, and a detection limit of 0.05 μmol N L⁻¹. Duplicates of nitrate (NO₃⁻), nitrite (NO₂⁻), silicate (Si), and phosphate (PO₄³⁻) were measured on a Lachat QuikChem 8500 autoanalyzer (Parsons et al. 1984). The primary standards for NO₃⁻, NO₂⁻, Si, and PO₄³⁻ were potassium nitrate, sodium nitrate, potassium phosphate, and sodium silicofluoride, respectively; all analyses have a detection limit of 0.03 μmol N, Si, or P L⁻¹. Urea was analyzed using the manual diacetyl monoxime method (Price and Harrison 1987), with a detection limit of 0.10 μmol N L⁻¹. Concentrations of free amino acids were measured as dissolved primary amines (DPA); in marine waters where the concentrations of NH₄⁺ are not high, concentrations of dissolved free amino acids (DFAA) are the same as the concentration of DPAs (Keil and Kirchman 1991). DPAs were measured in triplicate on a Shimadzu RF-1501 spectrofluorometer following the o-phthaldialdehyde method (Parsons et al. 1984) with glycine as the primary standard, and a detection limit of 0.025 μmol N L⁻¹. Concentrations of DPA were made in triplicate by high temperature combustion on a Shimadzu TOC-V TNM (Hansell 1993; Sharp et al. 2002). Instrument calibration was assessed by the inclusion of deep-sea reference water samples, as provided by the consensus reference material program at the University of Miami (http://yyy.rsmas.miami.edu/groups/biogeochem/CRM.html). Dissolved organic N (DON) was calculated by subtracting inorganic N (NH₄⁺, NO₃⁻, and NO₂⁻) from TDN; the errors for all the terms were propagated to provide the standard error for DON (Bork et al. 2000).

Isotopic measurements for ¹⁵N and ¹³C uptake rate samples were run on a Europa GEO 20/20 mass spectrometer with an ANCA autosampler. N uptake rates were calculated as per Dugdale and Goering (1967), and C uptake rates as per Hama et al. (1983). The uptake rates associated with the GF/F (nominal pore size of 0.7 μm)—3.0 μm size fraction were estimated by subtraction of the >3.0 μm fraction in rates measured from whole water collected on GF/F filters. At the end of the incubations, NH₄⁺ was isolated by solid phase extraction (Dudek et al. 1986; Brzezinski 1987). This allowed for correction of NH₄⁺ uptake rates due to isotope dilution (Gilbert et al. 1982) and to calculate rates of NH₄⁺ regeneration and nitrification. With the exception of outliers during April 2011, when corrected for isotope dilution NH₄⁺ uptake rates increased by 23% ± 16% over the uncorrected rate. We also collected samples for isolation of the NO₃⁻ pool, which also included NO₂⁻ using the denitrifier method (Sigman et al. 2001). As a result, the nitrification rates calculated represent NH₄⁺ and NO₂⁻ oxidation combined. We chose not to correct NO₃⁻ uptake rates for isotope dilution. Isotope dilution is generally negligible when ambient concentrations are high such as those we measured during the January and April sampling periods (Table 2). Concentrations of NO₃⁻ were low during August, however, so we isolated the NO₃⁻ pool in August 2011, but found that isotope dilution corrected rates were not statistically different from the uncorrected rates.

Statistics

Data analyses were conducted in the open-source statistical software program R, version 2.15.0 for Mac (R Core Team 2012). Mean rate estimates were compared using two-way analysis of variance (ANOVA) and Tukey’s Honestly Significant Difference Method at the 95% confidence level. Correlation coefficients (R values) ≤ 0.4 were considered significant. To determine how the planktonic community responded to the different substrates during the different sample periods (Mccarthy et al. 1977), a relative preference index (RPI) was calculated according to the following formula:

\[
\text{RPI} = \frac{\text{relative uptake rate of substrate} \times \text{concentration of substrate}}{\sum \text{relative uptake rate of substrate} \times \text{concentration of substrate}}
\]

where ρ/N is absolute uptake of a substrate and [N] is the concentration of that substrate. Each is divided by the total (Σ) absolute uptake and concentration of all N substrates respectively.

Results

Based on the distinct physiochemical differences between sampling periods (January, April, and August; Supporting Information Fig. S1), results have been analyzed by sampling period, and subsequently compared across all sample periods.

Physical conditions

During January 2011, sampling took place 26–28 January, the week after the first sunrise of the season. In January 2012, sampling occurred 16–21 January, during the week of first sunrise. Ice thickness was approximately 1.0 m both years and irradiance in the water column was ≤ 0.30 μmol s⁻¹ m⁻² (Table 1). The water column was well mixed, as indicated by constant temperature and salinity in the depth profiles (data not shown).

During the April sampling trips, the site experienced over 20 h d⁻¹ of full sun. Sea ice thickness averaged 1.0 m. As observed during the January, the water column appeared to be well mixed with respect to temperature and salinity. At the sampling depth used for all rate measurements, PAR was approximately 5 μmol s⁻¹ m⁻², with the exception of our final April trip in 2011, when the PAR was 11 μmol s⁻¹ m⁻², likely because we sampled at a shallower depth (Table 1).

During the August sampling trips the sampling site experienced 17–19 h d⁻¹ of sunlight, and as in other periods the water column was well mixed with respect to temperature (5.5 ± 0.7°C) and salinity (30.7 ± 0.6). At the depth of
Ambient biological abundance and nutrient concentrations

Biological inventories were low but variable during January and April (Table 2). In contrast, concentrations of NH$_4^+$ (0.7–2.4 μmol N L$^{-1}$) and NO$_3^-$ (5.9–9.5 μmol N L$^{-1}$) were generally high during those periods; NO$_3^-$ accounted for 50–64% of TDN. January 2012 was the only trip when NO$_3^-$ was measurable, and even then it was just barely above the detection limit (0.03 μmol N L$^{-1}$; data not shown). DON concentrations were lowest during January (3.0–5.2 μmol N L$^{-1}$), and the DOC : DON ratio ranged from 17.5 to 26.8, well above the mean stoichiometric ratio for plankton (Redfield 1934). DON was primarily composed of unidentified compounds with urea and DPA contributing less than 11% of the total DON pool.

During August, Chl a concentrations (0.5–1.4 μg L$^{-1}$) and bacterial cell counts (5.9–19.7 × 108 cells L$^{-1}$) increased, while concentrations of NO$_3^-$ were an order of magnitude lower relative to the preceding January and April (Table 2). In contrast, DON was higher during August (6.6 ± 0.8 μmol N L$^{-1}$) than the other two periods. Concentrations of organic nutrients generally increased, but the DOC : DON ratio decreased to 12.2–16.0. Concentrations of both PO$_4^{3-}$ and Si dropped during August relative to the ice-covered periods; PO$_4^{3-}$ was <0.59 compared to >0.98 μmol P L$^{-1}$ and Si was <0.05 compared to 0.8–34.0 μmol Si L$^{-1}$.

Uptake rates

Bacterial abundance was measured using flow cytometry before and after filtering through the GF/F filters, as they are known to capture some variable fraction of the bacteria (discussed in Bradley et al. 2010) as well as phytoplankton cells (Kirchman and Wheeler 1998). Our check on the size fractionation technique revealed that a potentially large fraction of bacteria were retained on the GF/F filters, and the percentages of bacterial cells retained differed depending on the sample period. During August, 61% of the bacterial cells were retained, and even more (74%) during April, while January apparently shifted to smaller cells or less aggregates and the GF/F filters only retained 36% of the bacterial cells. Thus, our N and C uptake rates include variable contributions from heterotrophic bacteria. During September in the surface waters of a Baffin Bay polynya, Fouilland et al. (2007) calculated that GF/F filters captured 80% of the total living bacterial community, which roughly aligns with our results for August.

We calculated two types of uptake rates: absolute and specific. Absolute rates are expressed in nmol N L$^{-1}$ h$^{-1}$ and measure accumulation of a substrate within particles. Specific uptake rates are the atom percent enrichment of the cells divided by the atom percent enrichment of the
substrate source pool, multiplied by time; specific uptake rates are expressed in units of per time (h\(^{-1}\)) and are analogous to growth rates (Supporting Information Fig. S2). In January, absolute N uptake rates were generally the lowest observed across the three periods studied (Fig. 2; Table 3). Specific uptake rates exhibit the same general pattern as
AAN and AAC refers to uptake rates of the nitrogen and carbon component of free amino acids respectively.

In January, there was no significant difference (p > 0.05) between the > 3 μm and GF/F – 3.0 μm uptake rates of NH₄⁺ (Table 3). Though NO₃⁻ concentrations were high in January, total NO₃⁻ uptake was generally lower than NH₄⁺; the GF/F – 3.0 μm fraction had higher rates than the larger (> 3.0 μm) fraction. Urea uptake rates were lower than the other substrates. Uptake rates of free amino acid N (AAN) were highest of all the substrates measured in both size fractions, with uptake rates in the smaller size fraction again higher than those in the larger. The amino acid mixture also appears to be a source of C, particularly for the smaller size fraction (Fig. 3; Table 3). Uptake of C from urea (Urea₅) and HCO₃⁻ uptake was not detected in any of the January samples.

In April, uptake rates tended to be greater than the January rates (Fig. 2). There were no statistically significant

Table 3. Absolute uptake rates. Mean and standard deviations of nitrogen and carbon uptake rates measured in the large (> 3.0 μm) and small (GF/F, nominal pore size of 0.7 μm, to 3.0 μm) size fractions.

<table>
<thead>
<tr>
<th>Month</th>
<th>Year</th>
<th>n</th>
<th>Size fraction</th>
<th>NH₄⁺ (nmol N L⁻¹ h⁻¹)</th>
<th>NO₃⁻ (nmol N L⁻¹ h⁻¹)</th>
<th>Urea (nmol C L⁻¹ h⁻¹)</th>
<th>AA₅ (nmol N L⁻¹ h⁻¹)</th>
<th>AA₅C (nmol C L⁻¹ h⁻¹)</th>
<th>HCO₃⁻ (nmol C L⁻¹ h⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>>3</td>
<td>0.16 ± 0.01</td>
<td>0.05 ± 0.01</td>
<td>0.01 ± 0.00</td>
<td>0.21 ± 0.14</td>
<td>0.57 ± 0.46</td>
<td>BD</td>
<td>BD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.14 ± 0.09</td>
<td>0.09 ± 0.01</td>
<td>0.01 ± 0.00</td>
<td>0.31 ± 0.13</td>
<td>0.95 ± 0.29</td>
<td>BD</td>
<td>BD</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>>3</td>
<td>0.07 ± 0.00</td>
<td>0.06 ± 0.02</td>
<td>0.01 ± 0.01</td>
<td>0.11 ± 0.09</td>
<td>0.08 ± 0.11</td>
<td>BD</td>
<td>BD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.06 ± 0.06</td>
<td>0.14 ± 0.02</td>
<td>0.01 ± 0.01</td>
<td>0.34 ± 0.26</td>
<td>3.74 ± 5.50</td>
<td>BD</td>
<td>BD</td>
</tr>
<tr>
<td>April</td>
<td>2010</td>
<td>>5</td>
<td>0.36 ± 0.00</td>
<td>0.09 ± 0.07</td>
<td>0.18 ± 0.18</td>
<td>0.11 ± 0.13</td>
<td>0.33 ± 0.42</td>
<td>0.71 ± 0.62</td>
<td>BD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2-5</td>
<td>0.20 ± 0.67</td>
<td>0.01 ± 0.02</td>
<td>0.06 ± 0.07</td>
<td>0.09 ± 0.02</td>
<td>0.47 ± 0.67</td>
<td>0.27 ± 0.45</td>
<td>BD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>3</td>
<td>0.28 ± 0.16</td>
<td>0.09 ± 0.04</td>
<td>0.02 ± 0.00</td>
<td>0.45 ± 0.37</td>
<td>0.62 ± 0.53</td>
<td>0.13 ± 0.15</td>
<td>BD</td>
</tr>
<tr>
<td>August</td>
<td>2010</td>
<td>>3</td>
<td>0.61 ± 0.18</td>
<td>0.19 ± 0.07</td>
<td>0.02 ± 0.00</td>
<td>1.27 ± 0.69</td>
<td>2.01 ± 1.09</td>
<td>0.14 ± 0.03</td>
<td>BD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10.7 ± 3.70</td>
<td>2.79 ± 0.06</td>
<td>4.92 ± 2.79</td>
<td>1.42 ± 0.15</td>
<td>2.26 ± 0.83</td>
<td>20.4 ± 0.36</td>
<td>BD</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>>3</td>
<td>8.61 ± 6.56</td>
<td>1.25 ± 0.80</td>
<td>3.71 ± 0.83</td>
<td>3.80 ± 1.65</td>
<td>7.25 ± 10.3</td>
<td>4.42 ± 6.25</td>
<td>BD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10.5 ± 8.07</td>
<td>1.75 ± 1.48</td>
<td>4.69 ± 4.89</td>
<td>2.93 ± 1.58</td>
<td>9.95 ± 6.59</td>
<td>42.3 ± 25.7</td>
<td>BD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.52 ± 4.22</td>
<td>0.17 ± 0.15</td>
<td>1.34 ± 1.89</td>
<td>2.51 ± 1.31</td>
<td>4.26 ± 6.77</td>
<td>4.47 ± 2.92</td>
<td>BD</td>
</tr>
</tbody>
</table>

* AAN and AAC refers to uptake rates of the nitrogen and carbon component of free amino acids respectively.
differences \(p > 0.05 \) in the rates between the size fractions for any of the substrates. During April, \(\text{NH}_4^+ \) continued to be an important N source. As in January, even though \(\text{NO}_3^- \) concentrations were high, uptake rates were still relatively low at \(< 0.2 \, \text{nmol N L}^{-1} \, \text{h}^{-1}\). Free amino acids remained the preferred form of N in April, especially for the smaller size fraction, which had AAN uptake rates approximately three times higher than the larger. Uptake rates of \(\text{HCO}_3^- \) were small but measurable and not significantly different \(p > 0.05 \) between the size fractions.

During August, absolute uptake rates for all substrates were generally more than an order of magnitude higher than the other two periods, with \(\text{NH}_4^+ \) utilization being the highest relative to other substrates (Fig. 2). Unlike the ice covered periods, the larger size fraction generally had higher uptake rates. The uptake of \(\text{NH}_4^+ \) dominated both the smaller and larger size fractions. Uptake of \(\text{NO}_3^- \) in the >3.0 \(\mu \text{m} \) size fraction jumped two orders of magnitude, while the GF/F – 3.0 \(\mu \text{m} \) fraction also increased by the same magnitude, but only during 2010 (Table 3). Rates of urea and \(\text{HCO}_3^- \) uptake also increased by more than an order of magnitude during August. Compared to April, AAC uptake rates in August increased by a factor of 2–16. Urea\(_c\) utilization was only detected during the August 2010 sampling trip (Table 3).

Rates of \(\text{NH}_4^+ \) regeneration averaged \(13.4 \pm 7.4 \, \text{nmol N L}^{-1} \, \text{h}^{-1} \) for all measurements taken, but with large interannual variability during April (Table 4). Nitrification was high during the January and April periods (mean of \(21.7 \pm 10.9 \, \text{nmol N L}^{-1} \, \text{h}^{-1} \)), but dropped more than an order of magnitude during August (mean of \(1.0 \pm 0.3 \, \text{nmol N L}^{-1} \, \text{h}^{-1} \)).

We used the calculated RPI to define which substrates were taken up preferentially relative to their abundance (McCarthy et al. 1977). In January, the RPI of AAN in both size fractions was at least an order of magnitude higher than the other N substrates (Table 5). In April, AAN generally had the highest RPI, but the difference among substrates was not as large. This trend continued in August, when RPI values among the substrates were generally more equal. While this method is known to be sensitive to nutrient concentration (Stolte and Riegman 1996), DPA concentrations remained low year-round, and cannot alone explain the difference in free amino acid uptake observed during the three sampling periods. Additionally, the high uptake rates and relatively unchanging DPA concentrations imply high free amino acid regeneration in the system.

Table 4. \(\text{NH}_4^+ \) regeneration rates and nitrification rates. Rates listed are the mean and standard deviation for each sampling trip \(n = 2 \) for each row in the table. ND indicates no data.

<table>
<thead>
<tr>
<th>Month</th>
<th>Year</th>
<th>(\text{NH}_4^+) regeneration ((\text{nmol N L}^{-1} , \text{h}^{-1}))</th>
<th>Nitrification ((\text{nmol N L}^{-1} , \text{h}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>2011</td>
<td>(17.2 \pm 5.7)</td>
<td>(27.4 \pm 8.2)</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>(10.4 \pm 0.5)</td>
<td>(15.8 \pm 9.6)</td>
</tr>
<tr>
<td>April</td>
<td>2010</td>
<td>(4.8 \pm 1.4)</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>(27.8 \pm 1.2)</td>
<td>(24.9 \pm 16.6)</td>
</tr>
<tr>
<td>August</td>
<td>2010</td>
<td>(12.5 \pm 9.4)</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>(15.2 \pm 3.1)</td>
<td>(1.0 \pm 0.3)</td>
</tr>
</tbody>
</table>

Discussion

Most marine N cycling studies in the Arctic have focused on dissolved inorganic N (\(\text{NH}_4^+, \text{NO}_3^- \)) with limited investigations of the role of DON sources such as urea and free amino acids. Fig. 3. Absolute uptake rates of carbon. Mean rates of carbon uptake (two experiments for each of 2 yr) for each substrate tested, with error bars representing the standard deviation \(n = 4 \). Solid bars are the >3.0 \(\mu \text{m} \) fraction, and hatched bars are GF/F (nominal pore size of 0.7 \(\mu \text{m} \) = 3.0 \(\mu \text{m} \) fraction. The dashed line in the August panel corresponds to the uppermost y-axis scale of the January and April panels, and is included solely for a reference. BD indicates below detection.
acids. Additionally, studies have generally been conducted in offshore waters during the summer (Supporting Information Table S1). This is the first study we are aware of that provides N uptake rates in Arctic near shore waters during January, April, and August. Each period presents a unique set of physical and biological conditions, and the shallow waters of our sampling site are representative of the broad transitional area between terrestrial and offshore marine environment that is prevalent in the Arctic. In addition to variations in seasonal light and ice coverage, episodic advection can change the nutrient regime rapidly on the coastal shelves (Carmack and Chapman 2003). This leads to high regional (Codispoti et al. 1991) and interannual (Kirchman et al. 2009a) variability in community production, along with dynamic winter to summer changes in community composition (Alonso-Sáez et al. 2008). Corresponding to changes in the physical and biological realms, it is expected that nutrient inventories are also highly dynamic. Biogeochemical cycles both drive biological variables and respond to changes in the system over the yearly cycle. The three sampling periods allowed us to quantify N cycling at the extremes of light and temperature present in the region, as the confounding factors of temperature, irradiance, and nutrient concentrations have historically eluded straightforward description (Smith and Harrison 1991).

Trends throughout the year

In January, NO$_3^-$ was the most abundant N pool while NO$_3^-$ uptake rates were consistently lower than those of NH$_4^+$ and AA$_N$. The lower NO$_3^-$ uptake rates were likely due to the metabolic cost of intracellular reduction of NO$_3^-$ to NH$_4^+$. Free amino acids accounted for the majority of uptake for both N and C of the substrates tested, indicating that DON and DOC sources primarily supported microbial activity during January. There was uptake of all substrates by the larger size fraction, but no concomitant evidence of primary production (i.e., HCO$_3^-$ uptake) in January. While phytoplankton can effectively utilize DON (e.g., Berman and Bronk 2003; Bronk et al. 2007), it is likely that uptake of AA$_C$ in the larger size fraction indicates use by particle-attached bacteria or other microheterotrophs (e.g., microflagellates, small ciliates) that may have been collected on the 3.0 μm filters. Alternatively, or additionally, free amino acid uptake could indicate mixotrophy, which has been reported in this system (Cottrell and Kirchman 2009; Seuthe et al. 2011), and would help explain cellular maintenance by phytoplankton during the dark ice-covered winter season.

In April, surface irradiance increased dramatically but ice thickness continued to grow toward its yearly apex, which likely kept the water column community light limited (Tremblay et al. 2006; Terrado et al. 2008). Uptake of NO$_3^-$ remained low despite high NO$_3^-$ concentrations and higher Chl a. Our January and April NO$_3^-$ uptake rates are similar to the only other study of N uptake by under-ice plankton in the Chukchi Sea, which measured NO$_3^-$ uptake with a range of 0.02-0.39 nmol N L$^{-1}$ h$^{-1}$ in the Canada Basin in June and July (Lee et al. 2010; Supporting Information Table S1). In fact, NO$_3^-$ utilization was low during each of the sampling trips in our study, but especially so during January and April, even though April rates of NH$_4^+$ and AA$_N$ uptake increased by more than a factor of two as compared to uptake in January. This observation is consistent with earlier work that found NO$_3^-$ uptake to be more sensitive to low temperatures than NH$_4^+$ (Reay et al. 1999). The drawdown of NO$_3^-$ concentrations observed between April and August suggests that the peak in NO$_3^-$ uptake likely occurred between our April and August sampling trips.

Uptake rates between ice-free and ice-covered conditions can change quickly and the difference can be large (Garneau et al. 2007). When sea ice-imposed light limitation was completely lifted in the summer, the biological community responded with increased biomass and broad usage of all the N substrates measured (Table 3). The observed rapid NO$_3^-$ drawdown and production of DON between our April and August expeditions, coupled with increases in Chl a and NO$_3^-$ uptake rates, indicate high levels of productivity over the summer. As shown by the RPI results (Table 5), while AA$_N$ was the dominant preferred substrate in January and April, substrate utilization during August was balanced across

Table 5. Relative preference index of nitrogen substrates. Means are presented for each season, size fraction, and substrate tested (NH$_4^+$ is ammonium, NO$_3^-$ is nitrate, and AA$_N$ is free amino acid N). Note that 0.2 μm and 5.0 μm silver filters were used during the first sampling trip (April 2010), but were discontinued due to difficulty obtaining quality filters.

<table>
<thead>
<tr>
<th>Month</th>
<th>Year</th>
<th>GF/F-3.0 μm</th>
<th>>3.0 μm</th>
<th>GF/F-3.0 μm</th>
<th>>3.0 μm</th>
<th>GF/F-3.0 μm</th>
<th>>3.0 μm</th>
<th>GF/F-3.0 μm</th>
<th>>3.0 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NH$_4^+$</td>
<td>NO$_3^-$</td>
<td>Urea</td>
<td>AA$_N$</td>
<td>NH$_4^+$</td>
<td>NO$_3^-$</td>
<td>Urea</td>
<td>AA$_N$</td>
</tr>
<tr>
<td>January</td>
<td>2011</td>
<td>1.0</td>
<td>1.7</td>
<td>0.3</td>
<td>0.2</td>
<td>0.45</td>
<td>1.0</td>
<td>41</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.9</td>
<td>4.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.17</td>
<td>2.8</td>
<td>90</td>
<td>63</td>
</tr>
<tr>
<td>April</td>
<td>2010</td>
<td>10</td>
<td>5.2</td>
<td>0.02</td>
<td>0.2</td>
<td>4.6</td>
<td>7.6</td>
<td>15</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>3.6</td>
<td>4.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.6</td>
<td>1.4</td>
<td>78</td>
<td>71</td>
</tr>
<tr>
<td>August</td>
<td>2010</td>
<td>1.3</td>
<td>1.5</td>
<td>0.4</td>
<td>0.9</td>
<td>0.8</td>
<td>0.8</td>
<td>1.4</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0.9</td>
<td>1.2</td>
<td>0.1</td>
<td>0.4</td>
<td>0.4</td>
<td>0.7</td>
<td>4.3</td>
<td>2.0</td>
</tr>
</tbody>
</table>
all the N forms tested. The phytoplankton community was able to utilize the available light for photosynthesis and to incorporate N from NO$_3^-$, as the cost of reduction may be less than costs of competition for scarce free amino acid compounds. In Arctic surface waters, it has been found that absolute uptake rates of NO$_3^-$ are generally only greater than NH$_4^+$ and urea uptake during a bloom period (Smith 1993; Kristiansen et al. 1994; Simpson et al. 2013a). At the subsurface chlorophyll maximum, Martin et al. (2012) found higher uptake of NO$_3^-$ (relative to NH$_4^+$) from spring through late fall (Supporting Information Table S1), but calculated a declining dependence on NO$_3^-$ as the season progressed. Our sampling bracketed the water column spring bloom period. Given the low concentrations of NO$_3^-$ (< 0.4 μmol N L$^{-1}$) observed in August, it is clear that the period of NO$_3^-$ drawdown and high Chl a was over (e.g., Yager et al. 2001) by the time our sampling began.

During late August of both study years, Chl a concentrations were relatively low (< 2.0 μg L$^{-1}$; Table 2) compared to temperate regions. With a 52–81% reduction in the concentration of Si from April to August, diatoms were likely prominent (Rožańska et al. 2009), although flagellates have been found in even greater abundance in this region (Horne and Schrader 1982). In addition, as light limitation was reduced with the seasonal cycle and retreat of sea ice, C uptake from AA$_C$ and HCO$_3^-$ uptake increased substantially relative to January and April. Both size fractions took up HCO$_3^-$ in August, which likely indicates that there are small chemooautotrophs or photoautotrophs that passed through the 3.0 μm filters (Worden and Not 2008). Another potential source of C is Urea$_C$, but uptake rates of Urea$_C$ from this study were relatively low. In a study in Baffin Bay, rates of Urea$_C$ uptake were highest at more northerly sites (> 77° N; Harrison et al. 1985), suggesting possible regional or latitudinal differences in Urea$_C$ utilization.

The coastal area of the Chukchi Sea is highly productive (Bates et al. 2005), with high relative uptake rates of N that support primary and secondary production. During our August sampling, we measured total absolute N uptake (i.e., uptake of NH$_4^+$, NO$_3^-$, and urea combined) at levels higher than those found in almost any other N uptake study in the western Arctic (Supporting Information Table S1). Studies from other regions of the western Arctic have found that NO$_3^-$ uptake rates are generally equal to or greater than those of NH$_4^+$, with more importance ascribed to “new” as opposed to “regenerated” production (cf. Dugdale and Goering 1967). In contrast, our study and others conducted in the region (Lee et al. 2007, 2012) show a strong preference for NH$_4^+$ over NO$_3^-$ in the late summer. In our study, this trend continues during the January and April sampling periods as well. It is therefore unlikely that the NH$_4^+$ and DON preference is simply a matter of substrate availability, but rather an indication of a fundamental difference in the metabolic strategies of the plankton community in the coastal Chukchi Sea. Low specific uptake rates of NO$_3^-$ relative to other N substrates during all sample periods (Supporting Information Fig. S2) support this fundamental metabolic difference hypothesis.

F-ratios have been used to compare the fraction of production within a system supported by new N (Eppley and Peterson 1979). The traditional calculation of the ratio was the uptake rate of NO$_3^-$, assumed to be the source of new N and representative of new production, divided by the sum of NH$_4^+$ uptake, representative of regenerated production, plus NO$_3^-$ uptake. In this study, the traditional f-ratio calculated for the > 3.0 μm fraction was highest in January (0.32 ± 0.18;

Table 6. F-ratios for all seasons. F-ratios were calculated using the traditional approach (\(\frac{\rho_{NO_3^-}}{\rho_{NO_3^-} + \rho_{NH_4^+}}\)) and with the inclusion of organic nitrogen forms (\(\frac{\rho_{NO_3^-} + \rho_{NH_4^+} + \rho_{Urea}}{\rho_{AA}}\)). Means and standard deviations are presented for each season and size fraction. Note that 0.2 μm and 5.0 μm silver filters were used during the first sampling trip (April 2010), but were discontinued due to difficulty obtaining quality filters.

<table>
<thead>
<tr>
<th>Month</th>
<th>Year</th>
<th>Traditional</th>
<th>Organic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GF/F-3.0 μm</td>
<td>>3.0 μm</td>
</tr>
<tr>
<td>January</td>
<td>2011</td>
<td>0.42 ± 0.15</td>
<td>0.18 ± 0.11</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>0.66 ± 0.25</td>
<td>0.46 ± 0.08</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>0.54 ± 0.22</td>
<td>0.32 ± 0.18</td>
</tr>
<tr>
<td>April</td>
<td>2010</td>
<td>0.04</td>
<td>0.04 ± 0.06</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0.26 ± 0.09</td>
<td>0.24 ± 0.04</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>0.21 ± 0.13</td>
<td>0.16 ± 0.12</td>
</tr>
<tr>
<td>August</td>
<td>2010</td>
<td>0.18 ± 0.09</td>
<td>0.26 ± 0.09</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0.07 ± 0.03</td>
<td>0.13 ± 0.04</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>0.12 ± 0.08</td>
<td>0.19 ± 0.09</td>
</tr>
</tbody>
</table>
Table 6). If the GF/F - 3.0 μm fraction is used, the f-ratio was highest in January (0.54 ± 0.22), and then decreased in April and again in August (0.12 ± 0.08). We note that the original concept of the ratio was developed in the open ocean where NO3− from the deep NO3− pool was distinguished from NH4+ regenerated in surface waters. The application of the f-ratio to coastal waters is problematic in that sources of new and regenerated N are not as easily distinguished. NO3− can be regenerated in surface waters during nitrification, a process observed at the sites in this study (Table 4; Baer et al. 2014). NH4+ can also come from terrestrial or riverine sources and therefore could also be considered new N. As a result, the f-ratios reported in Table 6 should be used with caution.

We further note that the original concept of the f-ratio only considered inorganic N sources. We now know that organic N can be an important, presumably regenerated source of N (Bronk and Steinberg 2008). We calculated what we term the organic f-ratio, which includes the uptake rate of urea and amino acids in the estimate of regenerated N uptake. These new organic f-ratios were always lower than the traditional but again the highest f-ratios were calculated in January in both the > 3.0 μm (0.17 ± 0.12) and in the GF/F - 3.0 μm fraction (0.22 ± 0.13; Table 6). Once again, however, we know that terrestrial DOM flows into these coastal systems such that urea and amino acids could be a mixture of both new and regenerated sources of N. This may be why the f-ratios by sample period in this study are counter-intuitive: the dark, ice-covered January period would be expected to have the lowest f-ratio due to light limitation. The very low uptake rates could also cause disproportionately large differences in f-ratios, making interpreting true differences difficult.

Importance of DON

Many of the earliest studies of N uptake in the Arctic took place during the summer in the large polynyas surrounding Greenland and, as stated above, found that NH4+ and NO3− uptake were of similar magnitude (Supporting Information Table S1). When measured, urea uptake in the Arctic was generally a small component (mean = 15.0%; range = 4.4–24.1%) of the total uptake (see Supporting Information Table S1 for references). Our study found that urea accounted for 27% of total N uptake (not including AA organic additions) for a direct comparison to the other studies. The uptake rates reported here are above the range reported by others despite the use of near-tracer additions. As we noted in the Methods, although our additions were at times above the 10% targeted in tracer additions, we do not believe this caused significant rate inflation based on kinetic curves run in parallel. Further, Martin et al. (2012) explicitly investigated the significance of saturating additions with inorganic N in Arctic waters and reported them to be minimal. A companion study that was part of this project found that Urea was an important N source during January, especially for prokaryotic populations (Connelly et al. 2014). The location of the sample sites may have contributed to the relatively high N uptake rates observed in this study. The sites are situated near shore in the Chukchi Sea and are likely influenced by both terrestrial inputs and high nitrate concentrations entering via the Bering Strait inflow (Le Fouest et al. 2013; Tremblay et al. 2015).

In the other studies of the western Arctic, RPIs have indicated low preference for urea even when uptake rates are high (Harrison et al. 1985). Highly variable urea concentrations throughout the region (Simpson et al. 2008) may impact RPI estimates (Stolte and Riegman 1996), as we are only capturing discrete time points. We did not find much difference in ambient urea concentrations between sampling periods (range = 0.14–0.96 μmol N L−1; Table 2), and found urea to generally be preferred over NO3−, especially in the > 3.0 μm size fraction (Table 5). Even so, rates of urea uptake were exceedingly low (< 0.2 nmol N L−1 h−1 during January and April). Only during August, when zooplankton and migrating seabirds are a likely localized source of urea via excretion and sloppy feeding (Conover and Gustavson 1999), does the microbial community respond with increased uptake rates. Urea concentrations were also fairly high during April, most likely due to release from landfast ice (Conover et al. 1999), but uptake rates remained low.

During both the January and April AA1 was the most preferred form of N (Table 5). This is consistent with previous reports from the Arctic that demonstrated that labile DOM constituents, including free amino acids, are an important nutrient resource for prokaryotes (Rich et al. 1997; Yager and Deming 1999; Kirchman et al. 2007; Alonso-Sáez et al. 2008; Nikrad et al. 2012). In marine systems in general, free amino acids can support up to 40% of bacterial production (Kirchman 2000) with prokaryotes able to assimilate them even at nanomolar concentrations (Cottrell and Kirchman 2000; Ouverney and Fuhrman 2000) and sub-zero temperatures (Yager and Deming 1999). In our study, AA1 uptake was observed during all three sampling periods, with decreased importance relative to other N and C sources only in August. The average molar C : N uptake ratio of the amino acid mixture (i.e., AA1 : AA1) was 10.5 ± 5.4 for the whole community during January 2012, which is well above the Redfield C : N ratio of 6.6, indicating that C was assimilated preferentially to N. For all other sampling trips it was 2.6 ± 1.0, indicating that free amino acids were an important source of N. The fact that AA1 was being taken up by the > 3.0 μm size fraction could also be an indication of the importance of DON use by phytoplankton, microflagellates and/or ciliates (Bronk et al. 2007; Sanderson et al. 2008).

In the Arctic, rivers deliver high concentrations of labile organic nutrients (e.g., Dittmar and Kattner 2003; Holmes et al. 2008; Mcclelland et al. 2012). DON tends to be rapidly consumed in the marine receiving waters, but can also be produced in situ in the Chukchi Sea (Letscher et al. 2013);
this is particularly true of low molecular weight compounds like urea and amino acids. In this study, urea and AA N were only a small percentage (< 10%) of the overall DON pool, but at times had high rates of uptake compared to inorganic N (see Tables 3, 5). Marine DON consists of a complex mixture of compounds that remain uncharacterized, with urea and free amino acids known to be highly labile (Bronk 2002; Sipler and Bronk 2015). Our results highlight the importance of some fractions of the DON pool, which were likely produced in situ. In the future, the components and lability of Arctic DON is expected to change as more terrigenous material is transported from the tundra to the coastal ocean (Sipler et al. 2017). This highly aromatic terrigenous material will likely be less labile than the low molecular weight compounds studied here, but as of this writing, little is known about the changing bioavailability of DOM entering the Arctic coastal zone.

Importance of regeneration

In August, when NH$_4^+$ was scarce, we measured relatively high regeneration rates (Table 4), but the relationship between NH$_4^+$ concentrations and regeneration rates is highly equivocal, with no significant correlation (Fig. 4; $R = 0.39$) between them. While the overall trend appears to be positive, regeneration rates during August seem to generally confound this pattern, such that even though ambient NH$_4^+$ concentrations are low, regeneration rates are relatively high. This suggests tight coupling with uptake during summer that helps to keep NH$_4^+$ concentrations low (Clark et al. 2008). During each sample period, the calculated NH$_4^+$ regeneration rates (including nitrification) were higher than the total combined absolute uptake rate of all the N substrates tested. This implies that the cycling of N within the coastal system is sufficient to supply the N needs of the autotrophic community present.

Nitrification can oxidize a significant portion of NH$_4^+$ to NO$_2^-$, even in the surface waters of the Arctic (Simpson et al. 2013b). In the Chukchi Sea, Christman et al. (2011) measured nitrification rates that were 25 times greater during winter (mean = 0.15 nmol L$^{-1}$ h$^{-1}$) than summer (mean = 0.006 nmol L$^{-1}$ h$^{-1}$). We measured significantly higher nitrification rates in our study, which took place in the same region. During the ice-covered periods nitrification ranged from 15.8 nmol L$^{-1}$ h$^{-1}$ to 27.4 nmol L$^{-1}$ h$^{-1}$, and fell to 1.0 nmol L$^{-1}$ h$^{-1}$ in August (Table 4). It is not clear why there is such a great disparity in absolute rates, but the relative rates between sample periods show that nitrification is more active during January as opposed to August. This elevation in nitrification during ice-covered conditions could contribute to the high NO$_3^-$ inventories found generally in the Arctic before the spring bloom period (Tremblay et al. 2008). The fact that nitrification dominates during the low-light sample periods could be a result of light inhibition of nitrification (e.g., Ward 2008), but that relationship is equivocal (Yool et al. 2007). The lack of nitrification in August could alternatively be a function of phytoplankton and bacteria effectively outcompeting nitrifiers for NH$_4^+$, which is present at low concentrations. Uptake rates of NH$_4^+$ were highest in August, which could impact availability of NH$_4^+$ as a substrate for nitrification. Though nitrification rates were significantly correlated with ambient NH$_4^+$ concentrations (Fig. 4; $R = 0.67; p = 0.0005$), rates of NH$_4^+$ regeneration were not significantly lower in August relative to January and April. Urea
has also been proposed as a substrate source for nitrification in polar regions (Alonso-Sáez et al. 2012). Although we did not directly measure urea-fueled nitrification rates in our study, potential nitrification rates measured from the NH$_4^+$ pool were not correlated to urea concentrations ($R = 0.43$; $p > 0.1$).

Conclusions

The western coastal Arctic appears to be increasingly reliant on pelagic processes (Grebmeier et al. 2006). The contribution of the sea ice community to the ecology of the region is sure to decline along with the sea ice habitat. At least in the short term, pelagic phytoplankton will likely respond positively to the earlier light penetration through thinning ice (Lee et al. 2011; Arrigo et al. 2012) and open water conditions (Arrigo et al. 2008). In the future, the Arctic Ocean is also generally expected to be heavily influenced by increased thermal stratification (Peterson et al. 2006). However, the near shore site occupied by our study was never thermally stratified and therefore the physical forcing mechanisms in the shallow coastal areas may respond to other physical processes or not at all. Our work highlights the unique characteristics of the near shore environment of the Chukchi Sea. While there is likely a short-term pulse of NO$_3^-$ uptake that corresponds with the spring bloom period (e.g., Martin et al. 2012), the remainder of the year is heavily dependent on NH$_4^+$ and organic substrates. The incorporation of seasonal uptake rates of N and C containing compounds is critical for predicting the productivity of the coastal western Arctic. Our research indicates that there is a robust planktonic microbial community during winter that has access to large pools of ambient N, but maintains low levels of assimilation until light limitation is lifted in the summer. The microbial community is able to respond to nutrient availability and utilize multiple forms of both N and C for low levels of growth and maintenance during the ice-covered seasons. We have demonstrated that specific DON components play a large role in the N cycling processes of the coastal western Chukchi Sea. It will be important to understand how future changes in DON delivery and the reduction of sea ice will interact to impact the productivity of this system in the future.

References

Redfield, A. C. 1934. On the proportions of organic derivatives in sea water and their relation to the composition of

Acknowledgments

We thank L. M. Killberg-Thoreson, M. P. Sanderson, K. Sines, and J. L. Spackeen for help with fieldwork and sample analyses, and M. K. Crews and U. of Georgia’s CTEGD Flow Cytometry Core Facility for bacterial abundance counts, and G. Ralph and L. P. Whitney for discussions of statistical techniques. The manuscript was greatly improved by the comments of T. L. Connelly, M. A. Friedrichs, D. L. Kirchman, M. W. Lomas, and D. A. Steinberg. Fieldwork was supported by the Barrow Arctic Research Consortium (G. Sheehan and S. Hastings), the Barrow Whaling Captains Association (E. Brower), CH2MHill (F. Bernadac), L. Brower and the UMIAQ science staff (K. Newyear) and the logistics and field support team, led by B. France. This work was supported by NSF grant ARC-0909839 to DAB. MEF was supported by NSF grant ARC-0909647 and PLY was supported by NSF grant ARC-0910252. This paper is Contribution No. 3624 of the Virginia Institute of Marine Science, College of William & Mary.

Conflict of Interest

None declared.