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Bounds on probability of state transfer

with respect to readout time and edge weight
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We analyse the sensitivity of a spin chain modelled by an undirected weighted connected graph
exhibiting perfect state transfer to small perturbations in readout time and edge weight in order to
obtain physically relevant bounds on the probability of state transfer. At the heart of our analysis
is the concept of the numerical range of a matrix; our analysis of edge weight errors additionally
makes use of the spectral and Frobenius norms.

PACS numbers: 02.10.Ud, 02.10.Yn, 03.65.Aa, 03.67.Hk, 03.67.Ac
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I. INTRODUCTION

Transmitting a quantum state from one location to an-
other is a critical task within a quantum computer. This
task can be realised through the use of a spin chain (1D
magnet). The seminal work by Bose [1] describes how
a spin chain can be used as a quantum data bus for
quantum communication within a quantum computer.
This leads to the notion of perfect state transfer (PST,
described in more detail below), a desirable property
for quantum communication. Although the spin chain
considered by Bose minimizes the amount of physical
and technological resources required to transfer quantum
states, it only exhibits PST for n ≤ 3, where n is the
number of spins in the chain. A spin chain can be rep-
resented by a graph, so many other types of graphs have
been considered for quantum state transfer with n > 3.
The fidelity or probability of state transfer is a mea-

sure of the closeness between two quantum states and is
used to determine the accuracy of state transfer through
a quantum data bus between quantum registers and/or
processors. Fidelity is a number between 0 and 1; when
the fidelity between two quantum states is equal to 1
we have perfect state transfer (PST), and when the fi-
delity can be made arbitrarily close to 1 we have pretty
good state transfer (PGST). Many families of graphs been
shown to exhibit PST [2–8] or PGST [9].
In this work, we take a mathematical approach to per-

turbations which decrease the probability of state trans-
fer. While our approach is similar in nature to that found
in [10] and in [11], it should be noted that other authors
take different approaches. In particular, there have been
a number of numerical studies investigating the robust-
ness of fidelity with respect to perturbations (e.g. [12–
14]), while the consideration of a disordered XY model
leads to discussions of the appearance of Anderson lo-
calization (see [15]). A recent paper [16] concerns the
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use of error correcting codes as a strategy for dealing
with imperfections (in contrast, we do not consider en-
coding/decoding schemes herein).
We consider state transfer probability as it applies to a

weighted, undirected graphG, where vertices are labelled
1, . . . , n and the weight of the edge between vertices j and
k is denoted w(j, k). For any graph G, we consider its
n× n adjacency matrix A = [ajk] defined via

ajk =

{

w(j, k) if j and k are adjacent

0 otherwise

as well as its Laplacian matrix L = R − A, where R is
the diagonal matrix of row sums of A.
Depending on the dynamics of our system, the Hamil-

tonian H , representing the total energy of our system,
is taken to be either A (in the case of XX dynamics)
or L (in the case of Heisenberg (XXX) dynamics). Its
spectrum represents the possible measurement outcomes
when one measures the total energy of the system. Here
we are not making full use of the Hamiltonian in that we
are taking a snapshot in time—neither A nor L depends
on t. We account for time by setting U(t) = eitH . The
fidelity of transfer from vertex s (sender) to vertex r (re-
ceiver) is then given by p(t) = |u(t)sr|2, where u(t)sr is
the (s, r)-th entry of U(t) = eitH .
Ideally, the fidelity is 1, representing perfect state

transfer (PST) between the sender and receiver. In [10],
the author discusses the very issue of tolerance of a spin
chain with respect to timing errors and with respect to
edge weight errors (so-called manufacturing errors). For
timing errors, he derives a simple lower bound based
on the squared difference between each eigenvalue and
the smallest eigenvalue, noting that a Hamiltonian with
minimal eigenvalue spread would optimize the bound for
small perturbations in readout time. The bounds that
we produce (for both the adjacency and Laplacian cases)
look similar and in fact extend the lower bound given in
[10]. Moreover, we give an example where our bound is
attained for the adjacency matrix case, so it cannot be
further improved in that setting. Sensitivity with respect
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to perturbations in readout time is discussed in Section
II.
For manufacturing errors, again in [10] the author finds

that distances between eigenvalues are key, although no
bound is given. This sensitivity analysis was continued in
[11] through an analysis of the derivatives of the fidelity
of state transfer with respect to either readout time or
a fixed (j, k)-th edge weight. Again it was noted that
minimizing the spectral spread optimizes the bound on
the fidelity of state transfer for small perturbations in
time. No explicit bound with respect to perturbations in
edge weight were given in [11]; the edge weight results
were more qualitative in nature. Here, we take several
different approaches to give bounds on the probability of
state transfer with respect to edge weight perturbation
which involve both the spectral and Frobenius norms.
Sensitivity with respect to perturbations in edge weights
is discussed in Section III.

II. SENSITIVITY WITH RESPECT TO

READOUT TIME

Suppose we have PST between vertices j and k at time
t0. How sensitive is p(t0) to small changes in time? We
would like p(t0 + h) to be close to p(t0) for small h.
Let us fix some notation now. Let {|1〉, |2〉, . . . , |n〉} de-

note the standard ordered basis for Cn. Let H be a real
symmetric matrix that we decompose as H = QTΛQ,
where Λ = diag(λ1, . . . , λn) is a (real) diagonal matrix
of eigenvalues and QT is an orthogonal matrix of cor-
responding eigenvectors. If we have PST between ver-
tices j and k, we can permute the columns of Q so that
we have PST between vertices 1 and 2. Thus we will
always focus on the (1, 2) entry of our matrix for sim-
plicity and ease of notation. Let |q1〉 = (q11, . . . , qn1)

T

and |q2〉 = (q12, . . . , qn2)
T be the first two columns of

Q; these vectors represent the first (and the second, re-
spectively) entries of all the eigenvectors of H . We then
have eit0H = QT eit0ΛQ. We are assuming PST between
vertices 1 and 2 at time t0, and so

∣

∣〈q1|eit0Λ|q2〉
∣

∣ = 1,

giving eiθ|q1〉 = eit0Λ|q2〉 for some θ ∈ R, where (obvi-
ously) |eiθ| = 1. In particular, we have

∣

∣

∣〈q1|M̃eit0Λ|q2〉
∣

∣

∣ =
∣

∣

∣〈q1|M̃eiθ|q1〉
∣

∣

∣ = |〈q1|M |q1〉|

for any matrix M̃ (where we have set M = M̃eiθ).
This innocuous observation will allow us to consider the
(1, 1) entry of QTMQ rather than the (1, 2) entry of

QT M̃eit0ΛQ (see the proof of Theorem II.1 below).
The change from the (1, 2) entry to the (1, 1) entry will

forge the link between the sensitivity of the fidelity with
respect to readout time and the notion of the numerical
range of an n× n matrix M , defined by

W (M) = {〈x|M |x〉 : |x〉 ∈ C
n, 〈x|x〉 = 1} .

We now consider a small perturbation of readout time.
The motivation for this is highly practical: even with lab
equipment calibrated to an arbitrary amount of precision,
if we want to readout at time t0, the readout time in
practice will be t0 + h for small h (e.g. h = ±0.0001).

Theorem II.1 Let H be either the adjacency matrix or
the Laplacian associated with an undirected weighted con-
nected graph with perfect state transfer at time t0; that
is, p(t0) = 1. Suppose there is a small perturbation and
the readout time is instead t0 + h, where, denoting the
smallest and largest eigenvalues of H by λ1, λn, respec-
tively, h satisfies |h| < π

λn−λ1

. Then the fidelity at the
perturbed time t0 + h satisfies the following lower bound:

p(t0 + h) ≥ 1

4
|eihλ1 + eihλn |2.

Proof: Let D = t0Λ = diag(t0λ1, . . . , t0λn) and D̂ =
diag((t0 + h)λ1, . . . , (t0 + h)λn). We find

〈q1|eiD̂|q2〉 = 〈q1|(eiD̂e−iD)eiD|q2〉
= 〈q1|(eiD̂e−iD)eiθ|q1〉 = 〈q1|M |q1〉 ∈ W (M)

with M = diag(eihλ1 , . . . , eihλn)eiθ. Now, W (M) is
the convex hull of {eiθeihλ1 , . . . , eiθeihλn}. Since |hλn −
hλ1| < π, there exists an s ∈ [0, 2π) such that eisM has
eigenvalues eiξ1 , . . . , eiξn with −π/2 < ξ1 ≤ · · · ≤ ξn <
π/2 with ξ1 = −ξn. Let eisM = M1 + iM2 such that

M1 = M †
1 and M2 = M †

2 . Then M1 has eigenvalues
cos ξ1, . . . , cos ξn so that 0 ≤ cos ξ1 = cos ξn ≤ cos ξj for
all j = 2, . . . , n − 1. As a result, for every unit vector
|q〉 ∈ C

n, we have

|〈q|M |q〉| = |〈q|(M1 + iM2)|q〉| ≥ |〈q|M1|q〉| ≥ cos ξ1

= |eiξ1 + eiξn |/2 = |eihλ1 + eihλn |/2.
Thus, every point in W (M) has a distance larger than
|eihλ1 + eihλn |/2 from 0. Consequently,

p(t0)− p(t0 + h) = |〈q1|eiD|q2〉|2 − |〈q1|eiD̂|q2〉|2

≤ 1− 1

4
|eihλ1 + eihλn |2,

and the result follows. �

In fact, in the above proof, one can get a bet-
ter estimate of |〈q1|M |q1〉| using the information of
|q1〉 = (q11, . . . , qn1)

T and M = diag(eihλ1 , . . . , eihλn)eiθ;
namely, for any s ∈ R,

|〈q1|M |q1〉| =

∣

∣

∣

∣

∣

∣

n
∑

j=1

q2j1e
ih(λj−s)

∣

∣

∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

∣

n
∑

j=1

q2j1(cos(h(λj − s))

∣

∣

∣

∣

∣

∣

≥
n
∑

j=1

q2j1 −
h2

2

n
∑

j=1

q2j1 (λj − s)2

= 1− h2

2

n
∑

j=1

q2j1(λj − s)2,

the second inequality following from the fact that

cos(x) ≥ 1− x2

2 for any x ∈ R.
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In particular, if we let s = λ1 in the above, we obtain a
result that is parallel to the bound in [10], without that
paper’s extra hypotheses on the Hamiltonian.
For general s, the above implies

p(t0)− p(t0 + h) = 1− |〈q1|M |q1〉|2
= (1 + |〈q1|M |q1〉|)(1 − |〈q1|M |q1〉|)

≤ 2





h2

2

n
∑

j=1

q2j1 (λj − s)2





= h2
n
∑

j=1

q2j1(λj − s)2.

We summarize these derivations in the following theorem.

Theorem II.2 Let H be either the adjacency matrix or
the Laplacian associated to an undirected weighted con-
nected graph with perfect state transfer at time t0; that is,
p(t0) = 1. Suppose there is a small perturbation and the
readout time is instead t0 + h, where, for λ1 ≤ · · · ≤ λn,
h satisfies |h| < π

λn−λ1

. Then, for any s ∈ R, the tran-
sition probability for the perturbed time has the following
lower bound:

p(t0 + h) ≥ 1− h2
n
∑

j=1

q2j1(λj − s)2.

Theorem II.2 is an improved bound compared to The-
orem II.1. Yet direct use of Theorem II.2 requires one
to find all eigenvalues λ1, . . . , λn of the Hamiltonian H ,
while Theorem II.1 requires only that the smallest and
the largest eigenvalues are known. For large spin sys-
tems, Theorem II.1 would then be more practical. How-
ever, the following consequence of Theorem II.2 yields a
lower bound on the fidelity that involves the physical pa-
rameters of the Hamiltonian itself, and does not require
knowledge of any of the eigenvalues of H .

Corollary II.3 Under the hypotheses of Theorem II.2,
we have

p(t0 + h) ≥ 1− h2(〈1|H2|1〉 − (〈1|H |1〉)2). (1)

Proof: Observe that the quantity
∑n

j=1 q
2
j1
(λj −

s)2 is minimised when s
∑n

j=1 q
2
j1

=
∑n

j=1 q
2
j1
λj , i.e.

when s =
∑n

j=1 q
2
j1
λj = 〈1|H |1〉. The correspond-

ing minimum value is then given by
∑n

j=1 q
2
j1
(λj −

〈1|H |1〉)2 =
∑n

j=1 q
2
j1
λ2
j − 2〈1|H |1〉∑n

j=1 q
2
j1
λj +

(〈1|H |1〉)2 ∑n

j=1 q
2
j1

= (〈1|H2|1〉 − (〈1|H |1〉)2)). Inequal-
ity (1) now follows readily from Theorem II.2. �

Inequality 1 of Corollary II.3 is fairly accurate in the
following sense: In [11], the author considers the deriva-
tives of p at time t0 under the hypotheses of PST at
t0. In [11, Theorem 2.2], it is shown that all odd or-
der derivatives of p at t0 are zero, while the second
derivative is equal to −2(〈1|H2|1〉 − (〈1|H |1〉)2)). From
[11, Theorem 2.4], it follows that the fourth derivative
of p at t0 is positive. It now follows that for all h

with |h| sufficiently small, there is a c > 0 such that
p(t0 + h) = 1− h2(〈1|H2|1〉 − (〈1|H |1〉)2) + ch4 +O(h6).
In other words, for small h, the lower bound of Corollary
II.3 is accurate to terms in h3.

We now consider the case where equality holds in the
bound of Theorem II.1 whenH is the adjacency matrix of
a connected weighted graph. For concreteness, suppose
that H is of order n and that there is perfect state trans-
fer at time t0. Suppose further that for some h with |h| <

π
λn−λ1

we have p(t0)− p(t0 + h) = 1 − 1
4 |eihλ1 + eihλn |2.

Denote the multiplicity of λ1 by k, and recall that λn,
as the Perron value of H (that is, the unique maximal
eigenvalue as per the Perron–Frobenius theorem), is nec-
essarily simple. Examining the proof of Theorem II.1, it
follows that the |q1〉 can only have nonzero entries in po-
sitions corresponding to the eigenvalues λ1 and λn, and
that further the entry in the position corresponding to
λn, the j–th position say, must be ± 1√

2
. Since the en-

tries of |q2〉 can only differ from the corresponding entries
of |q1〉 by a sign, we deduce that the j–th entry of |q2〉
must also be ± 1√

2
. Observe that since every column of

QT has 2–norm equal to 1, the j–th column of QT has
nonzero entries only in its first two rows. But the j–
th column of QT is a Perron vector for H—that is, an
eigenvector corresponding to the (positive and dominant)
Perron eigenvalue of H—and so it cannot have any zero
entries (again by the Perron–Frobenius theorem). We
thus deduce that n must be 2, and that H must be a

positive scalar multiple of

(

0 1
1 0

)

.

Conversely, suppose thatH is a positive scalar multiple

of

(

0 1
1 0

)

, and without loss of generality we assume that

H =

(

0 1
1 0

)

. Then

eitH =

∞
∑

j=0

ij

j!
Hjtj =

∑

j even

(i)j

j!
tjI +

∑

j odd

(i)j

j!
tjH

=

(

cos t i sin t
i sin t cos t

)

.

At time π
2 we have

(

0 i
i 0

)

and so we have PST (since

|i| = 1). At time π
2+h, the (1, 2) entry is i cosh = 1

2 (e
ih+

e−ih), and so the bound in Theorem II.1 is attained.

Although Theorem II.1 is true for either adjacency ma-
trices or Laplacians, we can adapt the technique of The-
orem II.1 slightly to produce an improved bound on the
fidelity in the setting of the Laplacian matrix, since we
have more information at hand.

Theorem II.4 Let L be the Laplacian matrix of a con-
nected weighted graph on n ≥ 3 vertices. Denote the
eigenvalues of L by 0 ≡ λ1 < λ2 ≤ . . . ≤ λn. Sup-
pose that there is perfect state transfer at time t0; that
is, p(t0) = 1. Suppose there is a small timing pertur-
bation, and the readout time is instead t0 + h, where h
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satisfies |h| < π
λn−λ2

. Then

p(t0 + h) ≥ 1− (n− 1)2(1− cos((λn − λ2)h))

2n2

− (n− 1)(2− cos(λ2h)− cos(λnh))

n2

− (cos(λ2h)− cos(λnh))
2

2n2(1 − cos((λn − λ2)h)
. (2)

Proof: We note that that the normalised all–ones
vector 1√

n

∑n

i=1 |i〉 is a null vector for L. Then

L = QTdiag(λ1, . . . , λn)Q such that |q1〉 has the form
(1/

√
n, x2, . . . , xn)

T where
∑n

j=2 x
2
j = n−1

n
. Mimick-

ing the proof of Theorem II.1, we find that p(t0 + h)
is bounded below by

min
∣

∣

∣

1

n
+ 〈z|diag(eihλ2 , . . . , eihλn)|z〉

∣

∣

∣

2

,

where the minimum is taken over all unnormalised |z〉 ∈
R

n−1 such that 〈z|z〉 = n−1
n

. From elementary geometric

considerations (in short, the eihλj are points on the unit
circle and so the minimum will be attained by taking a
convex combination of the smallest and largest values,
namely eihλ2 and eihλn), we find that in fact

min
∣

∣

∣

1

n
+ 〈z|diag(eihλ2 , . . . , eihλn)|z〉

∣

∣

∣

2

=

min
0≤α≤n−1

n

∣

∣

∣

1

n
+ αeihλ2 +

(

n− 1

n
− α

)

eihλn

∣

∣

∣

2

.

A routine calculus exercise (the minimum corresponds

to α = n−1
2n + cos(hλn)−cos(hλ2)

2n(1−cos(h(λ2−λn))
) shows that this last

quantity is given by the right hand side of (2). �

Example II.5 Suppose that n is divisible by 4, and con-
sider the unweighted graph on vertices 1, . . . , n, say G,
formed by deleting the edge between vertices 1 and 2 from
the complete graph on n vertices. Let L denote the Lapla-
cian matrix for G, and note that L has three eigenvalues:
0, with corresponding eigenprojection matrix 1

n
J (where

J is the all ones matrix), n− 2 with eigenprojection ma-
trix 1

2 (|1〉 − |2〉)(〈1| − 〈2|), and n with eigenprojection
matrix

[ n−2
2n J2 − 1

n
J2,n−2

− 1
n
Jn−2,2 I − 1

n
Jn−2

]

.

It is shown in [7] that, using L as the Hamiltonian, there
is perfect state transfer from vertex 1 to vertex 2 at time
π
2 .
Using the eigenvalues and eigenprojection matrices

above, we find that for any h, the fidelity at time π
2 + h

is given by

p
(π

2
+ h

)

=
∣

∣

∣

1

n
+

1

2
eih(n−2) +

n− 2

2n
eihn

∣

∣

∣

2

.

This last expression can be simplified to yield

p
(π

2
+ h

)

= 1− n− 2

2n
(1− cos(2h))− 1

n
(1− cos((n− 2)h))

− (n− 2)

n2
(1− cos(nh)).

An uninteresting computation reveals that p(π2 + h) ex-
ceeds the lower bound of (2) in the amount of

(cos((n− 2)h)− cos(nh) + 1− cos(2h))2

2n2(1 − cos(2h))
.

We note in passing that (cos((n−2)h)−cos(nh)+1−cos(2h))2

2n2(1−cos(2h)) is

asymptotic to h2 as h → 0.

III. SENSITIVITY WITH RESPECT TO EDGE

WEIGHTS

The motivation for studying edge weight perturbation
is similar to that for readout time: although lab equip-
ment can be calibrated to high precision, small errors
(even machine epsilon) will affect the state transition
probability. We want to bound this effect so that small
perturbations in edge weight do not drastically reduce
transition probability.
Suppose we have PST between vertices j and k at time

t0. As in section II, without loss of generality we con-
sider the (1, 2) entry of our matrix under consideration.
Here, we keep the time constant at t0, and perturb edge
weights, although the techniques employed in section II
for readout time can readily be combined with the tech-
niques in this section to obtain a bound for the situation
when both readout time and edge weights are perturbed.
Let H ∈ Mn be a real symmetric matrix representing

the Hamiltonian of our system. Suppose 〈1|eit0H |2〉 has
modulus 1; this is the case for PST withH either an adja-
cency or Laplacian matrix. Consider now Ĥ = t0H+H0

where H0 is a matrix representing small perturbations
of edge weights and we have absorbed the time compo-
nent into H0 since we are keeping time fixed. Mathe-
matically, we would like to find a perturbation bound for
|〈1|eitH |2〉|2 − |〈1|ei(tH+H0)|2〉|2 or, when t = t0,

1− |〈1|ei(t0H+H0)|2〉|2

for a symmetric matrix H with sufficiently small H0, say,
measured by the operator norm ‖H0‖ or the Frobenius
norm ‖H0‖F .
Note that the entries of the matrix H0 represent in-

dividual edge weight errors, so our approach allows for
individual edge weight perturbations rather than simply
an overall (global) edge weight perturbation (where all
edge weights are perturbed by e.g. 0.0001 in the same di-
rection) or a single edge weight perturbation (where all
other edge weights remain unperturbed); the latter case
was the (rather restrictive) situation considered in [11].
We begin with the following.

Theorem III.1 Suppose a perfect state transfer occurs
at time t0, and Ĥ = t0H + H0, with a small nonzero
perturbation H0. Then

‖ei(Ht0+H0) − eiHt0‖ ≤ ‖H0‖e‖H0‖.

Consequently,

1− |〈1|ei(Ht0+H0)|2〉|2 ≤ 2‖H0‖e‖H0‖ − ‖H0‖2e2‖H0‖

≤ 2‖H0‖+ ‖H0‖2 − ‖H0‖3. (3)



5

Proof: Set ∆t0 = H0. Using the result in [17, p.532]
and the fact that H is Hermitian, we have

‖ei(H+∆)t0 − eiHt0‖ ≤ t0‖∆‖et0‖∆‖ = ‖H0‖e‖H0‖.

Consequently,

|〈1|eit0H |2〉| − |〈1|ei(t0H+H0)|2〉| ≤ ‖H0‖e‖H0‖

so that

1− ‖H0‖e‖H0‖ ≤ |〈1|ei(t0H+H0)|2〉|.

Squaring both sides and rearranging terms, we have

1− |〈1|ei(t0H+H0)|2〉|2

≤ 2‖H0‖e‖H0‖ − ‖H0‖2e2‖H0‖

= 2‖H0‖(1 +
‖H0‖
1!

+
‖H0‖2
2!

+ · · · )

−‖H0‖2(1 +
2‖H0‖
1!

+
(2‖H0‖)2

2!
+ · · · )

≤ 2‖H0‖+ ‖H0‖2 − ‖H0‖3.

so that (3) holds. �

We note that the estimate ‖ei(Ht0+H0) − eiHt0‖ ≤
‖H0‖e‖H0‖ of Theorem III.1 can be reasonably accurate.
For example, suppose H is the adjacency matrix of a con-
nected weighted graph yielding perfect state transfer at
time t0. Let |v〉 denote the positive Perron vector of H
with norm one, and suppose that H0 has the form ǫ|v〉〈v|
for some small ǫ > 0. Then ‖ei(Ht0+H0)−eiHt0‖ = |eiǫ−1|
while ‖H0‖e‖H0‖ = ǫeǫ, so that

‖ei(Ht0+H0) − eiHt0‖
‖H0‖e‖H0‖ → 1

as ǫ → 0+.

If we have additional information about the matrix
t0H , we may be able to produce some better bounds
as shown in Theorem III.3 below. Before presenting the
theorem, we require a preliminary proposition which is
intuitively clear. Its proof consists of elementary linear
algebra manipulation techniques; we give the proof for
completeness.

Proposition III.2 Suppose there is a perfect state
transfer at time t0; that is, |〈1|eit0H |2〉| = 1. Then for
some θ ∈ R, t0H = QTDQ− θI, where

D = πdiag(r1, . . . , rℓ, rℓ+1, . . . , rm, rm+1, . . . , rn)

such that r1 ≥ · · · ≥ rℓ are positive even inte-
gers, and rℓ+1 ≥ · · · ≥ rm are positive odd in-
tegers. Further, the first two rows of QT can
be taken to have the form (x1, . . . , xm, 0, . . . , 0)
and (x1, . . . , xℓ,−xℓ+1, . . . ,−xm, 0, . . . , 0) satisfying
x1, . . . , xm ≥ 0.

Proof: As in section II, let H = QTΛQ for a real
diagonal matrix Λ and Q an orthogonal matrix. Since
we are focusing here on edge weights rather than time,

let us consider D = t0Λ = diag(t0λ1, . . . , t0λn). Sup-
pose the first two columns of Q are |q1〉 and |q2〉. Then
|〈q1|eiD|q2〉| = 1 implies that eiD|q2〉 = eiθ|q1〉 or, equiv-
alently, e−iθeiD|q2〉 = |q1〉 for some θ ∈ R. Any zero
entries of |q1〉 show up correspondingly as zero entries
of |q2〉. For a suitable permutation matrix P1 we can
replace (D,Q) by (P1DPT

1 , P1Q) so that the zero en-
tries of P1|q1〉 all occur in the last n − m entries, for
some 0 < m ≤ n. In this way, we may assume that
P1(D − θI)PT

1 is a diagonal matrix with diagonal en-
tries of the form s1π, . . . , smπ, ∗, . . . , ∗ for some integers
s1, . . . , sm. The asterisks in the (m + 1,m + 1) up to
(n, n) entries of the diagonal matrix P1(D − θI)PT

1 rep-
resent unknown constants, corresponding to the zero en-
tries (if any) of P1|q1〉. We can replace θ by θ − 2sπ for
a sufficiently large integer s so that we may assume that
s1, . . . , sm are positive integers.
Next, for a suitable permutation matrix P2 we can re-

place the pair (P1DPT
1 , P1Q) by (P2P1DPT

1 PT
2 , P2P1Q),

so that P2P1(D − θI)PT
1 PT

2 = πdiag(r1, . . . , rn) with
r1 ≥ · · · ≥ rℓ even, rℓ+1 ≥ · · · ≥ rm odd, and
rm+1, . . . , rn unknown constants; note that we still
have t0H = (P2P1Q)T (P2P1DPT

1 PT
2 )(P2P1Q). Fur-

ther, we may replace the pair (P2P1DPT
1 PT

2 , P2P1Q),
by (SP2P1DPT

1 PT
2 S, SP2P1Q), for some diagonal or-

thogonal matrix (i.e. a signature matrix) S such that
the first column of SP2P1Q, namely SP2P1|q1〉 =
(x1, . . . , xm, 0, . . . , 0)T , satisfies x1, . . . , xm ≥ 0. Now,
SP2P1e

−iθeiD|q2〉 = SP2P1|q1〉 implies that

SP2P1|q2〉 = (x1, . . . , xℓ,−xℓ+1, . . . ,−xm, 0, . . . , 0)T .

Relabelling for simplicity, the result now follows. �

Theorem III.3 Suppose a perfect state transfer occurs
at time t0, and Ĥ = t0H + H0, with a small nonzero
perturbation H0. Furthermore, assume that value m in
Proposition III.2 equals n. Then

1− |〈1|eiĤ |2〉|2 ≤ 2‖H0‖2F
(π − ‖H0‖)2

+ ‖H0‖2 +O(‖H0‖3).

Proof: Let t0H = QTDQ − θI, where D =
diag(d1, . . . , dn) is such that the first ℓ entries are even
multiples of π and the last n− ℓ entries are odd multiples
of π, and θ is as in Proposition III.2. Let J = eiD =
Iℓ ⊕−In−ℓ.

Suppose Ĥ = t0H+H0 = Q̂T D̂Q̂. By a suitable choice
of Q̂, we may assume that there is a permutation matrix
P such that both PTDP and PT D̂P have diagonal en-
tries arranged in descending order. Then (e.g., see [18,
p.101,(IV.62)])

‖D−D̂‖ = ‖PTDP−PT D̂P‖ ≤ ‖QTDQ−Q̂T D̂Q̂‖ = ‖H0‖

and hence

‖eiD − eiD̂‖ ≤ ‖D − D̂‖ ≤ ‖H0‖. (4)

Let V be an orthogonal matrix close to I, and consider
the power series log(V ) = −∑∞

j=1
1
j
(I − V )j . Setting
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K = log(V ), we have eK = V. It follows that I = V V T =

eKeK
T

= eK+KT

, where the last equality comes from
the fact that K commutes with KT . We deduce that
KT = −K, i.e. K is skew–symmetric. We will use this
idea in what follows.
If H0 is small, we may assume that the differences be-

tween the eigenspaces of Ĥ and H are small so that D̂
is close to D, and Q̂QT is close to I (see [18, Section

VII.3]). As a result, we can write D̂ − D = wD1 and

ewK = Q̂QT for a small positive number w, a diag-
onal matrix D1 and a skew-symmetric matrix K such
that max{‖D1‖, ‖K‖} = 1 (the norm condition is re-
quired so that the terms like K3, D3

1 can be lumped into
the O(w3) term below). Note that it is possible that
D1 = 0 or K = 0 but not both as H0 6= 0. We empha-
size that log(Q̂QT ) is skew–symmetric, from the above
remark about a matrix V .
Now Ĥ = QT

w(D + wD1)Qw where we write Qw =
ewKQ, using the subscript w here to emphasize the
dependence on some small positive number w. Using
the power series expansion of Hw and the fact that
K = −KT , we get

〈1|eiHw |2〉 = 〈1|QT
we

iDwQw|2〉

= 〈1|[QT (I + wK +
1

2
w2K2)T eiD(I + iwD1 − w2 1

2
D2

1)

× (I + wK +
1

2
w2K2)]Q|2〉+O(w3)

= 〈1|QT eiDQ|2〉+ w〈1|QT [KT eiD + eiDiD1 + eiDK]Q|2〉

+
1

2
w2〈1|QT [(KT )2eiD + eiDK2 − eiDD2

1]Q|2〉

+ w2〈1|QT [KT eiDiD1 +KT eiDK + eiDiD1K]Q|2〉+O(w3).

By the facts that J |q2〉 = |q1〉 and 〈q|K|q〉 = 0 for any
vector |q〉, the above expression becomes

〈1|QT
we

iDwQw|2〉 = 1 + w(〈q1|KT |q1〉+ 〈q2|K|q2〉)

+
1

2
w2〈q1|((KT )2 −D2

1 + JK2J + 2KTJKJ)|q1〉

+ iw〈q1|D1|q1〉+ iw2〈q1|(KTD1 + JD1KJ)|q1〉+O(w3)

= 1 +
1

2
w2〈q1|((KT )2 −D2

1 + JK2J + 2KTJKJ)|q1〉

+ iw〈q1|D1|q1〉+ iw2〈q1|(KTD1 +D1JKJ)|q1〉+O(w3).

Let x(w) = ℜ(〈1|QT
we

iDwQw|2〉), and y(w) =
ℑ(〈1|QT

we
iDwQw|2〉). Then

|〈1|ei(t0H+H0)|2〉|2 − |〈1|eit0H |2〉|2 = |〈1|ei(t0H+H0)|2〉|2 − 1

= x(w)2 + y(w)2 − 1

= w2[〈q1|(K2 + JK2J − 2KJKJ −D2
1)|q1〉

+ (〈q1|D1|q1〉)2] +O(w)3

= −w2
(

‖(KJ − JK)|q1〉‖2 + ‖D1|q1〉‖2

− (〈q1|D1|q1〉)2
)

+O(w3).

For the last equality in the above expression, we use the
fact that, although JKJK 6= KJKJ , it is true that

〈q1|JKJK|q1〉 = 〈q1|KJKJ |q1〉, which is all that is re-
quired here.

Thus, if wK =

[

K11 K12

−KT
12 K22

]

, then wKJ − wJK =

[

O −2K12

−2KT
12 O

]

and hence

‖(wKJ − wJK)|q1〉‖2 ≤ 4‖K12‖2. (5)

Now,

Q̂QT = ewK = I + wK +
(wK)2

2!
+

(wK)3

3!
+ · · · .

So, wK ≈ (Q̂QT −QQ̂T )/2.

As a result, if Q̂QT ≡ V =

[

V11 V12

V21 V22

]

, then V12 and

V21 have the same nonzero singular values (there are a
number of ways of seeing this; perhaps the simplest is
to note that since Q̂QT is orthogonal, it follows that
V11V

T
11 + V12V

T
12 = I and V T

11V11 + V T
21V21 = I; that is,

V11V
T
11 = I−V12V

T
12 and V T

11V11 = I−V T
21V21, from which

we see V12V
T
12 and V T

21V21 have the same eigenvalues).
Note that

‖H0‖2F = ‖QTDQ − Q̂T D̂Q̂‖2F = ‖V D − D̂V ‖2F
=

∑

j,k

(dk − d̂j)
2v2jk.

The reverse triangle inequality gives us

|dk − d̂j | = |dk − dj + dj − d̂j | ≥ |dk − dj | − |dj − d̂j |
≥ π − ‖H0‖.

We now have

‖H0‖2F =
∑

j,k

(dk − d̂j)
2v2jk

=
∑

1≤j≤ℓ<k≤n

(dk − d̂j)
2v2jk +

∑

1≤k≤ℓ<j≤n

(dk − d̂j)
2v2jk

≥ (π − ‖H0‖)2(‖V12‖2F + ‖V21‖2F ).

It follows that

‖V12‖2F + ‖V21‖2F ≤ ‖H0‖2F
(π − ‖H0‖)2

.

Hence,

‖K12‖ ≤ (‖V12‖+ ‖V21‖)/2 = ‖V12‖ ≤ ‖V12‖F

≤ ‖H0‖F√
2(π − ‖H0‖)

. (6)

As a result, from (5) and (6) we have

w2‖(KJ − JK)|q1〉‖2 ≤ 4‖K12‖2 ≤ 2‖H0‖2F
(π − ‖H0‖)2

.

A result of Mirsky [19] states that for any Hermi-
tian matrix M , the eigenvalue spread for M is equal
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to 2max |〈u|A|v〉|, where the maximum is taken over all
pairs of orthonormal vectors |u〉 and |v〉. Consequently,
for any symmetric matrix A, if {|u〉, |v〉} is an orthonor-
mal set, then

2|〈u|A|v〉| ≤ λn(A)− λ1(A),

where we recall λ1 is the minimum eigenvalue and λn is
the maximum eigenvalue. In particular, if we set A =
wD1, |u〉 = |q1〉, and A|q1〉 = µ1|q1〉 + µ2|q〉 such that
{|q1〉, |q〉} is an orthonormal set, then

‖wD1|q1〉‖2 − (〈q1|wD1|q1〉)2
= µ2

2 = |〈q|(wD1)|q1〉|2
≤ ((λn(wD1)− λ1(wD1))/2)

2.

By (4), and recalling that D1 is diagonal, we have

((λn(wD1)− λ1(wD1))/2)
2 ≤ ‖D̂ −D‖2 ≤ ‖H0‖2.

�

Consider the bounds of Theorems III.1 and III.3 when
the perturbing matrix H0 is small. The upper bound in
the former result is 2||H0|| + ||H0||2 − ||H0||3, while the

upper bound in the latter result is
2‖H0‖2

F

(π−‖H0‖)2 + ‖H0‖2 +
O(‖H0‖3). Thus we find that, neglecting terms of order
‖H0‖3, the bound of Theorem III.3 is sharper than that
of Theorem III.1 provided that

‖H0‖2F
(π − ‖H0‖)2

< ‖H0‖. (7)

Suppose for concreteness that H0 has rank r. Recalling
that ‖H‖2F ≤ r‖H0‖2, we find that in order for (7) to
hold, it is sufficient that r‖H0‖ < (π−‖H0‖)2, or equiv-
alently, that ‖H0‖ < 2π+r−

√
4πr+r2

2 . It now follows that
for all sufficiently small H0, the bound of Theorem III.3
is improvement upon that of Theorem III.1. Thus, in
the case that the more restrictive hypothesis of Theorem
III.3 holds, we get a better estimate from that result than
from Theorem III.1.

Example III.4 Here we give a small numerical example
illustrating the main result of Theorem III.3. Consider
the 10×10 symmetric tridiagonal matrix H with hj,j+1 =

hj+1,j =
√

j(10− j), j = 1, . . . , 9 and all other entries
equal to 0. It is known that for this H, there is perfect
state transfer from 1 to 10 at time t0 = π

2 , with the (1, 10)

entry of eit0H equal to i.

Next, we consider the perturbing matrix

H0 = 10−5 ×





































0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0.533 0 0 0 0

0 0 0 0 .533 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0





































.

Setting Ĥ = t0H + H0, a couple of MATLAB c© com-

putations yield 1 − |〈1|eiĤ |10〉|2 ≈ 0.02497 × 10−9 and
2‖H0‖2

F

(π−‖H0‖)2 + ‖H0‖2 ≈ 0.19257× 10−9. We note that the

ratio of the latter to the former is approximately 7.7110.

IV. CONCLUSION

We have obtained bounds on the probability of state
transfer for a perturbed system, where either readout
time or edge weights have been perturbed. By consider-
ing such timing and manufacturing errors, our results
are physically relevant and more consistent with real-
ity. We worked in the most general setting where the
adjacency matrix A (or, alternatively, the Laplacian L)
was arbitrary, and the perturbations themselves were ar-
bitrary. More precise bounds can be obtained by con-
sidering more structured perturbations. Furthermore, it
would be of interest to combine readout time error with
edge weight error to create one bound encompassing both
types of perturbations. Finally, we note that our analysis
assumed perfect state transfer (PST). While there are a
number of classes of graphs exhibiting PST, it is of inter-
est to allow for pretty good state transfer (PGST) and
perform a similar analysis with respect to readout time
and edge weight errors; note that the numerical evidence
reported in Examples 3.16 and 3.17 in [11] suggests that
the fidelity may not be so well–behaved under perturba-
tion of edge weights in the PGST setting. Analysis in
the PGST case would require alternate techniques, how-
ever, since our arguments hinged on the modulus of the
(1, 2) entry of our matrix eitH being exactly 1, which fa-
cilitates the key observation that eiθ|q1〉 = eit0Λ|q2〉. We
leave these as open problems for further study.
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