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Abstract: A new type of matrix, termed permutative, is de�ned andmotivated herein. The focus is upon iden-
tifying circumstances under which square permutative matrices are rank de�cient. Two distinct ways, along
with variants upon them are given. These are a special kind of grouping of rows and a type of partition in
which the blocks are again permutative. Other, results are given, along with some questions and conjectures.

Keywords: h, k-partition; h, k, g-partition; Identically singular; Latin square; Permutative matrix; Polyno-
mial matrix; Row grouping

MSC: Primary: 05B20, 15A03; Secondary: 15A15, 15A48

1 Introduction
By a (symbolic) permutative matrixwemean an m-by-nmatrix whose entries are chosen from among n inde-
pendent variables over the nonnegative real numbers in such a way that each row is a di�erent permutation
of the n variables. Associated with each (symbolic) permutative matrix A is a collection P(A) of (numerical)
permutative matrices resulting from consistent substitution of distinct positive real numbers for the vari-
ables. Two distinct variables are not allowed to take on the same value. Square permutative matrices are of
particular interest to us here, but it is convenient to consider ones with m < n in some situations. When not
otherwise indicated, we assume m = n.

Example 1.1

The matrix A =


a1 a2 a3 a4
a2 a4 a3 a1
a3 a2 a4 a1
a2 a3 a1 a4

 is a 4-by-4 (symbolic) permutative matrix and

B =


3 2 5 7
2 7 5 3
5 2 7 3
2 5 3 7

 ∈ P(A).

If every matrix in P(A) is nonsingular, we say that the permutative matrix A is identically invertible. Two
other possibilities may occur. It may be that some matrices in P(A) are singular, while others are invertible.
Since the determinant of a (symbolic) permutative matrix is a (homogeneous) polynomial in the n variables,
this means that most matrices in P(A)will be nonsingular, and we call such permutative matrices generically
invertible. The �nal possibility is that every matrix in P(A) is singular, which we term identically singular.
Each of these possibilities arises, but we are primarily interested in understanding the identically singular
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(symbolic) permutative matrices and their (maximum) ranks. It can happen that more than one rank less
than n can occur in P(A).

Though the formal notion of a permutative matrix is new to this work, particular instances of permuta-
tive matrices have arisen a number of times previously. A Latin square [2, 4] is a permutative matrix whose
transpose is also permutative and these have been heavily studied in combinatorics and statistical experi-
mental design, etc. Combinatorially, they also occur as multiplication tables of groups. And, a variant has
also been studied [1]. Non-Latin-square permutative matrices have also arisen [3]. Finally, the nonnegative
inverse eigenvalue problem (NIEP) asks which spectra occur among n-by-n entry-wise nonnegative matrices.
Early on [6], it was noted, without proof, that any real spectrumwith trace 0 and exactly one positive element
does occur. A simple proof [5] may be given with special permutative matrices. For example, if the spectrum
−a, −b, −c, a + b + c, with a, b, c > 0 is desired, then it may be realized by

A =


0 a b c
a 0 b c
a b 0 c
a b c 0

 .

Since det(A+xI) = 0, x = a, b, c, each of −a, −b, −c is an eigenvalue, and since the row sums are all (a+b+c),
(a + b + c) is also an eigenvalue (and also, since Tr(A) = 0). The same construction, and argument, work
generally.

In the next two sections we give a complete accounting of the possibilities for square permutative matri-
ces for n = 3 and 4. Then, we identify the two major ways that we have found for a permutative matrix to be
identically singular (rank de�cient). The more transparent way is when distinct groups of rows have a com-
mon weighted sum, which we call row grouping. A more subtle of these is the existence of a special partition:
a partition of the rows of a permutative matrix into h parts and the columns into k parts such that in each
block of the partition there are only as many variables as there are columns is called an h,k-partition. (Each
block is, itself, permutative, except, perhaps, for having some repeated rows.) If such a partition exists, with
h < k, then the rank is de�cient by at least k − h. Re�nements that involve hybrids of these two ways are also
given. We give an algorithm to �nd an h, k-partition, mention some open questions, and make some further
useful observations along the way.

2 The 3-by-3 Case
Here, we give a complete description of what may happen among 3-by-3 (symbolic) permutative matrices.
It turns out that they are just of two "kinds", and both are identically invertible. This may be seen by using
a natural equivalence relation on permutative matrices that preserves the set of ranks that occur in P(A).
We say that B is equivalent to A if B may be obtained from A via (i) permutation of rows, (ii) permutation of
columns, or (iii) permutation of variable names. Of course each of these is reversible.

Example 2.1 a b c
a c b
b c a

 and

a b c
c b a
c a b


are equivalent 3-by-3 permutative matrices. To see this, interchange the variables a and b in the �rst matrix
and then interchange the �rst 2 columns of the result to arrive at the second matrix.

A priori, there are 120 (symbolic) 3-by-3 permutative matrices: 3! × (3! − 1) × (3! − 2). However, it may be
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Ranks of permutative matrices | 235

easily checked that, among these, there are only two equivalence classes. One contains all matrices whose
transposes are permutative (i.e. the Latin square), such asa b c

c a b
b c a

 ,

and the other in which each of two of the variables appear twice in a column, such as thematrices in Example
2.1. In the former case the determinant is

±(a + b + c)(b − a)(b − c)

and in the latter case it is (up to change of variables)

±(a + b + c)(ab + bc + ac − a2 − b2 − c2)

Both are never 0; the second because of the Cauchy-Schwarz inequality, and the �rst because the variables
are distinct and cannot sum to 0 in the de�nition of permutative matrix.

Theorem 2.2 Every 3-by-3 (symbolic) permutative matrix is identically invertible.

3 The 4-by-4 Permutative Matrices
The 24×23×22 4-by-4 permutativematrices fall into 41 equivalence classes. Of these, 5 classes are identically
singular; 19 classes are identically invertible, and 17 are generically invertible. We give representative of a
few typical equivalence classes.

1. Identically singular 4-by-4 permutative matrices
a b c d
a b d c
a c b d
a c d b

 determinant = 0

This symbolic permutative matrix always has determinant 0, no matter what the values of a, b, c, d.
The reason will become clear in Section 5.

2. Generically invertible 4-by-4 permutative matrices
a b c d
a c d b
b a d c
b d c a

 determinant = (c − d)(a − b)(a + b − c − d)(a + b + c + d)

This permutative matrix is invertible unless a + b = c + d, which is allowed in a permutative matrix.
We call such permutative matrices generically invertible. Other such equivalence classes will be invert-
ible, unless there is some other relation among the entries that cause the determinant to be 0.

3. Identically invertible 4-by-4 permutative matrices
a b c d
a b d c
a c b d
b a d c

 determinant = −(a − b)(b − c)(c − d)(a + b + c + d)

Brought to you by | College of William and Mary
Authenticated

Download Date | 4/23/19 11:11 PM



236 | Xiaonan Hu, Charles R. Johnson, Caroline E. Davis, and Yimeng Zhang


a b c d
a b d c
b c a d
c a b d

 determinant = −(c − d)(a2 − ab − ac + b2 − bc + c2)(a + b + c + d)

In both these cases, the determinant is never 0 given the de�nition of permutative matrices. In the
second case, the second term of the determinant is 1

2 ((a− b)
2 + (b− c)2 + (a− c)2)which also cannot be 0.

4 Identical Singularity Resulting from Row Grouping
Since each row of a (symbolic) permutative matrix runs through all positive vectors with no repeated entries,
no row can be orthogonal to a �xed numerical vector. Thus, a permutative matrix cannot have a numerical,
nonzero, right null vector. It can, however, have a numerical, nonzero left null vector.

Example 4.1 In the 6-by-6 permutative matrix

A =



a b c d e f
c e d a f b
c b d a e f
a e c d f b
b f e c d a
d f c b a e


,

notice that the sum of the �rst 2 rows is the same as the sum of the second 2 rows. This means that
(1, 1, −1, −1, 0, 0) is a left null vector for A, and, in fact a basis for the left null space. Each matrix in P(A)
has rank 5.

We say that a symbolic matrix A admits a g-part (pure) row grouping if a subset of the rows of A may be
partitioned into g parts so that there is a single row vector that is some nontrivial weighted sum of the rows in
each part. We are primarily interested in the concept of row grouping in the context of permutative matrices,
but it will occur more generally. Thus, after matrix row operations, the rank de�ciency is at least g − 1. We
may identify the particular parts in the partition; note that each part in the partitionmust contain at least two
rows, because the de�nition of permutative matrices does not allow equal rows. For matrix A of Example 4.1,
{{1, 2}, {3, 4}} is a 2-part row grouping and the two 1’s (−1’s) in the left null vector correspond to the �rst
(second) part of the row grouping. In the case of a 2-part row grouping, a left null vector may be constructed
by placing the weights from the �rst part in those entries corresponding to the row indices from the �rst
group, and the negatives of the weights from the second group in the positions corresponding to that part of
the partition.

Let NLN(A) denote the numerical left null space of a symbolic permutative matrix A. Let e denote the column
vector of 1’s, whose dimension will usually be clear from context.

Lemma 4.2 If A is an m-by-n permutative matrix, then each vector in NLN(A) is orthogonal to e, i.e. the
sum of its entries is 0.

Proof: If A is based upon the variable a1, a2, . . . an, then Ae = (a1 + . . . + an)e, so that e is in the col-
umn space of A. But, if x ∈ NLN(A), then xTA = 0 and we have xTAe = 0 or xT(a1 + . . . + an)e = 0 which
means that xTe = 0, as a1 + . . . + an ≠ 0.

�
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Ranks of permutative matrices | 237

Now, we have

Theorem 4.3 Each numerical left null vector of a symbolic permutative matrix corresponds to a 2-part
row grouping, and conversely.

Proof: First, since a (left) null vector will have rational entries, we may take them to be integers, some
positive, some negative (and, perhaps some 0’s), by Lemma 4.2. An appropriately weighted sum of the rows
corresponding to positive coe�cients of the left null vector will then equal the appropriately weighted sum
of the rows corresponding to negative entries (there must be some of each), giving a 2-part row grouping.
Thus, the 2-parts in such a row grouping may be found with a left numerical null vector. Conversely, a 2-part
row grouping may be converted into a left null vector in an obvious way.

�

Remark 4.4 We note that a) each g-part row grouping, g > 2, may be viewed as several 2-part row group-
ings. And b) there may occur several, independent, g-part row groupings (with possibly di�erent g’s) that
contribute to NLN(A). Theorem 4.3 then means that NLN(A) encodes all the row groupings that occur in A
and that row groupings entirely explain the rank de�ciency that results from NLN(A). Of course, we have

Theorem 4.5 For a symbolic permutative m-by-n matrix A, with m < n, and B ∈ P(A),

rank(B) ≤ m − dimNLN(A)

Proof: NLN(A) ⊆ the left null space of B. Since rank(B) = m less the dimension of the left null space of B,
the claim follows. Note that the rank of B might be smaller, and that NLN(A) is just intersection of left null
space of all B in P(A).

�

Example 4.6We note that, while elements of NLN(A)may often be ±1, 0 vectors, we may have more compli-
cated weights. 

a b c d e f g h i j k l m
d e m a b l j k g f c i h
g f h j i m l d k a b e c
j l e c g b i k h m d f a
j f m c i b l d g a k e h
g l c d e m j h k f b i a
d b e a g f i k h j c l m
a l m j e b g k h f d i c
g f h a b m l k i j d e c
d e h c g l j k i m b f a
a e c j b l g d i m k f h
a e h j b f i k g m d l c
j b e d i l g h k a c f m


This matrix, having a numerical left null vector [3 3 3 3 -2 -2 -2 -1 -1 -1 -1 -1 -1 -1], indicates that the weights in
each group of rows within a row grouping do not need to be only 1s (or -1s) and do not need to be the same
for all groups.

For an m-by-n permutative matrix A, let P(A) denote the closure of P(A), the set of nonnegative matrices
in which equal nonnegative substitutions are allowed for the variables. Then, if we let one variable be 1 and
the rest 0, we get a 0,1 matrix in P(A) that indicates the positions of that variable. We get such a 0, 1 matrix
with m 1’s for each variable, and the permutative matrix Amay be written as the linear combination of these
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0, 1matriceswhose coe�cients are the variables. If the variables are a1, . . . an, wemay name the 0, 1matrices
A1, A2, . . . , An, so that

A = a1A1 + a2A2 + . . . + anAn .

Example 4.7

If matrix A =

a1 a2 a3
a2 a1 a3
a3 a2 a1

,

then A1 =

1 0 0
0 1 0
0 0 1

, A2 =

0 1 0
1 0 0
0 1 0

, A3 =

0 0 1
0 0 1
1 0 0

.
The NLN(A) is simply the intersection of the left null spaces of the matrices B ∈ P(A). Since A1, . . . , An
span this subspace of matrices, NLN(A) is the intersection of the left null spaces of A1, . . . , An, or equiva-
lently the left null space of the the m-by-n2 matrix:

A = [A1 A2 . . . An]

Now, sinceA is an integer matrix, its left null space has rational entries, and, by clearing denominators, any
particular left null vector may be taken to have integer entries (that sum to 0). We then have as a consequence
of Theorem 4.3:

Corollary 4.9 In any g-part row grouping, the weights within each group of rows may be taken to be in-
tegers.

Example 4.10

Suppose matrix A =


a b c d
b a d c
b a c d
a b d c

. Then,

Aa =


1 0 0 0
0 1 0 0
0 1 0 0
1 0 0 0

, Ab =


0 1 0 0
1 0 0 0
1 0 0 0
0 1 0 0

, Ac =


0 0 1 0
0 0 0 1
0 0 1 0
0 0 0 1

, Ad =


0 0 0 1
0 0 1 0
0 0 0 1
0 0 1 0



and therefore,A =


1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0

.
This means that A’s left null vector [1 1 -1 -1]T is also a left null vector ofA.

5 Singularity Resulting from h, k-partitions
It may happen that a permutative matrix A is identically singular, even if dimNLN(A) = 0. This results
from certain h, k-partitions. Some trivial h, k-partitions are of no interest. For example, the matrix itself
corresponds to a 1,1-partition; each entry is a block in the n, n-partition, and each row is a block in the n,1-
partition. We exclude these from further discussion. The h, k-partitions, with h < k, are of most interest; they
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Ranks of permutative matrices | 239

always result in rank de�ciency. Under additional conditions, h, k-partitions, with h = k, may result in rank
de�ciency.

Example 5.1 Consider the permutative matrix
a b c d
a b d c
c d a b
c d b a


with a 2,3-partition, as indicated. Subtracting the �rst row from the second and the third from the fourth, and
then adding the last column to the third column gives

a b c + d d
0 0 0 c − d
c d a + b b
0 0 0 a − b

 .

Now, interchange of rows 2 and 3 gives 
a b c + d d
c d a + b b
0 0 0 c − d
0 0 0 a − b


which has at most 3, and exactly 3, linearly independent columns. Thus, A is identically singular, and the
rank of every matrix in P(A) is 3.

To prove our �rst main result here, we need a well known fact

Lemma 5.2 If A is an m-by-n matrix, over a �eld, that contains a p-by-q submatrix of 0’s, then

rank(A) ≤ (m − p) + (n − q).

Now, we may prove

Theorem 5.3 An m-by-n permutative matrix A with an h, k-partition satis�es

rank(A) ≤ n + h − k.

Thus, for m = n, if h < k, A is identically singular.

Proof: Because permutation equivalence preserves rank, we may suppose that each part of the row (col-
umn) partition consists of consecutive rows (columns), so that the submatrices formed by the partition are
contiguous.

Notice, �rst, that by the de�nition of an h, k-partition, the row sums of each submatrix of the partition
are constant for that block. Now, for each part of the row partition, subtract the �rst row from all other rows.
This makes all row sums, after the �rst, 0 within each block. Then, in each part of the column partition, add
every other column to the �rst, so that in our partitioned matrix, each block has only 0’s below its upper left
entry.

These 0’s form a submatrix of A of size (m − h)-by-k. Application of Lemma 5.3, then yields

rank(A) ≤ m − (m − h) + n − k,

and simpli�cation gives the bound claimed in the statement of the theorem.
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�

Note that the proof of Theorem 5.3 includes an explicit elimination procedure that reveals a 0 block that is
relevant to determining rank. We call this elimination scheme (that depends only on the h, k-partition that
is used–there may be others) h,k-elimination. After h, k-elimination is performed, other characteristics of the
resulting form may reveal further rank de�ciency.

In some cases, a permutative matrix having an h, k-partition is actually permutation equivalent to a per-
mutative matrix containing a row grouping, which means, it also has a numerical left null vector. However,
in such cases it need not happen that the rank diminution be additive. So the rank may only be reduced by
one, even though two phenomena are displayed. For example, swapping the second and the last row in case
9 in Section 3 gives 

a b c d
a b d c
b a c d
b a d c

⇒


a b c d
b a d c
b a c d
a b d c

 ,

where the �rst version has a 1,2-partition and the second one has a row grouping with �rst two rows and the
last two rows being the 2 parts. The matrix is rank 3, not rank 2.

6 Hybrid Rank De�ciency via h, k, g-partitions
The two phenomena that cause rank de�ciency, row grouping and h, k-partitionsmay combine to cause rank
de�ciency, in a square permutative matrix, greater than either separately. One way is straightforward: one
subset of the rows may be de�cient in rank because of an h, k-partition within it and with h much less than
k, while another, disjoint subset of rows, displays row grouping. The other way is a rather more subtle hybrid
of the two: a latent row grouping shows up in part of the matrix, after h, k-elimination has been performed,
as in the proof of Theorem 5.3. Parallel to Example 5.1 is the following example of the latter phenomenon.

Example 6.1 The 8-by-8 matrix

A =



a e d f c b g h
a e f d b c g h
b d c g f e a h
d b g c e f h a
d b c g e f h a
e d f g c b a h
e d g f c b h a
a b c d e f g h


has only a 4,4-partition, as displayed, but is identically singular with rank(A) ≤ 7.
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After applying h, k-elimination and permuting rows and columns, we arrive at the equivalent matrix

A′ =



a + e d + f c + b g + h e f b h
b + d c + g f + e a + h d g e h
e + d f + g c + b a + h d g b h
a + b c + d e + f g + h b d f h
0 0 0 0 0 d − f c − b 0
0 0 0 0 b − d c − g f − e a − h
0 0 0 0 e − d f − g c − b 0
0 0 0 0 0 f − g 0 a − h


.

Now the upper left 4-by-4 block has a two-part row grouping: {1, 2}; {3, 4}, so that adding the second row
to the �rst, the fourth to third and then subtracting the �rst from the third and permuting yields upper left
submatrix 

a + e d + f c + b g + h
b + d c + g f + e a + h
e + d f + g c + b a + h
0 0 0 0


This means that the �rst 4 columns of A′ have rank at most 3 and that A has rank at most 7.

We may now formalize the idea of an h, k, g-partition.

De�nition 6.2 An m-by-n permutative matrix A has an h, k, g-partition if it has an h, k-partition such that
the application of h, k-elimination leaves a submatrix above the (m − h)-by-k 0 block that admits a g-part
row grouping.

Theorem 6.3 If an m-by-n permutative matrix A has an h, k, g-partition, then

rank(A) ≤ n + h − k − (g − 1)

Proof: After the h, k-elimination, as in the proof of Theorem 5.3, an (m − h)-by-k 0 submatrix is formed with
an h-by-k submatrix above it. If the h-by-k submatrix has a g-part row grouping, the rank of the submatrix
above the 0 block–the rank of the submatrix formed by the �rst k columns is reduced by (g − 1). Thus, the 0
submatrix may be expanded to (m − h + (g − 1))-by-k. Application of Lemma 5.2 then gives

rank(A) ≤ m − (m − h + (g − 1)) + n − k

with a simpli�ed version shown in Theorem 6.3.

�

Thus, for Example 6.1, application of Theorem 6.3 gives the rank 8+4-4-(2-1)=7.

Note that permutative matrices can have multiple row grouping phenomena based on h, k-partition with
g1-fold, g2-fold, g3-fold individually on top of the 0 submatrix post-h, k-elimination. Therefore, the general
form for the rank ceiling can be

rank(A) ≤ n + h − k − (g1 − 1) − (g2 − 1) − ...
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7 Further Rank Reduction via Super Grouping
"Super grouping", or groupings of groupings may occur in both pure row grouping and in h, k, g-partitions.
Here, we talk about the case of pure row grouping �rst. Super grouping requires a permutative matrix to
have multiple row groupings, and the idea is similar to row grouping. From section 4, we know that each row
grouping corresponds to a numerical left null vector indicating a pair of groups of rows that have the same
weighted sum. Each super grouping corresponds to a numerical left null vector as well. However, the null
vector’s entries do not only re�ect the indices of two groups of rows. They, in fact, represent two (or more)
groups of row groupings, which means those two groups of row groupings that involve many row groups
themselves, have the same weighted sum of the weighted sums of each group. Therefore, another zero row
can be produced from row operations, due to the super grouping, in addition to, yet encompassing all the
corresponding row groupings.

Similar results apply to the h, k, g-partition when only looking at the upper left submatrix produced by
h, k-elimination. Thus, the rank of the submatrix can be even less than the basic row grouping would sug-
gest. So the rank of the permutative matrix will be less than the result would from the h, k, g-partition.

In practice, super grouping is similar to a row grouping but is based on the row sum of each row group-
ing rather than rows. After applying row grouping, we look at the submatrix formed by each row grouping’s
one remaining row of the weighted sums (remember for each row grouping, we delete all but one group’s
equal weighted sum). If this new submatrix has a row grouping, we can further eliminate rows and see that
the rank of the submatrix, and thus the entire matrix, is lower.

8 Algorithms to �nd row groupings, h, k-partitions or
h, k, g-partitions

An algorithm can help determine whether identical rank de�ciency of a permutative matrix is due to row
grouping, h, k-partitions or h, k, g-partitions.

If there is a nonzero, numerical left null vector for the matrix, then the permutative matrix has a row group-
ing by Theorem 4.3. The indices of the positive entries in the left null vector and the indices of the negative
entries in the left null vector indicate the two groups of rows with equal weighted sums, with weights being
the absolute values of the corresponding entries. In general, if a matrix has row grouping with g > 2, it will
have g − 1 independent numerical left null vectors.

If the matrix contains no numerical left null vector, we assume its rank de�ciency is caused by an h, k-
partition or an h, k, g-partition. To �nd the k parts of the column partition in the matrix, we look at a right
null vector. If the right null vector of a permutativematrix contains repeated symbolic values, the correspond-
ing indices indicate the columns belonging to a part of the column partition. From another perspective, the
number of distinct values in the right null vector gives the value of k in the partition. Summing all the columns
in each of the k parts and looking at those k post-summation vectors, each di�erent set of entries in those
k columns shows a di�erent h-part in the row partition. For example, if we have a post-summation column
with {1, 2} and {3, 4, 5, 6} rows having the same values respectively and another column with {1, 2, 3, 4}
and {5, 6} rows having the same values, then we will partition the rows into three sets {1, 2}, {3, 4}, {5, 6}
and h = 3.

After the h, k-elimination process, we are left with an h-by-k submatrix above the 0 block. If we can still
�nd a numerical left null vector in the submatrix, we have an h, k, g-partition of the matrix. After the h, k-
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elimination, the positive and negative entries in a left null vector of the h-by-k submatrix shows the grouping
imposed on a pair of groups of h-parts which have the sameweighted sum of the weighted sums of every part
of the row partition within each group.

The following chart shows the process of �nding the causality of a symbolic permutative matrix’ identi-
cal singularity.

Identical
Singularity

No numerical
left null vector

Numerical left
null vector

Row grouping h, k-partition

h, k-eliminationSymbolic right
null vector

No symbolic
right null vector

Pure row
grouping

Numerical
left null vec-
tor for h, k-

reduced matrix

No numeri-
cal left null

vector for h, k-
reduced matrix

h, k, g-partition Pure h, k-
partition

Trivial hybrids
of row grouping
and h, k-partition

9 Additional Observations
Here, we make three more observations about permutative matrices.

First, if A is square, permutative and based upon the variables a1, a2, . . . , an, then Ae = (a1 + . . . + an)e,
so that a1 + . . . + an is an eigenvalue of A. Of course, detA is a homogeneous polynomial in a1, a2, . . . , an
(perhaps identically 0). This means

Proposition 9.1 If A is an n-by-n permutative matrix based on the variables a1, . . . , an, then detA is a
homogeneous polynomial in a1, a2, . . . , an and

a1 + a2 + . . . + an|detA.

If A is m-by-n and permutative, we may count the number of columns in which a particular variable lies. If
the variables are a1, . . . , an and A = a1A1 + . . . + anAn, let qi be the number of columns in which ai appears.
This is the same as rank Ai. Then, de�ne q(A) = max

1≤i≤n
qi(A). We have

Theorem 9.2 For any permutative matrix A, P(A) contains matrices of rank at least q(A).
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Proof: Let A′ be a q(A)-by-q(A) submatrix that has the variable ai, which attains q(A), occurring in ev-
ery column. As ai appears only once in each row, wemay permute rows and columns of A′ to make ai appear
in every diagonal position (and nowhere else in A′). Now, we de�ne a numerical matrix B′ from A′ (and a
numerical matrix B from A, of which B′ is a submatrix) by choosing positive values for each symbol in such
a way that the value for ai is greater than the sum of all other values. In this way, B′ is diagonally dominant
and, thus, nonsingular. This means that B′ has rank q(A) and that B has rank at least q(A). Of course, B is in
P(A), which veri�es the claim.

�

Corollary 9.3 If an m-by-n permutative matrix has an h, k-partition, then by Theorem 5.3, we have

k − h ≤ n − q(A)

Finally, we note that there are identically invertible n-by-n permutative matrices for every n. It is a worthy
problem to identify and/or enumerate them all. Let the sequential transposition permutative matrix be the
one in which positions n − i +1 and n − i +2 are transposed relative to the preceding row, beginning with row
2. 

a1 a2 . . . . . . an−1 an
a1 a2 . . . . . . an an−1
a1 a2 . . . an an−2 an−1
... . . .

an a1 a2 . . . . . . an−1


Theorem 9.4 The n-by-n sequential transposition matrix has determinant

−(a1 + . . . + an)(a1 − an)(a2 − an) . . . (an−1 − an)

and, therefore is identically invertible.

Proof: First, perform the n − 1 row operations:
subtract row n-1 from row n;

subtract row n-2 from row n − 1;
...

and end with
subtract row 1 from row 2,

to arrive at 
a1 a2 . . . . . . an−1 an
0 0 . . . . . . an − an−1 an−1 − an
0 0 . . . an − an−2 an−2 − an 0
... . . .

an − a1 a1 − an 0 . . . . . . 0

 .

Next, perform the n − 1 column operations:
add column n to column n-1;

add column n − 1 to column n-2;
to end with

add column 2 to 1,
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to arrive at 
a1 + . . . + an a2 + . . . + an . . . . . . an−1 + an an

0 0 . . . . . . 0 an−1 − an
0 0 . . . 0 an−2 − an 0
... . . .

0 a1 − an 0 . . . . . . 0

 .

Now, expand thedeterminant down the�rst column to arrive at the claimed formula. Since the ai’s are distinct
and positive, this cannot be 0, which completes the proof.

�

De�nition 9.5 A reduced matrix of a permutative matrix with an h, k-partition is an h-by-kmatrix with every
entry being the partial row sum within each block in the h, k-partition of the original matrix. To get the
reduced matrix of an m-by-n permutative matrix with only a g-part row grouping means to delete the redun-
dant rows and get a matrix of dimension m − (g − 1)-by-n. Finally, to get the reduced matrix of a permutative
matrix with an h, k, g-partitions means to reduce the matrix to h-by-k, as in the h, k-partition case, and, to
further reduce thematrix by deleting the redundant (g−1) rows and get the resulting h− (g−1)-by-k reduced
form.

For example: 
a b c d
a b d c
c d a b
c d b a

 ⇒reduces to

[
a b c + d
c d a + b

]

It is observed that the dimension of the right null space is invariant under reduction and that each right null
vector of the reduced matrix has the same set of entries as the right null vector of the original permutative
matrix: 

b2 + ab − d2 − cd
−(a2 + ba − c2 − dc)

ad − bc
ad − bc

 ⇒reduces to

 b2 + ab − d2 − cd
−(a2 + ba − c2 − dc)

ad − bc


This reduction process is analogous in h, k, g-partitions. Here we demonstrate the reduction for Example 6.1:



a e d f c b g h
a e f d b c g h
b d c g f e a h
d b g c e f h a
d b c g e f h a
e d f g c b a h
e d g f c b h a
a b c d e f g h


⇒reduces to


a + e d + f c + b g + h
b + d c + g f + e a + h
e + d f + g c + b a + h
a + b c + d f + e g + h



which is just the h-by-k submatrix above the 0 block after applying h, k-elimination. Now, applying row
grouping to the h-by-k reduced matrix:

a + e d + f c + b g + h
b + d c + g f + e a + h
e + d f + g c + b a + h
0 0 0 0

⇒reduces to

a + e d + f c + b g + h
b + d c + g f + e a + h
e + d f + g c + b a + h
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showing that the above matrix can be seen as an underdetermined system that has one right null vector, and
the right null vector of the 3-by-4 system will contain the set of entries in the right null vector of the original
8-by-8 matrix.

10 Conjectures/Questions
We note some natural questions that have not been resolved in the current work.

Conjecture 1 We have identi�ed two main ways, and variants/extensions of them, in which a permutative
matrix is identically singular. We conjecture that a permutative matrix that displays none of these phenom-
ena will, at least, be generically invertible. Equivalently, these are the only ways that identical singularity
occurs.

Conjecture 2 Clearly, an n-by-n permutative matrix, with n ≥ 2, always has rank at least 2. We conjec-
ture that when n ≥ 3, the rank will be at least 3. In addition, the minimum rank grows slowly and stronger
lower bounds on rank would be of interest.

Conjecture 3 It would be of interest to characterize those n-by-n permutative matrices that are identically
invertible, or to at least give broader su�cient conditions. The same goes for generic invertible: characterize
it or give broader su�cient conditions.
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