
W&M ScholarWorks W&M ScholarWorks

Arts & Sciences Articles Arts and Sciences

2016

MobiPlay: A Remote Execution Based Record-and-Replay Tool for MobiPlay: A Remote Execution Based Record-and-Replay Tool for

Mobile Applications Mobile Applications

Zhengrui Qin
William & Mary

Yutao Tang
William & Mary

Ed Novak
William & Mary

Qun Li
William & Mary

Follow this and additional works at: https://scholarworks.wm.edu/aspubs

Recommended Citation Recommended Citation
Qin, Zhengrui; Tang, Yutao; Novak, Ed; and Li, Qun, MobiPlay: A Remote Execution Based Record-and-
Replay Tool for Mobile Applications (2016). 2016 Ieee/Acm 38th International Conference on Software
Engineering (Icse).
10.1145/2884781.2884854

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been
accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more
information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/aspubs
https://scholarworks.wm.edu/as
https://scholarworks.wm.edu/aspubs?utm_source=scholarworks.wm.edu%2Faspubs%2F811&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu

MobiPlay: A Remote Execution Based Record-and-Replay
Tool for Mobile Applications

Zhengrui Qin† Yutao Tang† Ed Novak Qun Li
Department of Computer Science
The College of William and Mary

Williamsburg, VA 23185 USA
{zhengrui, yytang, ejnovak, liqun}@cs.wm.edu

†Zhengrui Qin and Yutao Tang are co-first authors

ABSTRACT
The record-and-replay approach for software testing is im-
portant and valuable for developers in designing mobile ap-
plications. However, the existing solutions for recording and
replaying Android applications are far from perfect. When
considering the richness of mobile phones’ input capabili-
ties including touch screen, sensors, GPS, etc., existing ap-
proaches either fall short of covering all these different input
types, or require elevated privileges that are not easily at-
tained and can be dangerous. In this paper, we present
a novel system, called MobiPlay, which aims to improve
record-and-replay testing. By collaborating between a mo-
bile phone and a server, we are the first to capture all pos-
sible inputs by doing so at the application layer, instead of
at the Android framework layer or the Linux kernel layer,
which would be infeasible without a server. MobiPlay runs
the to-be-tested application on the server under exactly the
same environment as the mobile phone, and displays the
GUI of the application in real time on a thin client appli-
cation installed on the mobile phone. From the perspective
of the mobile phone user, the application appears to be lo-
cal. We have implemented our system and evaluated it with
tens of popular mobile applications showing that MobiPlay
is efficient, flexible, and comprehensive. It can record all in-
put data, including all sensor data, all touchscreen gestures,
and GPS. It is able to record and replay on both the mobile
phone and the server. Furthermore, it is suitable for both
white-box and black-box testing.

Keywords
Mobile Application, Record-and-Replay, Google Android,
Virtual Machine, Secure Virtual Mobile Platform.

1. INTRODUCTION
Mobile phones have been increasingly popular in recent

years with nearly two billion users worldwide [8], and mil-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16, May 14-22, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884854

lions of applications (apps) are available in each of the sub-
stantial platforms. As new technologies, such as various sen-
sors, and other rich resources are adopted by mobile phones,
the user experience is greatly enhanced. However, at the
same time, these new features have imposed challenges on
application design and testing for developers. Nowadays,
running an app may involve multiple input sources: touch-
screens (swiping, pinching, zooming, click/tapping), sensors
(GPS, accelerometer, compass, gyroscope), and networking
(online gaming, websites, bluetooth) to name a few. There-
fore, it is challenging for developers to test and debug mo-
bile apps, since it is non-trivial to accurately record the data
from all these inputs as well as the interaction among dif-
ferent components involved in the app. Even after the in-
put has been recorded, it is then challenging to replay the
app execution using the recorded data. While a handful
of record-and-replay tools have been developed for mobile
apps, they are far from perfect.

As one of the key technologies in software engineering, the
record-and-replay approach to software testing has played an
important role in the development of mobile apps. Record-
and-replay is a necessary and valuable tool for mobile app
development because it allows developers to easily find and
recreate elusive and complex bugs, test outlier cases, and in-
crease the speed of testing software by automating the pro-
cess. Record-and-replay improves software in the testing,
debugging, optimization, and upgrading phases. However,
we face several challenges in implementing such a system
on mobile devices. Considering the rich input capabilities
of mobile phones and the real-time interaction between the
mobile app and the user, the challenges are as follows. First,
it is difficult to accurately record an application’s continu-
ous execution instead of some discrete actions. Second, it
is hard to record all the input data, which is especially true
for sensors such as the GPS. Third, it is preferable that all
recorded data is human-readable, such that developers can
easily analyze, revise, and re-assemble the recorded data in
order to accurately locate and identify bugs or performance
bottlenecks. Finally, it may be possible to modify the mobile
phone operating system (OS) to achieve record-and-replay
functionality. However, modifying the OS requires a device
with an unlocked bootloader and an open source operating
system. Unlocking the bootloader is impossible on some de-
vices (due to manufacturer obstacles), difficult, and usually
erases all user data on the device. Modifying the operating
system may introduce bugs, and is difficult in general, re-
quiring access to any proprietary closed-source components

2016 IEEE/ACM 38th IEEE International Conference on Software Engineering

 571

from the original.
In recent years, researchers have designed and developed

several replay tools for mobile apps. However, none of them
are able to truly capture all possible input. These tools can
be divided into several categories. The first category is tools
that obtain the input data by reading /dev/input/event∗
files through the Android SDK getevent tool (e.g., RERAN
[11] and Mosaic [14]). Although these tools can record con-
tinuous gestures on the touchscreen (swipe, move, pinch/zoom),
they come with several drawbacks. First, they entirely de-
pend on whether the mobile phone’s OS provides interfaces
to /dev/input/event∗, which is not always the case. For
instance, the Nexus 7 does not push any sensor data into
any /dev/input/event∗ file. Second, they are unable to
record sensors whose events are made available to applica-
tions through system services rather than low-level event
interfaces, such as GPS. Third, they can only obtain the
event data in low-level hexadecimal codes (e.g., 40-719451:
/dev/input/event4: 0003 0035 0000011f), which is not hu-
man readable, hindering developers from white-box testing.
Fourth, they have potential conflicts with other events oc-
curring during a replay session. Another category is GUI-
level tools, such as [1, 29, 13]. They work at a higher level of
abstraction by capturing GUI objects, and usually require
app modification (e.g., android:debuggable = true). Though
they work well for discrete point-and-click GUIs, they can-
not handle continuous touchscreen gestures or customized
GUI elements.

A straightforward question is, “Can we solve all the prob-
lems and challenges within the mobile phone alone without
modifying the operating system?”Unfortunately, the answer
appears to be no. For security concerns, mobile operating
systems, such as Android, sandbox apps in order to provide
applications with the guarantee of isolation from other ap-
plications on the system. Each application has its own UID
that prevents it from doing many things to other applica-
tions on the system. If we are to record all the input data
for an app, we would have to develop a second app, without
using any existing tools, such as the Android SDK getevent
tool. However, as the Android Application Sandbox has en-
forced, the second recording app cannot access any data or
memory of the app to be recorded. Therefore, we have to
introduce other component, rather than the mobile phone
alone, to solve this problem.

In this paper, we design a system, called MobiPlay, to
record and replay an Android app’s execution by introduc-
ing a server. The to-be-tested app is actually running on
the server, while its GUI is transmitted back to the mo-
bile phone as if the application were running locally on the
phone. Although it may seem that latency would be a large
concern in this setup, we find that the latency is acceptable
due to the high-speed peer connection and the proximity of
the server (we evaluate on a LAN connection). We have a
video of MobiPlay on YouTube (search MobiPlay). Without
modifying the mobile phone’s operating system, MobiPlay
is able to record all sensor data inputs, for replay later, in
the form of high-level events, such as touchscreen gesture,
key event, and sensor event. Besides solving the existing
problems and challenges we outlined previously, MobiPlay
is also able to offer more flexibility than ever before. It can
not only record all input data, on both the mobile phone
and the server side but it can also replay the app on both
sides as well. Furthermore, our system is suitable for both

white-box testing and black-box testing.
In summary, in this paper we make the following main

contributions:

• We are the first to record input data of mobile apps in
the application layer without modifying mobile phone’s
operating system, which is not achievable with the pre-
vious state-of-the-art approaches.

• We have designed and implemented MobiPlay, a sys-
tem that is able to record and replay the execution of
mobile apps. Our system is richer than ever before
because it is able to record all sensor data input.

• MobiPlay is able to simulate the same environment on
the mobile phone and the server, which fundamentally
expands the space of flexibility.

• MobiPlay is flexible in that it can record and replay
on both the client (mobile phone) and server side.

• Our system enables white-box testing for app develop-
ers because it exposes high-level semantic events, and
presents them in a human readable form instead of an
encoded stream of raw hexadecimal event data.

The rest of the paper is organized as follows. We present
the whole system in Section 2 and describe the implementa-
tion in Section 3. Section 4 details the evaluation of Mobi-
Play. Section 5 briefly discusses the limitations and future
work. We review the related work in Section 6 and conclude
our paper in Section 7.

2. DESIGN OF MOBIPLAY
In this section, we will first elaborate on the rationale be-

hind our design decisions. Then, we will explain our system
design, its general architecture, and the details therein. Fi-
nally, we will explain the input data recording and replaying
in our system.

2.1 Design Rationale
As mentioned in Section 1, we have to coordinate work

between the user’s mobile phone and an external server to
solve all of our design challenges. Here we further illustrate
why the mobile phone alone cannot solve this problem, and
why a server is indispensable. Figure 1 shows the logical
flow of application input data. Suppose the user makes a

OS Modification

/dev/input/event*

Dedicate App ?

Mobile Phone

Hardware

Linux Kernel

Android Framework

Target

App

App for data

Interception

Figure 1: App input data flow, within a mobile
phone (no server).

gesture on the touchscreen (tap, swipe, pinch, zoom, etc.).
First, the touchscreen hardware captures this gesture, con-
verts it into digital data, and informs the Linux kernel by

572

sending an interrupt to the CPU. Second, after receiving the
interrupt, the OS stops the current job, reads the input data
with the corresponding driver, and sends the data to the An-
droid framework. Third, the Android framework packages
the data into discrete events (MotionEvent) and sends them
to the related service, such as Sensor Service, Input Method
Service, or Location Service; at the same time, it sends the
data to /dev/input/event∗ as well in the form of hex codes.
Finally, the related service sends the discrete events to the
application running on the foreground.

RERAN and Mosaic obtain the app input data by reading
/dev/input/event∗ files in the Android framework, and OS
modification occurs in the Android Framework as well. From
Figure 1, we can see that the only other possible location to
record app input data, without modifying the OS, is in the
application layer. In order to do this, one must develop an-
other application, specifically dedicated to intercepting the
input data that is actually destined for the target applica-
tion. However, this is forbidden by the Android Application
Sandbox, as well as the sandbox policy in other mobile op-
erating systems, which guarantee that unsanctioned data
sharing between applications is not possible. As a result,
the dedicated data intercepting app cannot access any data
or memory of the target application. Therefore, it is clear
that a mobile phone alone cannot solve the challenges and
problems that the current approaches have encountered. To
overcome this “isolation” obstacle, we introduce a second
component, i.e., a sever.

2.2 Architecture of MobiPlay
In this paper, we design MobiPlay, a client-server sys-

tem consisting of a mobile phone and a server, as shown in
Figure 2. The server and the mobile phone are connected
through a high-speed network connection, like 300Mbps to
1Gbps.

Network

Mobile Phone Remote Server

Client

App

Target

App

Android Framework
Android Framework

Hardware

Linux Kernel
Virtual Machine

Linux Kernel

Touch Screen GraphicsSensors GPS

Input System

Local App

Figure 2: MobiPlay consists of a mobile phone and
a server.

In MobiPlay, there are two components associated with
the application to be recorded and replayed (the target app,
hereafter): a client app on the mobile phone and a virtual
machine (VM) on the server. The target app runs on the
VM on the server. The client app (the client, hereafter) is
a typical Android app that does not require root privilege
and is dedicated to intercepting all the input data for the
target app. The VM is a “duplicated” mobile phone on the
server, which has the same configuration as the physical mo-
bile phone, including screen size, resolution, and all present
sensors. The VM runs a modified Android operating system
designed for x86 architecture. It is important to note that

the tester/user has complete control over the server, includ-
ing the modified Android operating system; specifically, she
has root privileges, has access to modify and recompile the
OS source code, is able to make configuration changes, etc.

The basic idea of MobiPlay is that the target app actu-
ally runs on the server, while the user interacts with the
client app on the mobile phone. The user is not explicitly
aware that she is, in effect, using a thin client. At the be-
ginning, we install the target app on the virtual machine on
the server, and the client on the mobile phone. The client
shows the GUI of the target app in real time on the mo-
bile phone, exactly as if the target app were running on the
mobile phone. As a result, the user just needs to interact
with the target app as usual, while, under the surface, the
client continuously forwards all input data (such as touch-
screen gestures, sensor data, and GPS) to the VM on the
server. At the same time, the GUI of the target app on the
server is forwarded to the client and is then displayed by the
client on the mobile phone. The VM on the server injects
the input data received to the related OS services, which in
turn send it to the target app. The target app runs on the
virtual machine with the injected input data exactly same
as it would run on the mobile phone. In other words, the
user runs the app with exactly the same experience as if the
app had been running on the mobile phone. The target app
actually runs on the virtual machine on the server, but, with
the same environment (inputs, resolution, screen size, etc.)
as if it had been running on the mobile phone.

MobiPlay has three modes: normal, record, replay. When
the client is opened, the graphical interface presents three
buttons to the user, and the user must choose one of the
three modes before establishing a connection with the server.
In the normal mode, MobiPlay runs without any data record-
ing or data replaying. That is, the user of the mobile phone
runs the mobile app on the server, while interacting with
the local client app. The mobile user can use this mode
to test MobiPlay. Another possible application scenario for
this mode might be that the mobile user wants to offload
a resource-hungry app to the much more powerful server.
In record mode, MobiPlay intercepts all input data through
the client app, as the target app runs on the server. The
collected data is stored on disk. A user configuration option
allows for the data to be stored on the phone, or the server,
or both. In the replay mode, MobiPlay first configures where
to read data (phone or server), where to replay (phone or
server), and the test type (black-box or white-box). Then it
reads the input data from disk, injects the input events, in
the same order, into the target app running on the chosen
device, and replay the target app. During the replay, Mo-
biPlay does not process any local Android service request,
such that the target app is replayed with the recorded input
only. This avoids any interference from the current state
(such as new GPS or accelerometer data).

In the following, we will describe the data recording and
the app replay mechanisms in more detail.

2.3 App Recording
When the user chooses record mode, MobiPlay will be

directed to record all input data for replay later. MobiPlay
can record all input data for the target app on both the
mobile phone and the server. As illustrated in Figure 2,
all input data for the target app passes through the client
app on the mobile phone. Therefore, the client is able to

573

intercept all this data. At the same time, since all the input
data is transmitted to the server and the user has full control
of the server, the data can be intercepted and recorded there
as well.

Figure 3 shows how the data is intercepted and stored on
both sides. On the phone side, all the data is intercepted in

Serialization

+ Delta

Network

Mobile Phone Server

Request[] mRequest

Class {int64 Delta

... ... }

MotionEvent

KeyEvent

Location

Rotation

SensorEvent

Request

InputLog

Disk

Request

InputLog

App

Figure 3: MobiPlay records input data on both the
mobile phone and the server.

the form of events, such as motion events, key events, loca-
tion, rotation, sensor, etc., and each event is an object that
contains the input information at a certain point of time.
MobiPlay extracts useful information from each event and
stores it in a structure called Request. MobiPlay also obtains
the time intervals between each pair of consecutive events,
and stores this information, together with the Requests in
order, in the log. The log itself is a class called an InputLog,
which is a collection of Request objects. Finally the entire
InputLog instance is written to disk on the mobile phone.
At the same time, all Requests are transmitted through the
network to the server, in order to be fed into the target app.
Thus, MobiPlay is able to record all input data on the server
side as well. Once the target has finished running, i.e, the
recording procedure has completed, MobiPlay quits to the
GUI with three modes for selection.

One prominent advantage of this architecture is that our
recorded data is high-level, readable and revisable. This is
incredibly valuable for app developers when trying to recre-
ate and fix bugs in their code caused by specific, infrequent
input.

2.4 App Replaying
When the user chooses replay mode, MobiPlay will load

the recorded data from the disk and replay the target app.
The replay procedure is illustrated in Figure 4. The replay
procedure for the white-testing on the mobile phone is sim-
ilar to that on the server, and neither of them needs root
privilege. However, the replay procedure for the black-box
testing on the mobile phone is different from that on the
server. In case on the phone, the black-box testing still re-
quires root privilege, since the input data has to be injected
through /dev/input/event∗ files.

As Figure 4 shows, first, MobiPlay loads the input data
from the disk of either the server or the mobile phone. Sec-
ond, the input data stored on disk as an InputLog class is un-
packed into a sequence of Request (i.e., events). Third, (a)
for black-box testing on the server, the sequence of events is
sent to virtual devices on the VM, which then inject events
to the target app for replay; (b) for white-box testing on
the server, the input events is injected to the target app
through Android testing framework and event emulator; (c)
for white-box testing on the phone, it is same as the white-

/dev/input/event*

Either

Server’s Disk

Phone’s Disk

Android testing

framework +

Event emulator

Black−box

White−box

White−box

Black−box

Phone

Server

InputLog Request

MotionEvent

KeyEvent

Location

Rotation

SensorEvent

Figure 4: MobiPlay can relay an app on both mobile
phone and server, black-box and white-box testing,
respectively.

box testing on the server; (d) for black-box testing on the
phone, the events is converted into hex codes and fed into
the corresponding /dev/input/event∗ files, where the target
app read the input data for replay. After the replay has
finished, MobiPlay quits to the GUI with three modes for
selection.

MobiPlay is advantageous in that app developers can re-
vise the input data as they want to test the app in differ-
ent scenarios. This is much easier than re-running the app
multiple times to collect input data, hoping for good test
coverage from all types of input.

3. IMPLEMENTATION
In this section, we present our implementation of Mobi-

Play. We establish the client-server platform by leveraging
the Secure Virtual Mobile Platform (SVMP) [31], and then
we build the record and replay approaches on basis of SVMP.

3.1 Physical Devices
In principle, MobiPlay only consists of a mobile phone (or

a tablet) and a server by utilizing the existing networking in-
frastructure. In our implementation, besides the phone and
the server, a router is used to set up the wireless connection
between the server and the phone. The characteristics of all
these devices are listed in Table 1.

Table 1: The devices used in MobiPlay system.
Device Specification

Android phone
Samsung Galaxy S4

quad-core 1.6GHz Cortex-A15
quad-core 1.2GHz Cortex-A7
2GB RAM, 32 GB microSD
Android OS, v5.0.1

Android tablet
Nexus 7, 2013

quad-core 1.5GHz Krait
2GB RAM, 32GB storage
Android OS, v4.1.1

Server
Y480 Lenovo laptop

2.4GHz Intel i7-3610QM
8GB RAM, 500 GB HD
Ubuntu 14.04

Router
TP-Link TL-WR841N

300Mbps

Additionally, the server uses VirtualBox1 as the VM hy-
pervisor and uses a virtual bridged network adaptor for net-
working access. The VM configuration allocates 4096 MB

1https://www.virtualbox.org/wiki/VirtualBox

574

RAM, an 8 core processor, and 5GB disk storage space. And
the VM runs Android OS v4.4.4.

3.2 The Client-Server Platform
In MobiPlay, the essential component is the client-server

platform, which we implement using SVMP. SVMP is a
secure mobile application platform developed by MITRE2,
based on thin client technology and cloud computing tech-
nology. An open source “virtual smartphone”, SVMP runs
an Android-based mobile operating system on a cloud plat-
form.

In the big picture, we utilize SVMP to create a virtual
machine on the server, where the target mobile app actually
runs, and an SVMP client on the mobile phone, where the
GUI of the app is displayed in real time. The client and the
virtual machine are connected through a wireless network in
our setup, which is common for mobile devices.

3.2.1 SVMP Client
The SVMP client is installed on the mobile phone as a

normal mobile application. The client, simple and unprivi-
leged, is associated with the VM on the server rather than
the target app. That is, when we test multiple apps, we just
need to install each app in turn on the VM, without making
any changes to the client. While MobiPlay runs in nor-
mal or record mode, the client captures native touch screen
events, sensor inputs like the accelerometer and gyroscope,
location information, and messages such as notification pop-
ups and Android “Intents”. All these data is packaged under
the SVMP message protocol, and is sent from the client to
the server in real time. At the same time, the client displays
the GUI of the target app transmitted from the server. In a
word, the client enables the user to interact with the target
mobile app running on the server, in the same way as if the
app had been running on the mobile phone.

3.2.2 SVMP Virtual Machine
The SVMP VM is installed on the server. On top of the

VM is the Android framework where the target app is in-
stalled. The VM provides virtual devices including Touch
Screen, Sensors, GPS, and Graphics, which can be seen in
Figure 2. The first three virtual devices are responsible for
feeding the input data, as captured on the client side, to the
target app running on the VM. As the target app runs, its
GUI is displayed on the virtual display, i.e., Graphics. The
VM, in turn, packages whatever is displayed on Graphics
and sends it to the client in real time.

It is important for MobiPlay to maintain the same envi-
ronment on the VM as that on the mobile phone, including
the screen size, the resolution, and all the input devices.
For instance, if the screen size is different, the touchscreen
gestures will be represented with coordinates that are in-
correct, or even undefined, on one of the displays. In our
implementation, we ensure that no device mismatch occurs
in our system to avoid problems like these.

3.2.3 Networking
It is critical to maintain a high-speed network connec-

tion between the mobile phone and the server, otherwise
the user experience of MobiPlay will be impacted. The net-
work is responsible for transmitting the input data from the
client on the phone to the VM on the server and the GUI

2www.mitre.org.

of the target app from the VM to the client in real time.
As the mobile phone does not have a wired-network option,
we set up a wireless network using a TP-Link TL-WR841N
router, which can provide connectivity with throughput up
to 300Mbps. Fortunately, SVMP uses WebRTC3 to trans-
mit data between the phone and the server, which greatly
reduces the latency and the data volume. This is especially
useful for situations where there may only be a slower net-
work connection option available. In our implementation,
MobiPlay maintains a frame rate of 50 FPS.

3.3 The Record Approach
As mentioned in Section 2.3, MobiPlay is able to record

the input data in order to replay it later, on both the mobile
phone and the server. Here we detail the implementation of
the recording procedure.

On the mobile phone side, the client in MobiPlay in-
tercepts all input data for the target mobile app in the
form of events, which are grouped into five categories: Mo-
tionEvent, KeyEvent, Location, Rotation, and Sen-
sorEvent (please refer to Figure 3). Each event is an object
containing the input information at a certain time. After
intercepting an event, the client extracts only the necessary
information for replay, and creates a data structure called
a Request to store it. The client also calculates the time
interval between two consecutive events. The event infor-
mation and the time interval are then logged in an InputLog
class, which stores a collection of Request objects. Finally,
the InputLog is serialized and stored on disk.

Note that we define the InputLog class via Google’s pro-
tocol buffer4, which is a language-neutral, platform neutral,
extensible, and automated mechanism for serializing struc-
tured data. The data stored in InputLog can be easily con-
verted to JSON or XML format which is human-readable.

In the following, we will describe the interception of each
of the five categories of events.

3.3.1 MotionEvent
For most mobile apps, the most frequent input data is

touchscreen events, including tap, press and hold, pinch,
zoom, swipe, etc. The Android framework uses the Motion-
Event class to record each touchscreen event. MotionEvents
describe movement in terms of an action code and a set of
axis values. The action code specifies the state change, such
as a pointer going down or up. The axis values describe the
position and other movement properties.

MotionEvents occur representing all possible touchscreen
actions, such as ACTION DOWN, ACTION MOVE, AC-
TION UP, the time, the coordinates, and any historical event
that happens before the current event. For the purpose of ef-
ficiency, Android may batch multiple touchscreen events into
a single MovementEvent with several movement samples,
and an ACTION MOVE action code. MotionEvents are
passed as a paramenter into the onTouchEvent() method,
which is triggered by Android framework when a touch ges-
ture happens. The top panel of Figure 5 shows all the fields
of the class MotionEvent, which MobiPlay intercepts and
records.

3.3.2 SensorEvent
3http://www.webrtc.org/
4https://developers.google.com/protocol-
buffers/docs/overview

575

PointerCoords[](id, x, y)

HistoricalEvent[](eventTime, PointerCoords)

MotionEvent

action downTime eventTime edgeFlags

SensorType accuracy timestamp values[]SensorEvent

KeyEvent

eventTime deviceID flags downTime

action code repeat metaState scanDode

source characters

Figure 5: The MotionEvent, SensorEvent and
KeyEvent classes along with their associated fields.

In the Android framework, sensor data is represented in
the SensorEvent class and as each sample occurs, a Sen-
sorEvent instance is sent to the app by the sensor service.
Each SensorEvent contains four fields: sensor type, time,
accuracy, and the new data value(s), as shown in the mid-
dle panel of Figure 5. In our implementation MobiPlay
can support the following physical sensors: accelerometer,
gyroscope, light sensor, magnetic sensor, pressure sensor,
proximity sensor, and virtual sensors (gravity, linear accel-
eration, orientation, and rotation vector). Sensor events are
intercepted by onSensorChanged() method in the client app.

3.3.3 KeyEvent
KeyEvent is used to report key and button events, and is

intercepted by the dispatchKeyEvent() method. Each key
press is described by a sequence of key events. All informa-
tion for these events is listed in the bottom panel of Figure 5.

3.3.4 Location
One advantage of our MobiPlay system is that it can

handle location data (i.e., GPS), which other current ap-
proaches, such as RERAN and Mosaic, cannot. MobiPlay
utilizes the LocationListener class to intercept location infor-
mation. LocationListener has four methods, each of which
has several input parameters, as listed in Figure 6. When-
ever changes have been made to the location, Android frame-
work will trigger the LocationListener to notify the target
app. At the same time, it intercepts and records all these
parameters.

onProviderEnabled()

provider

provider

provider status bunle

time latitue longitude

accuracy altitude

bearing speed provider

LocationListener

onLocationChanged()

onStatusChanged()

onProviderDisabled()

Figure 6: The class LocationListener and its four
methods with the corresponding parameters.

3.3.5 Rotation
MobiPlay can record device rotation changes as well. If

the app runs on the mobile phone, whenever any rotation
change is detected, the Android framework will notify the
app and trigger the GUI to change from portrait to land-

scape or vice versa. The advantage of this design is that the
app itself does not need to monitor the orientation of the
gravity sensor, which eases work for developers who only
need to maintain the state of their GUI when transition-
ing between view orientations. In MobiPlay, however, the
target app will not obtain any rotation event because the
target app is running on the server and the Android frame-
work on the server will not detect any rotation change. To
solve this problem, MobiPlay collects all rotation events by
leveraging onOrientationChanged() in the client app on the
mobile phone. Besides black-box testing, these events are
also useful in white-box testing, because we can use these
events to change the screen orientation. The rotation event
has only one parameter, orientation, ranging from 0 to 359
degrees. Specifically, 0 degrees means that the device is ori-
ented in its natural position, 90 degrees means its left side is
at the top, 180 upside down, and 270 indicates the right side
is on top. When the device is nearly flat (parallel with the
ground), the orientation cannot be determined, and ORIEN-
TATION UNKNOWN will be returned. For efficiency, Mo-
biPlay does not record this undetermined case. It is worth
pointing out that RERAN cannot handle rotation events.

3.4 The Replay Approach
MobiPlay is able to replay a mobile app on both the server

and the phone, for both black-box testing and white-box
testing. In the following, we will first present the procedure
of the replay on both sides. Note that in the replay dura-
tion, MobiPlay does not process any new input from local
Android services in order not to interfere the replay; though
it still can receive them from local Android services, it does
not send it to the app. We then will describe an event-
sampling technique to revise the replay data as the tester
wants.

3.4.1 Replay on the Server
The replay procedure for black-box testing on the server

is quite similar to what happens on the server in the normal
mode except (1) the input is read from the log stored on disk,
instead of from the client directly. Also, (2) all concurrent
input from mobile phone is discarded. The input data can
be injected from either the disk of the mobile phone or that
of the server.

At the beginning, the user sets the mobile phone in replay
mode. When the client detects that the mobile phone is cur-
rently in replay mode, it will load the corresponding input
data from disk and store it in an InputLog class, which has
the same form as the class used in data recording, by call-
ing the parseFrom() method in the Google protocol buffers.
The events are simply injected into the system via the vir-
tual devices. To replay the app correctly, it is of the utmost
importance to keep the events in the correct order. As men-
tioned in the data recording procedure, the recorded data
includes all the information of every event and the inter-
arrival time between all pairs of consecutive events. We
need to adjust the time information in the recorded data ac-
cording to the current time. Specifically, for the first event,
MobiPlay changes the event time to the current time, and
adjusts the subsequent events accordingly. Then, MobiPlay
packages the events into a Request, the same structure used
in data recording. After sending the first Request to the tar-
get app, MobiPlay will wait in order to maintain the correct
inter-arrival time between events. Then the next Request

576

object is sent and the process is repeated. This continues
until all input data has been read from disk and injected.
After the replay has finished, MobiPlay will automatically
switch back to the GUI with three modes for choosing. Al-
gorithm 1 summarizes the whole procedure.

Algorithm 1: The replay procedure of black-box testing
on the server.

/* InputLog Class {int64 δt
Request[] mRequest} */

Input: disk=phone/serve;
device=server;
test=black-box;

1 if disk==phone then
2 read input data from phone’s disk;
3 else
4 read input data from server’s disk;

5 store data into InputLog by call parseFrom();
6 while Request is not empty do
7 (event, δt)=getNextRequest(InputLog);
8 change the time of event to current time;
9 inject event to the app;

10 sleep(δt);

11 Return to the GUI for mode selection;

Since white-box testing is more meaningful on the phone
than on the server, and the procedure is similar on the server
and on the phone, we defer white-box testing details to Sec-
tion 3.4.2.

3.4.2 Replay on the mobile phone
For some tests, we may want to conduct the replay on the

mobile phone itself. As we know, MobiPlay records all input
data when the target app is actually running on the virtual
machine on the server. Since the virtual machine offers the
same environment as the mobile phone, including screen size
and resolution, the recorded data can be replayed on the
mobile phone. However, in this case, the tester does not
have full control of the mobile phone. Therefore, the replay
procedure is different. In the following, we will describe the
replay of black-box testing and that of white-box testing,
respectively.

Black-box testing. For black-box testing, we cannot
make any change to the target app. As analyzed in the
introduction, the Android Application Sandbox forbids one
application from injecting data into any other application.
The only way to inject the input data for replay is to leverage
the sendevent tool, which requires root privilege. Therefore,
for replay on the mobile phone, MobiPlay runs into the same
limitations as RERAN does. As the recorded input data in
MobiPlay is high-level events, we need to convert it back
to hex codes first, and then inject it by writing into the
corresponding /dev/input/event∗ files.

White-box testing. Here, we want to inject the replay
data directly into the target app assuming that we have the
source code of the target app, with the goal of modifying the
target app as less as possible. In a normal Android system,
the Android framework communicates with the app through
API, and sends the input data to the app in the form of
events. Therefore, in white-box testing, the recorded input
data also has to be sent to the app in the form of events.
With the recorded data, we need to recreate all five events:

MotionEvent, KeyEvent, SensorEvent, Location, and Rota-
tion. Unfortunately, we cannot create a SensorEvent object
as we do for the other four events because SensorEvent()
is not public in android.hardware.SensorEvent class. Thus,
we define a new class, NewSensorEvent, to carry sensor data
(i.e., SensorType, accuracy, timestamp, and an array of val-
ues).

Depending on whether to modify the app, the five events
are grouped into two categories. The first category, Mo-
tionEvent and KeyEvent, does not need to modify the app.
Android provides its own testing framework called “the An-
droid testing framework”, which is well integrated into the
Android SDK tools. It offers powerful and easy-to-use tools
that help developers test their applications at every level,
from unit to framework. We use the instrumentation class in
this testing framework to inject MotionEvent and KeyEvent
through SendPointerSync() and SendKeySync(), respectively.
The second category, SensorEvent, Location, and Rotation,
requires to modify the app since the Android testing frame-
work does not provide corresponding APIs. We have to man-
ually inject these events into the target app. Specifically, for
Location, we call four methods under the Android testing
framework: onLocationChanged(), onStatusChanged(), on-
ProviderEnabled(), and onProviderDisable(); for Rotation,
we call onRotationChanged(); for SensorEvent, we overload
onSensorChanged() method and then call it. Table 2 sum-
marizes how these five types of events are injected.

3.4.3 Event Sampling
The input data for replay is a sequence of events, each

of which has a timestamp. We can consider these events as
samples, and re-sample them at times different from those
at which they are originally captured. In the InputLog, we
record the events and the time interval of each pair of con-
secutive events. What we need to do is to change the time
intervals and the event time accordingly without affecting
the correct execution of the app.

First, we can use event sampling to cancel the latency
introduced by the server. There is inevitably a latency from
the point of view of the mobile phone, since the app actually
runs on the server, even though the latency is small. To
cancel the latency, we can shrink the time interval between
every pair of consecutive events, say event a followed by
event b, by the amount of event b’s latency; please refer to
Section 4.2 where the latency of different types of input has
been measured. To do this, MobiPlay carefully examines the
events and identifies which are affected by the latency and
which are not, and only adjusts the time intervals associated
the former. Note that MobiPlay adjusts the event time of
each event as well according to the shrunk time intervals.

Second, we can replay an app in fast mode with Mobi-
Play by adjusting the time interval between two consecutive
activities, similar to the technique used in RERAN. For in-
stance, imagine that the user zooms in and then clicks a
button on the screen, we can shorten the time interval be-
tween the two activities when replaying the app.

4. EVALUATION
In this section, we will evaluate MobiPlay. First, we

demonstrate that MobiPlay can record and replay a variety
of mobile apps. Then, we measure the latency introduced
by the server, and the time/space overhead. Finally, we will
test the event sampling technique.

577

Table 2: Details of data injection in white-box testing.
Type Recreated? Modify app? Injection description Injection method
MotionEvent Yes No Use instrumentation class

in Android testing framework.
SendPointerSync()

KeyEvent Yes No SendKeySync()
SensorEvent No Yes Developers need manually

inject these data to the target
application.

Call onSensorChanged()
Location Yes Yes Call four functions
Rotation Yes Yes Call onRotationChanged ()

4.1 Usability
For usability, MobiPlay currently does not support mobile

apps that require ARM-based third party libraries, since the
server in MobiPlay is x86-based. MobiPlay does not sup-
port camera or 3D acceleration either. As listed in Table 3,
we randomly tried 52 apps from Google Play in different
categories, including games, tools, news, health & fitness,
lifestyle, education, shopping, etc., none of which requires
ARM-based third party libraries or 3D acceleration libraries.
We have successfully recorded and replayed all of the 52 apps
(the replay is done on the server side multiple times).

4.2 Latency
The client-server model introduces latency. From the view

of the mobile user, she cares about how long it takes to get
a response for her input. For instance, suppose she clicks
a button on the client, then how long does it take till she
notices that the click really happens? Thus, we define the
latency as the time interval between the time the input oc-
curs at the mobile phone and the time the input takes effect
on the mobile phone; that is, the round-trip time of the in-
put between the mobile phone and the server. To measure
the latency, we have designed an app such that the screen
turns red when an input event finishes. Then we run the
app on MobiPlay and record the time when an event occurs
on the mobile phone and the time when the screen turns
red. For instance, for the event of click, we record the time
when ACTION UP of click occurs and the time when the
click spot turns red.

Input Type

Click Swipe Zoom Key Sensors

T
im

e
 (

m
s
)

200

250

300

350

400

450

Figure 7: Round-trip time for different types of in-
put.

We have evaluated the latency for five different types of
input, each with 10 rounds. Figure 7 show the box plot
of the results. As we can see, all the latency is less than
450 milliseconds, and the average is below 350 milliseconds,
which does not affect the continuity of app execution and

is acceptable to most testers. Individually, the sensor input
has the shortest latency; the reason is that MobiPlay only
needs to intercept four fields of data, as listed in Figure 5.
The inputs of swipe and zoom have longer latency; one rea-
son is that MobiPlay has to intercept more data including
historical data (refer to Figure 5) and SVMP also batches
a sequence of actions. The input of click and that of key
have nearly the same latency, shorter than that of swipe
and zoom but longer than that of sensor. Even though they
belong to different categories of events (MotionEvent and
KeyEvent, respectively), they share the same action with
an ACTION DOWN and an ACTION UP, leading to simi-
lar latency.

4.3 Time and Space Overhead
We have measured the time overhead. Table 4 shows the

result of 8 apps, which are either touch-intensive or sensor-
intensive. Column 2 is the original run time, which is the
time of an app running in the record mode. Column 3 is
the replay time, which is the time of the app running in the
replay mode with the corresponding recorded data. Column
4 is the time overhead. As we can see, the time overhead
ranges roughly from 2% to 4%. We believe that at least the
following three factors contribute to the overhead. First,
during the replay, after injecting the first event of a pair
of consecutive events, MobiPlay waits a period of the time
interval of the two events before injecting the second event
by utilizing the thread.sleep method; however, thread.sleep
is inaccurate, and operation in parallel can lead to excessive
sleep. Second, it takes time for MobiPlay to adjust the time
information of an event on basis of current time. Third,
reading the input data from the disk needs time as well.

We also have measured the size of the recorded input data
for the same 8 apps. Additionally, we have recorded the
number of events for each of five categories. In Table 4,
ME, KE, SE, R, and L stand for MotionEvent, KeyEvent,
SensorEvent, Rotation, and Location, respectively. The first
six are touch-intensive, and the rest two are sensor-intensive.
As the table illustrates, the more events, the larger the data
size; and each motion event occupies more space than each
sensor event, since the former has more parameters than the
latter.

4.4 Event Sampling
Our evaluation here focuses on the event re-sampling on

touchscreen gestures themselves, i.e, the MotionEvent. RERAN
has conducted similar test, but it has focused on time warp-
ing during data entry (such as shrinking time interval be-
tween two button presses) and content processing (such as
reading a story) instead of touchscreen gestures. RERAN
states that manipulating the speed of touchscreen gestures
can easily modify the gesture’s effect or convert it to a dif-
ferent action or set of actions. We have found that our re-

578

Table 3: The apps that MobiPlay has recorded and replayed successfully.
Name Category Name Category
Exploration Lite Adventure & Creativity Cartwheel by Target Lifestyle
Bible Book & Reference Instructables Lifestyle
Amazon Kindle Book & Reference MyChart Medical
Bing Search Book & Reference NBC news News & Magazines
Concur Business BBC News News & Magazines
Square Register Business CNN News News & Magazines
Kids Doodle Casual Reddit is fun News & Magazines
ZingBox Manga Comics Flipboard: News Magazine News & Magazines
Crunchyroll Manga Comics Hola Launcher Personalization
TeachersPayTeachers Education Iron Man 3 Live Wallpaper Personalization
Math Expert Education photo editor Photography
Bing Dictionary (ENG - CHN) Education Emoji Keyboard Productivity
Chase Mobile Finance Evernote Productivity
Mint: Personal Finance & Money Finance Onet Connect Fruit Puzzle
Bank of America Finance Amazon for Tablets Shopping
Tic Tac Toe Free Game Best Buy Shopping
Bubble Shooter Classic Game Meetup Social
Crush Eggs Game NFL Fantasy Football Sports
Word search Game Sensor Box for Android Tools
Chinese Checkers Wizard Game Sensors Tools
Pedometer Health & Fitness File Manager Tools
Calorie Counter - MyFitnessPal Health & Fitness Shell Terminal Emulator Tools
Noom Walk Pedometer Health & Fitness Clock Tools
Cardboard Libraries & Demo Adobe AIR Tools
Always Positive -Daily Quotes Lifestyle Amber Weather Weather
DIY Garden Ideas Lifestyle The Weather Channel Weather

Table 4: The time and space overhead and number of events in each category.

App name
Running time (seconds) Data size

(KB)
of ME # of KE # of SE # of R # of L

Original Replay Overhead
KidsDoodle 192.74 199.98 3.7% 381.5 4571 4 0 0 0
Bible 155.17 159.58 2.8% 171.6 1989 8 0 0 5
Bing Dictionary 134.45 138.03 2.7% 78.9 909 20 0 0 0
Bing Search 174.98 179.80 2.8% 123.8 1409 12 0 0 9
BBC News 156.65 161.18 2.9% 127.8 1452 6 0 0 0
Amazon Kindle 201.93 207.74 2.9% 99.4 1180 22 0 0 0
Pedometer 207.84 212.57 2.3% 880.7 141 6 22744 0 0
Sensor Box 256.76 263.16 2.5% 1100.6 39 14 28656 19 0

Kids Bible Dict Search BBC Kindle Pedo Sensor

T
im

e
 (

s
e
c
o
n
d
s
)

100

150

200

250

300

14%

8.3%

3.9%

8.0%

8.5%

8.7%

0.7%

0.4%

original

replay

re-sample

Figure 8: Re-sampling reduces the replay time.

play approach can speed up the touchscreen gestures with-

out any error. Specifically, we sped up the touchscreen
gestures twice. For instance, a swipe consists of an AC-
TION DOWN, a sequence of ACTION MOVE, and an AC-
TION UP. We shrunk the time interval between each pair
of ACTION MOVE by half. Figure 8 shows the results of
the same 8 apps in Section 4.3. The numbers above the
re-sample column is the percentage of time that has been
reduced by re-sampling. As we can see, the more the num-
ber of motion events, the more the time reduced (please refer
to Table 4).

5. LIMITATIONS AND FUTURE WORK
One limitation of MobiPlay is that the server in our cur-

rent implementation is x86-based, preventing MobiPlay from
running apps that need ARM-based third-party libraries,
such as 3D apps. Fortunately, there are ARM-based servers
available now, and both KVM [21] and Xen [5] offer exten-

579

sions for ARM architecture. We leave the implementation
of MobiPlay with an ARM-based server as our future work.

There are also several other directions for the future work.
In principle, MobiPlay should be able to replay an app on
a mobile device with the input data recorded from another
device with distinct device configuration, such as resolution,
screen size, etc. Therefore, one direction is to test and eval-
uate the cross-device portability on MobiPlay. In addition,
it is worth improving MobiPlay such that it can support
camera and microphone, which it currently does not.

6. RELATED WORK
A large body of research has been conducted in record-

and-replay techniques, including desktop, server, and mo-
bile phone applications. In this section, we review the most
relevant works from recent literature.

Desktop and Server Applications There are bunch
of record-and-replay tools in the last decade [17, 28, 19, 1,
18, 22, 29, 2, 20, 25, 33, 9]. Among them, some are event-
driven, such as [17, 28]; these tools record the (x,y) pixel
coordinates of mouse clicks as well as keyboard strokes, and
replay this recorded information by creating new mouse and
keyboard events later. Some systems utilize the keyword
action technique, such as [22, 1, 29]; they work in a higher
level of abstraction by capturing GUI objects. Even though
some of these tools [17, 28, 19] record mouse move and mouse
drag information, they cannot record and replay gestures on
mobile phones like swipe, pinch and zoom due to the added
complexity of multi-touch.

There are several other works in this line of research. [6]
has presented a tool called Timelapse for quickly recording,
reproducing, and debugging interactive behaviors in web ap-
plications. [7, 12] have designed an approach for generating
test cases for web service applications. [16] has presented
an approach called PUPLE to provide automated support
for capturing and replaying configuration decisions. [23] has
presented a tool to learn how to interact with the application
under testing and stimulate its functionality by working at
the system level and interacting only through the GUI. And
[35] presents a system for automating bug reproduction.

Mobile Phone Applications The android SDK offers a
tool called Monkey [4], which can be run on any device or
emulator instance. It can generate pseudo-random streams
of user events such as clicks, touches, or gestures, as well
as a number of system-level events. Monkey supports event
sequence scripts to be fed into an app. It can also handle
presses but scripting presses is labor-intensive. Furthermore,
Monkey scripting does not support touchscreen gestures.

Google has also provided several tools [24, 30, 34, 10].
Monkeyrunner [24] provides an API for writing programs
that control an Android device or emulator,and allows a de-
veloper to externally exercise an app. Robotium [30] fully
supports native and hybrid Android apps and makes it easy
to write automatic black-box tests. UI Automator [34] pro-
vides a set of APIs to build UI tests that perform interac-
tions on user apps and system apps. Espresso [10] provides
a set of APIs to test user flows within an app. All these
tools hook into the app source code, which is a limitation as
source code is not always available. There is another frame-
work called GUITAR [13] for Java and Windows apps. It
has been ported to Android by extending the Monkeyrunner
tool to allow users to generate test cases. However, it does
not support touchscreen gestures and many sensors typically

found on mobile phones. MobiGUITAR [3] presents a tool
for automated GUI-driven testing of Android apps, based
on observation, extraction, and abstraction of the run-time
state of GUI widgets.

RERAN [11] provides a record-and-replay tool to capture
low-level event streams on the mobile phone, including GUI
events and sensor events. However, it is not able to record
and replay data from the GPS and microphone devices, be-
cause Android provides data for these devices through spec-
ified services. Furthermore, it has a potential concern re-
garding time dependence of events. Finally, because of the
design of the replay agent there may be conflicts with other
events occurring at the same time. Mosaic [14] provides a
virtual screen to handle the differences across different de-
vices. It maps a set of touchscreen events from a particular
device into a set of virtualized user interfaces that can be
retargeted and injected into another device. Both RERAN
and Mosaic utilize getevent to record app data and sende-
vent to inject the recorded data for app replay. Therefore, it
retains some of the problems present in RERAN. Selendroid
[32] presents a test framework based on Android instrumen-
tation framework and good for white-box testing. However,
it does not provide recording functionality.

Record and replay functionality can also aid security re-
searchers. Work that makes use of physical sensors on the
Android platform, such as microphones, accelerometers, and
speakers for security purposes, such as [15, 26, 27, 36], can
benefit greatly from MobiPlay. Using our system, researchers
can debug their applications in a traditional way. And,
they can also perform sophisticated security analysis, such
as monitoring sensor use, and exploring the feasibility of
replay attacks.

7. CONCLUSION
In this paper, we have designed a client-server system,

called MobiPlay, which allows users to record and replay
mobile application executions. MobiPlay runs the the tar-
get mobile application on a server, while displaying the app
GUI in real time on the mobile phone, such that the mobile
phone user has exactly the same experience as if the appli-
cation were running on the mobile phone. We are the first
to build such a system, which records the input data at the
application layer, instead of the Android framework, or the
Linux kernel. This allows us to solve many difficulties the
current approaches have encountered.

MobiPlay is comprehensive, flexible and efficient. First,
it is able to intercept all input data, including all touch-
screen gestures, and data from all sensors, better than cur-
rent state-of-the-art approaches. Second, it is able to record
and replay a mobile app on both the mobile phone or the
server. Third, it is suitable for both white-box and black-
box testing. We have implemented MobiPlay on Android
and evaluated it with tens of popular applications, with sup-
portive and convincing results.

8. ACKNOWLEDGMENTS
The authors would like to thank all the reviewers for their

helpful comments. This project was supported in part by
US National Science Foundation grant CNS-1320453.

580

9. REFERENCES
[1] Abbot Java GUI Test Framework.

http://abbot.sourceforge.net/doc/overview.shtml.

[2] D. Amalfitano, A. R. Fasolino, and P. Tramontana. A
gui crawling-based technique for android mobile
application testing. In Fourth International Conference
on Software Testing, Verification and Validation
Workshops (ICSTW), pages 252–261. IEEE, 2011.

[3] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. Ta,
and A. Memon. Mobiguitar–a tool for automated
model-based testing of mobile apps. 2014.

[4] Android Monkey.
http://developer.android.com/tools/help/monkey.html.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. ACM
SIGOPS Operating Systems Review, 37(5):164–177,
2003.

[6] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst.
Interactive record/replay for web application
debugging. In Proceedings of the 26th annual ACM
symposium on User interface software and technology,
pages 473–484. ACM, 2013.

[7] K. M. Conroy, M. Grechanik, M. Hellige, E. S.
Liongosari, and Q. Xie. Automatic test generation
from gui applications for testing web services. In IEEE
International Conference on Software Maintenance
(ICSM), pages 345–354. IEEE, 2007.

[8] S. Curtis. Quarter of the world will be using
smartphones in 2016.
http://www.telegraph.co.uk/technology/mobile-
phones/11287659/Quarter-of-the-world-will-be-using-
smartphones-in-2016.html, Dec
2014.

[9] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai,
and P. M. Chen. Revirt: Enabling intrusion analysis
through virtual-machine logging and replay. ACM
SIGOPS Operating Systems Review, 36(SI):211–224,
2002.

[10] Espresso.
https://developer.android.com/tools/testing-support-
library/index.html.

[11] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein.
Reran: Timing-and touch-sensitive record and replay
for android. In 35th International Conference on
Software Engineering (ICSE), pages 72–81. IEEE,
2013.

[12] M. Grechanik, Q. Xie, and C. Fu. Creating gui testing
tools using accessibility technologies. In International
Conference on Software Testing, Verification and
Validation Workshops, pages 243–250. IEEE, 2009.

[13] GUITAR.
http://sourceforge.net/p/guitar/wiki/Home/.

[14] M. Halpern, Y. Zhu, R. Peri, and V. J. Reddi. Mosaic:
cross-platform user-interaction record and replay for
the fragmented android ecosystem. In International
Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 215–224. IEEE, 2015.

[15] H. Han, S. Yi, Q. Li, G. Shen, and E. Novak. Amil:
Localizing neighboring mobile devices through a
simple gesture. In INFOCOM, 2016 Proceedings
IEEE, April 2016.

[16] W. Heider, R. Rabiser, and P. Grünbacher.
Facilitating the evolution of products in product line
engineering by capturing and replaying configuration
decisions. International Journal on Software Tools for
Technology Transfer, 14(5):613–630, 2012.

[17] Jacareto. http://sourceforge.net/projects/jacareto/.

[18] jfcUnit. http://jfcunit.sourceforge.net/.

[19] M. Jovic, A. Adamoli, D. Zaparanuks, and
M. Hauswirth. Automating performance testing of
interactive java applications. In Proceedings of the 5th
Workshop on Automation of Software Test, pages
8–15. ACM, 2010.

[20] S. H. Khandkar, S. Sohan, J. Sillito, and F. Maurer.
Tool support for testing complex multi-touch gestures.
In International Conference on Interactive Tabletops
and Surfaces, pages 59–68. ACM, 2010.

[21] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori. Kvm: the linux virtual machine monitor.
Proceedings of the Linux Symposium, 1:225–230, 2007.

[22] MarathonITE. http://marathontesting.com/.

[23] L. Mariani, M. Pezze, O. Riganelli, and M. Santoro.
Autoblacktest: Automatic black-box testing of
interactive applications. In proceedings of the Fifth
International Conference on Software Testing,
Verification and Validation (ICST), 2012.

[24] Monkeyrunner.
http://developer.android.com/tools/help/monkeyrunner-
concepts.html.

[25] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet:
Continuously recording program execution for
deterministic replay debugging. In ACM SIGARCH
Computer Architecture News, volume 33, pages
284–295. IEEE Computer Society, 2005.

[26] E. Novak and Q. Li. Near-pri: Private, proximity
based location sharing. In INFOCOM, 2014
Proceedings IEEE, pages 37–45, April 2014.

[27] E. Novak, Y. Tang, Z. Hao, Q. Li, and Y. Zhang.
Physical media covert channels on smart mobile
devices. In Proceedings of the 2015 ACM International
Joint Conference on Pervasive and Ubiquitous
Computing, UbiComp ’15, pages 367–378, New York,
NY, USA, 2015. ACM.

[28] Pounder. http://pounder.sourceforge.net/.

[29] Rational Robot. http://www.ibm.com.

[30] Robotium. https://code.google.com/p/robotium/.

[31] Secure Virtual Mobile Platform (SVMP).
http://www.mitre.org/research/technology-
transfer/technology-licensing/secure-virtual-mobile-
platform-svmp.

[32] Selendroid. http://selendroid.io.

[33] S. M. Srinivasan, S. Kandula, C. R. Andrews, and
Y. Zhou. Flashback: A lightweight extension for
rollback and deterministic replay for software
debugging. In USENIX Annual Technical Conference,
General Track, pages 29–44. Boston, MA, USA, 2004.

[34] UI Automator.
https://developer.android.com/tools/testing-support-
library/index.html.

[35] M. White, M. Linares-Vásquez, P. Johnson,
C. Bernal-Cárdenas, and D. Poshyvanyk. Generating
reproducible and replayable bug reports from android
application crashes. In 23rd IEEE International

581

Conference on Program Comprehension (ICPC), 2015.

[36] S. Yi, Z. Qin, E. Novak, Y. Yin, and Q. Li.
Glassgesture: Exploring head gesture interface of

smart glasses. In INFOCOM, 2016 Proceedings IEEE,
April 2016.

582

	MobiPlay: A Remote Execution Based Record-and-Replay Tool for Mobile Applications
	Recommended Citation

	MobiPlay: A Remote Execution Based Record-and-Replay Tool for Mobile Applications

