
W&M ScholarWorks W&M ScholarWorks

Arts & Sciences Articles Arts and Sciences

2016

Cheetah: Detecting False Sharing Efficiently and Effectively Cheetah: Detecting False Sharing Efficiently and Effectively

Tongping Liu

Xu Liu
William & Mary

Follow this and additional works at: https://scholarworks.wm.edu/aspubs

Recommended Citation Recommended Citation
Liu, Tongping and Liu, Xu, Cheetah: Detecting False Sharing Efficiently and Effectively (2016). Proceedings
of Cgo 2016: The 14th International Symposium on Code Generation and Optimization.
10.1145/2854038.2854039

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been
accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more
information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/aspubs
https://scholarworks.wm.edu/as
https://scholarworks.wm.edu/aspubs?utm_source=scholarworks.wm.edu%2Faspubs%2F816&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu

Cheetah: Detecting False Sharing Efficiently and Effectively

Tongping Liu ∗

Department of Computer Science
University of Texas at San Antonio

San Antonio, TX 78249 USA
Tongping.Liu@utsa.edu

Xu Liu ∗

Department of Computer Science
College of William and Mary
Williamsburg, VA 23185 USA

xl10@cs.wm.edu

Abstract
False sharing is a notorious performance problem that may
occur in multithreaded programs when they are running on
ubiquitous multicore hardware. It can dramatically degrade
the performance by up to an order of magnitude, significantly
hurting the scalability. Identifying false sharing in complex
programs is challenging. Existing tools either incur signifi-
cant performance overhead or do not provide adequate infor-
mation to guide code optimization.

To address these problems, we develop Cheetah, a pro-
filer that detects false sharing both efficiently and effectively.
Cheetah leverages the lightweight hardware performance
monitoring units (PMUs) that are available in most mod-
ern CPU architectures to sample memory accesses. Cheetah
develops the first approach to quantify the optimization po-
tential of false sharing instances without actual fixes, based
on the latency information collected by PMUs. Cheetah pre-
cisely reports false sharing and provides insightful optimiza-
tion guidance for programmers, while adding less than 7%
runtime overhead on average. Cheetah is ready for real de-
ployment.

Categories and Subject Descriptors D.2.8 [Software En-
gineering]: Metrics–Performance measures; D.1.3 [Pro-
gramming Techniques]: Concurrent Programming–Parallel
Programming

General Terms Measurement, Performance

Keywords Multithreading, False Sharing, Performance Pre-
diction, Address Sampling, Lightweight Profiling

∗Both Tongping Liu and Xu Liu are co-first authors.

1. Introduction
Multicore processors are ubiquitous in the computing spec-
trum: from smart phones, personal desktops, to high-end
servers. Multithreading is the de-facto programming model
to exploit the massive parallelism of modern multicore archi-
tectures. However, multithreaded programs may suffer from
various performance issues caused by complex memory hier-
archies [21, 23, 29]. Among them, false sharing is a common
flaw that can significantly hurt the performance and scala-
bility of multithreaded programs [4]. False sharing occurs
when different threads, which are running on different cores
with private caches, concurrently access logically indepen-
dent words in the same cache line. When a thread modi-
fies the data of a cache line, the cache coherence protocol
(managed by hardware) automatically invalidates the dupli-
cates of this cache line residing in the private caches of other
cores [25]. Thus, even if other threads access completely dif-
ferent words inside this cache line, they have to reload the
entire cache line from the shared cache or main memory.

Unnecessary cache coherence caused by false sharing can
dramatically degrade the performance of multithreaded pro-
grams, by up to an order of magnitude [4]. A concrete exam-
ple shown in Figure 1 also illustrates this catastrophic per-
formance issue. We meant to employ multiple threads to ac-
celerate the computation. However, when eight threads (on
an eight-core machine) simultaneously access adjacent ele-
ments of array sharing the same cache line, this program
runs ∼ 13× slower (black bars) than its linear-speedup ex-
pectation (grey bars). The hardware trend, such as adding
more cores on chip and enlarging the cache line size, will
further degrade the performance of multithreaded programs
due to false sharing.

Unlike true sharing, false sharing is generally avoidable.
When multiple threads unnecessarily share the same cache
line, we can add byte paddings or utilize thread-private vari-
ables so that different threads can be forced to access differ-
ent cache lines. Although the solution of fixing false sharing
problems is somewhat straightforward, finding them is dif-
ficult and even impossible with manual checking, especially
for a program with thousands or millions of lines of code.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

CGO’16, March 12–18, 2016, Barcelona, Spain
c© 2016 ACM. 978-1-4503-3778-6/16/03...$15.00

http://dx.doi.org/10.1145/2854038.2854039

1

int array[total];!
int window=total/numThreads; !
void threadFunc(int start) !
{!
 for(index=start; index<start+window; index++)!
 for(j=0; j<10000000; j++)!
 array[index]++;!
}!

(a) (a) A Program with False Sharing

0!

20!

40!

60!

80!

100!

120!

1! 2! 4! 8!

R
un

ti
m

e
(S

)!

Number of Threads!

Expectation! Reality!

(b) (b) Performance Degradation

Figure 1. (a) A false sharing example inside a multithreaded program (b) causes 13× performance degradation on an 8-core
machine.

Thus, it is important to employ tools to pinpoint false shar-
ing and provide insightful optimization guidance.

However, existing general-purpose tools do not provide
enough details about false sharing [7, 11, 21]. Existing false
sharing detectors fall short in several ways. First, most tools
cannot distinguish true and false sharing, or require substan-
tial manual effort to identify optimization opportunities [9,
12, 13, 16, 18, 24, 26, 30, 31]. Second, tools [9, 18, 20, 28, 32]
based onmemory access instrumentation introduce high run-
time overhead, hindering their applicability to real, long-
run applications. Third, some tools either require OS exten-
sions [24], or only work on special applications [19]. Fourth,
no prior tools assess the performance gain from eliminating
an identified false sharing bottleneck. Without this informa-
tion, many optimization efforts may yield trivial or no per-
formance improvement [19, 32].

Cheetah is designed to address all these issues with the
following two contributions:

• The First Approach to Predict False Sharing Impact.
This paper introduces the first approach to predict the
potential performance impact of fixing false sharing in-
stances, without actual fixes. Based on our evaluation,
Cheetah can precisely assess the performance improve-
ment, with less than 10% difference. By ruling out trivial
instances, we can avoid unnecessary manual effort lead-
ing to little or no performance improvement.

• An Efficient and Effective False Sharing Detector.
Cheetah is an efficient false sharing detector, with only
∼7% performance overhead. Cheetah utilizes the per-
formance monitoring units (PMUs) that are available in
modern CPU architectures to sample memory accesses.
Cheetah provides sufficient information on false sharing
problems, by pointing out the lines of code, names of
variables, and detailed memory accesses involved in the
false sharing. Cheetah is a runtime library that is very
convenient to be deployed; there is no need for a custom
OS, nor recompilation and changing of programs.

Hardware'

Opera*ng'System'Driver'

Cheetah'Run*me'

Data'Collec*on'

FS'Detec*on' FS'Assessment'

FS'Report'

User'Space'

Applica*on'

PMU'

Link'

Figure 2. Overview of Cheetah’s components (shadow
blocks), where “FS” is the abbreviation for false sharing.

Figure 2 shows the overview of Cheetah. The “data collec-
tion” module gleans memory accesses via the address sam-
pling supported by the hardware performance monitoring
units (PMUs) and, with the assistance of the “driver” module,
filters out memory accesses associated with heap or globals,
feeding them into the “FS detection” module. At the end of
an application, or when Cheetah is requested to report, the
“FS detection” module examines the number of cache inval-
idations of each cache line, differentiates false sharing from
true sharing, and passes false sharing instances to the “FS as-
sessment” module. In the end, the “FS report” module only
reports false sharing instances with a significant performance
impact, along with its predicted performance improvement
after fixes provided by the “FS assessment” module.

The remainder of this paper is organized as follows. Sec-
tion 2 describes false sharing detection components of Chee-
tah. Section 3 discuesses how Cheetah assesses the perfor-
mance impact of a false sharing instance. Section 4 presents
experimental results, including effectiveness, performance
overhead, and assessment precision. Section 5 addresses
main concerns about hardware dependence, performance,
and effectiveness. Lastly, Section 6 discusses related work,
and Section 7 concludes this paper.

2

2. Detecting False Sharing
Cheetah reports false sharing problemswith a significant per-
formance impact, where they will incur a large number of
cache invalidations on corresponding cache lines. However,
tracking cache invalidations turns out to be difficult because
invalidations depend on thememory access pattern, cache hi-
erarchy, and thread-to-core mappings. To address this chal-
lenge, Cheetah proposes a simple rule to compute cache in-
validations: when a thread writes a cache line that has been
accessed by other threads recently, this write access incurs
a cache invalidation. This rule is based on the following two
assumptions, which are introduced in prior work [20, 32].

• Assumption 1: Each thread runs on a separate core with
its own private cache.

• Assumption 2: Cache sizes are infinite.

Assumption 1 is reasonable because the over-subscription
of threads is generally rare for computation-intensive pro-
grams. But we may overreport the number of cache inval-
idations in the following situations: (1) if multiple threads
are actually scheduled to the same physical core, or (2) dif-
ferent cores may share part of the cache hierarchy (instead of
having private caches), or (3) hyper-threading technology is
enabled such that multiple threads may share the same CPU.
However, we argue that the problem of overreporting can ac-
tually cancel out the weakness of using the sampling tech-
nique. This assumption avoids the tracking of thread-to-core
mapping, as well as knowledge of the actual cache hierarchy.

Assumption 2 further defines the behavior related to cache
eviction. In reality, a cache entry will be evicted when the
cache is not sufficient to hold all active data of an application.
Without this assumption, we should track every memory ac-
cess and simulate the cache eviction in order to determine the
accurate number of cache invalidations, which is notoriously
slow and suffers from limited precision [28]. As with the first
assumption, assumption 2 may also overestimate the number
of cache invalidations. Based on this assumption, if there is
a memory access within a cache line, the hardware cache for
a running thread always holds the data until an access issued
by other threads (running on other cores, by assumption 1)
invalidates it. By combining these two assumptions, Cheetah
identifies cache invalidations simply based on memory ac-
cess patterns, independent of the underlying architecture and
specific execution conditions.

In the remainder of this section, we elaborate on how
we track memory accesses in Section 2.1, how we locate a
sampled access’s cache line in Section 2.2, how we compute
cache invalidation based on sampled memory accesses in
Section 2.3, and how we report false sharing in Section 2.4.

2.1 Sampling Memory Accesses
According to the basic rule described above, it is impor-
tant to track memory accesses in order to compute the num-
ber of cache invalidations that occur on each cache line.

Software-based approaches may introduce higher than 5×
performance overhead [20, 32]. High overhead can block
people from using these tools in real deployment.

Cheetah significantly reduces the performance overhead
by leveraging PMU-based sampling mechanisms that are
pervasively available in modern CPU architectures, such as
AMD instruction-based sampling (IBS) [6] and Intel pre-
cise event-based sampling (PEBS) [14]. For each sample,
the PMU distinguishes whether it is a memory read or write,
captures the memory address, and records the thread ID that
triggered the sample. These raw data will be analyzed to
determine whether the sampled access incurs a cache invali-
dation or not, based on the rules described in Section 2.

Since PMUs only sample one memory access out of a pre-
defined number of accesses, this approach greatly reduces the
runtime overhead incurred by performance data collection
and analysis. Moreover, using PMU-based sampling does not
need to instrument source or binary code explicitly, thus pro-
viding a non-intrusive way to monitor memory references.
Cheetah shows that PMU-based sampling, even with sparse
samples (e.g., one out of 64K instructions), can identify false
sharing with a significant performance impact.

Implementation. In order to sample memory accesses,
Cheetah programs the PMU registers to turn on sampling
before the main routine. It also installs a signal handler to
collect detailed memory accesses. Cheetah configures the
signal handler to respond to the current thread, by calling the
fcntl function with the F_SETOWN_EX flag. This method
avoids any lookup overhead and simplifies signal handling.
Inside the signal handler, Cheetah collects detailed informa-
tion for every sampled memory access, including its mem-
ory address, thread ID, read or write operation, and access
latency, which can be fed into the “FS detection” module to
compute the number of cache invalidations, as well as the
“FS assessment” module to predict the performance impact.

2.2 Locating Problematic Cache Lines
For each sampled memory access, Cheetah decides whether
this access causes a cache invalidation or not, and records this
access. For this purpose, Cheetah should quickly locate its
corresponding cache line. Cheetah utilizes the shadow mem-
ory mechanism to speed up this locating procedure [20, 32].
To utilize the shadow memory mechanism, we should deter-
mine the range of heapmemory, which is difficult to know be-
forehand when using the default heap. Thus, Cheetah builds
its custom heap based on Heap Layers [2]. Cheetah pre-
allocates a fixed-size memory block (using mmap), and satis-
fies all memory allocations from this block. Cheetah adapts
the per-thread heap organization used by Hoard, so that two
objects in the same cache line will never be allocated to two
different threads [1]. This design prevents inter-object false
sharing, but also makes Cheetah unable to report problems
that are possibly caused by the default heap allocator.

3

Implementation To use its custom heap, Cheetah inter-
cepts all memory allocations and deallocations. Cheetah ini-
tializes the heap before an application enters the main rou-
tine. Cheetah maintains two different heaps: one for the app-
lication itself, as well as one for internal use. For both heaps,
Cheetah manages objects based on the unit of power of two.
For each memory allocation from the application, Cheetah
saves the information of callsite and size, which helps Chee-
tah to precisely report the line information of falsely-shared
objects. Cheetah allocates two large arrays (using mmap) to
track the number of writes and detailed access information
on each cache line. For each memory access, Cheetah uses
bit-shifting to compute the index of its cache line.

2.3 Computing Cache Invalidations
Prior work of Zhao et al. proposes an ownership-based
method to compute the number of cache invalidations: when
a thread updates a cache line owned by others, this access in-
curs an cache invalidation, and then resets the ownership to
the current thread [32]. However, this approach cannot easily
scale to more than 32 threads because of excessive memory
consumption, since it needs one bit for every thread to track
the ownership.

To address this problem, Cheetah maintains a two-entry
table (T) for each cache line (L), in which each thread will, at
most, occupy one of these two entries. In this table, each entry
has two fields: a thread ID and an access type (read or write).
It computes the number of invalidations according to the
rule described in Section 2. In case of a cache invalidation,
the current access (write) is added into the corresponding
table. Thus, each table always has at least one entry. More
specifically, Cheetah handles each access as follows:

• For each read access, Cheetah decides whether to record
this entry. If the table T is not full, and the existing entry
is coming from a different thread (with a different ID),
Cheetah records this read access in the table. Otherwise,
there is no need to handle this read access.

• For each write access, Cheetah decides whether this ac-
cess incurs an invalidation. If the table is already full,
based on assumption 1, it incurs a cache invalidation,
since at least one of the existing entries in this table is
from a different thread. If the table is both not full, and
not empty, Cheetah checks whether the existing entry is
from a different thread or not. If this write access is from
the same thread as the existing entry, Cheetah skips the
current write access, since there is no need to update the
existing entry. In all other cases, this write access incurs
at least a cache invalidation. Currently, Cheetah does not
differentiate how many reads have occurred prior to this
write. In case of a cache invalidation, the table is flushed,
and the write access is recorded in the table to maintain
the table as not empty.

Implementation As aforementioned, only cache lines with
a large number of writes can possibly have a high impact on
performance. Based on this observation, cache lines with a
small number of writes are never the cause of the severe per-
formance degradation. For this reason, Cheetah first tracks
the number of writes on a cache line, and only tracks detailed
information for cache lines with more than two writes. This
simple policy avoids tracking detailed information for write-
once memory.

2.4 Reporting False Sharing
Cheetah reports false sharing correctly and precisely, either
at the end of an execution, or when interrupted by the user.
Correct Detection. Cheetah tracks word-based (four byte)
memory accesses on susceptible cache lines using the shadow
memory technique: that is, the amount of reads or writes is-
sued by a particular thread on each word. When more than
one thread access a word, Cheetah marks this word to be
shared by multiple threads. By identifying accesses on each
word of a susceptible cache line, we can easily differenti-
ate false sharing from true sharing, since multiple threads
will access the same words in true sharing. Word-based in-
formation also helps programmers to decide how to pad a
problematic data structure during fixing phases. It is very
common that the main thread may allocate and initialize ob-
jects before they are accessed by multiple child threads. Prior
work, including Predator [20], may wrongly report them as
true sharing instances. Cheetah avoids this problem by only
recording detailed accesses inside parallel phases.
Precise Detection. Cheetah reports precise information for
global variables and heap objects that are involved in false
sharing. For global variables, Cheetah reports names and ad-
dresses by searching through the symbol table in the binary
executable. For heap objects, Cheetah reports the lines of
code corresponding to their allocation sites. Thus, Cheetah
intercepts all memory allocations and de-allocations to ob-
tain the entire call stack. Cheetah does not monitor stack vari-
ables because they are normally accessed only by their host-
ing threads. It is noted that the default backtrace func-
tion in glibc is extremely slow due to expensive instruc-
tion analysis. Cheetah utilizes the frame pointers to fetch the
call stack efficiently. Moreover, we only collect five function
entries on the call stack for performance reasons.

3. Assessing the Performance Impact
Fixing false sharing does not necessarily yield significant
performance speedups, even for instances with a large num-
ber of cache invalidations [19, 20]. Zhao et al. even observes
that fixing false sharing may even slow down a program,
since padding data structures may increase its memory foot-
print or lose cache locality [32]. Thus, it is very important to
rule out insignificant false sharing instances, which are not
false-positives, yet reporting them increases the manual bur-
den for fixes.

4

Cheetah makes the first attempt to quantitatively assess
the potential performance gain of fixing a false sharing in-
stance based on the results of an execution. We agree that
different executions may vary on the specific details, but this
should not change the overall prediction result: whether a
false sharing instance is significant or not. Actually, the eval-
uation described in Section 4.3 confirms that our predicted
performance has less than a 10% difference from that of the
actual fixes. Based on this prediction, programmers can fo-
cus on severe problems only, avoiding unnecessary manual
effort spent on insignificant cases.

Cheetah’s assessment is based on the following observa-
tions:

• Observation 1: Samples are evenly distributed over the
whole execution. Based on this, we can use the sampling
technique to represent the whole execution. The similar
idea has been widely used by prior work, such as Opro-
file [17] and Gprof [8] to identify the hotspots of function
calls.

• Observation 2: The PMU provides the latency infor-
mation (e.g. cycles) of each memory access; the latency
of memory accesses with false sharing are significantly
higher than that of other accesses.

Based on these two observations, we propose to use the
sampled cycles to represent the whole execution, and further
predict the performance impact of falsely-shared objects by
replacing these cycles with the average cycles of memory
accesses without false sharing. The assessment is performed
in three steps, listed as follows:

• Cheetah first predicts the possible cycles after fixes by
replacing actual cycles with the average cycles of mem-
ory accesses without false sharing, as discussed in Sec-
tion 3.1.

• Then, Cheetah assesses the performance impact of fixes
on the related threads, which is discussed in Section 3.2.

• In the end, Cheetah assesses the performance impact on
the application in Section 3.3.

The remainder of this section discusses the detailed as-
sessment step-by-step. For reasons of simplicity, we abbre-
viate the falsely-shared object as “O”, the related thread as
“t”, the prediction as “Pred”, the runtime as “RT”, and the
application as “App”.

3.1 Impact on Accesses to the Object
At first, Cheetah predicts the possible cycles of accesses after
fixing false sharing of the object O. Cheetah tracks the num-
ber of cycles and accesses on each word, thus it is convenient
to compute the total cycles of accesses —Cycles_O, and the
total number of accesses — Accesses_O, on a specific object
O.

However, it is impossible to know the average cycles of
every access after fixing — AverCycles_no f s, without ac-

tual fixes (Cheetah utilizes the average cycles in serial phases
(AverCycles_serial) to approximate this value). There is no
false sharing in serial phases, and AverCycles_serial repre-
sents the least number of cycles for memory accesses after
fixes. If Cheetah does not track any accesses in serial phases,
a default value learned from experience will be utilized as
AverCycles_serial. In reality, AverCycles_no f s can be larger
than AverCycles_serial, since fixing false sharing may lead
to excessivememory consumption or the loss of locality [32].
Cheetah actually predicts the best performance of fixing a
false sharing instance.

Cheetah computes the total cycles of accesses after fixes
(PredCycles_O) based on the EQ.(1). It is expected that
PredCycles_O will be less than the total cycles before fixing
— CyclesO, since fixing a false sharing problem will reduce
the execution time and cycles.

PredCycles_O = (AverCycles_no f s∗Accesses_O) (1)

3.2 Impact on Related Threads
The second step is to assess how reducing the access cycles of
O (PredCycles_O) can potentially affect the execution time
of its related threads.

Cheetah collects the following runtime information of ev-
ery thread: the execution time — RT_t, the total number of
accesses — Accesses_t, and the total cycles of all memory
accesses —Cycles_t. In order to avoid any lookup overhead,
Cheetah lets every thread handle the sample events of the
current thread, and records the corresponding number of ac-
cesses and cycles. To collect RT_t, Cheetah intercepts the
creation of threads by passing a custom function as the start
routine. Cheetah acquires the timestamp before and after the
execution of a thread using the RDTSC (ReaD-Time Stamp
Counter) [10], and regards the difference to be the execution
time of a particular thread. In current implementation, we do
not take into account the waiting time of different threads
caused by synchronizations; we leave this for future work.

After the collection, Cheetah predicts the cycles of every
related thread — PredCycles_t — after fixes as the EQ.(2).

PredCycles_t =Cycles_t−Cycles_O+PredCycles_O (2)

Based on PredCycles_t, Cheetah assesses the predicted
runtime of a thread— PredRTt — as the EQ.(3). We assume
that the execution time is proportional to the cycles of
accesses, such that fewer cycles indicates less execution time,
and corresponds to a performance speedup. It is expected
that fixing the false sharing problem inside the object O will
improve the performance for its related threads, with less
PredCycles_t and PredRTt .

PredRT_t = (PredCycles_t/Cycles_t)∗RT_t (3)

5

3.3 Impact on the Application
In the end, Cheetah assesses how fixes will change the per-
formance of the application.

Actually, improving the performance of a thread may not
increase the final performance of an application if this thread
is not in the critical path. To simplify the prediction, as well
as verify our idea, Cheetah currently focuses on applications
with the normal fork-join model shown as Figure 3. This
model is the most important and widely-used model in ac-
tuality. All applications that we have evaluated in this paper
utilize this fork-joinmodel. The performance assessment will
be more complicated if nested threads are utilized inside an
application.

Cheetah tracks the creations and joins of threads in or-
der to verify whether an application belongs to the fork-join
model or not. Cheetah also collects the execution time of dif-
ferent serial and parallel phases, using RDTSC (ReaD-Time
Stamp Counter) available on X86 machines [10]. In the fork-
join model, shown in Figure 3, an application leaves a serial
phase after the creation of a thread; it leaves a parallel phase
after all child threads (created in the current phase) have been
successfully joined.

Based on the runtime information of every parallel and
serial phase, Cheetah assesses the final performance impact
by recomputing the length of each phase, and the total time
after fixing. The length of each phase is decided by the thread
with the longest execution time, while the total time of an
application is equal to the sum of different parallel and serial
phases.

After Cheetah computes the possible execution time of an
application after fixing a false sharing problem, Cheetah will
compute and report the potential performance improvement
of every falsely-shared object, based on EQ.(4). Then, pro-
grammers can focus on those with the most serious perfor-
mance impact. We further verify the precision of Cheetah’s
assessment in Section 4.3.

Per f Improve = RT_App/PredRT_App (4)

4. Evaluation
The evaluation answers the following research questions:

• What is the performance overhead of Cheetah? (4.1)
• How effectively can Cheetah detect false sharing prob-
lems? How helpful are the outputs in fixing false sharing
problems? (4.2)

• What is the precision of assessment on each false sharing
instance? (4.3)

Experimental Setup. We evaluate Cheetah on an AMD
Opteronmachine, which has 48 1.6GHz cores, 64KBprivate
L1 data cache, 512 KB private L2 cache, 10 MB shared
L3 cache, and 128 GB memory. We use gcc-4.6 with
-O2 option to compile all applications. Because the machine

is a NUMA machine, and the performance may vary with
different scheduling policies, we bind the threads to cores in
order to acquire consistent performance.

Evaluated Applications. As prior work [16, 19, 20, 32], we
perform experiments on two well-known benchmark suites:
Phoenix [27] and PARSEC [3]. We intentionally use 16
threads in order to run applications for sufficiently long
time, as Cheetah needs enough samples to detect false shar-
ing problems. Basically, we want to make every applica-
tion run for at least 5 seconds in order to collect enough
samples. For PARSEC benchmarks, we are utilizing the
native input. For some applications of Phoenix, such
as linear_regression, we explicitly change the source
code by adding more loop iterations.

4.1 Runtime Overhead
We show the average runtime overhead of Cheetah in Fig-
ure 4. We run each application five times and show the aver-
age results here. These results are normalized to the execu-
tion time of pthreads, which means that an application is
running slower if the value is higher. According to this figure,
Cheetah only introduces around 7% performance overhead,
which makes it practical to be utilized for real deployment.

During the evaluation, we configure Cheetah with a sam-
pling frequency of one out of 64K instructions. Thus, for ev-
ery 64K instructions, the trap handler is notified once so that
Cheetah can collect the information relating to memory ac-
cesses on heap and global variables. Currently, Cheetah fil-
ters out those memory accesses in kernel, libraries or others.

The performance overhead of Cheetahmainly comes from
the handling of each sampledmemory access and each thread
creation. For each sampled access, we collect information—
such as the type of access (read or write) and the number of
cycles — then update the history table of its corresponding
cache line. Cheetah also intercepts every thread creation in
order to setup the PMU unit, get the timestamp, and update
the phase information. For applications with a large number
of threads, including kmeans (with 224 threads in 14 sec-
onds) and x264 (with 1024 threads in 40 seconds), setting
PMU registers introduces non-negligible overhead, since it
invokes six pfmon APIs and six additional system calls. For
other applications, Cheetah introduces less than 12% perfor-
mance overhead, with 4% overhead on average if these two
applications are excluded.

4.2 Effectiveness
Cheetah successfully detects two known false shar-
ing problems with significant performance impact,
includinglinear_regression in Phoenix and
streamcluster in PARSEC.

4.2.1 Case Study: linear_regression
Figure 5 shows the output of Cheetah. It points out that the
tid_args object allocated at line 139, with the structure

6

Parallel&Phase&I& Parallel&Phase&II&

Serial&Phase&II&Serial&Phase&I& Serial&Phase&III&
T1&

T2&

T3&

T4&

T5&

Figure 3. The fork-join model, currently supported by Cheetah to assess the performance impact of false sharing instances.

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

bla
cks
ch
ole
s***

**

bo
dy
tra
ck*

**

ca
nn
ea
l***

*

fac
esi
m*

*

flu
ida
nim

ate

*

fre
qm
ine
*

his
tog
ram

**

km
ea
ns
*

lin
ea
r_r
eg
res
sio
n**

ma
tri
x_
mu
l9p
ly*

pc
a**

*

str
ing
_m
atc
h*

rev
ers
e_
ind
ex

**

str
ea
mc
lus
ter

sw
ap
9o
ns

wo
rd_
co
un
t***

x2
64

AV
ER
AG
E*

N
or
m
al
liz
ed

*R
un

9m
e*

pthreads*

Cheetah*

Figure 4. Runtime overhead of Cheetah. We normalize the runtime to that of native execution without monitoring by Cheetah.
On average, Cheetah only introduces around 7% performance overhead on all evaluated applications, which makes its use
practical for real deployment.

type lreg_args, incurs a severe false sharing problem.
According to the assessment, fixing it can possibly improve
the performance by 5.7×. By examining the source code, we
can discover that the tid_args object is passed to differ-
ent threads — linear_regression_pthread. Then, we can eas-
ily find out where false sharing has been exercised, which is
shown as Figure 6. By checking word-based accesses that are
reported by Cheetah, but not shown here, we can understand
the reason for this false sharing problem: different threads are
updating different parts of the object tid_args simultane-
ously, where each thread updates words with the size of the
structure lreg_args. This problem is similar to the example
shown in Figure 1.

To address the problem, we pad the structure
lreg_args with extra bytes. By adding 64 bytes of
useless content, we can force different threads to not access
the same cache line. This one-line code change leads to
a 5.7× speedup of the performance, which matches the
assessment of 5.76× improvement predicted by Cheetah.

Detecting false sharing at the object: start 0x400004b8
end 0x400044b8 (with size 4000).
Accesses 1263 invalidations 27f writes 501 total
latency 102988 cycles.

Latency information:
totalThreads 16
totalThreadsAccesses 12e1
totalThreadsCycles 106389
totalPossibleImprovementRate 576.172748%
(realRuntime 7738 predictedRuntime 1343).

It is a heap object with the following callsite:
linear_regression-pthread.c: 139

Figure 5. Cheetah reports a false sharing problem in
linear_regression.

7

typedef struct
{

......
long long SX;
long long SY;
long long SXX;
......

} lreg_args;

for (i = 0; i < args->num_elems; i++)
{

//Compute SX, SY, SYY, SXX, SXY
args->SX += args->points[i].x;
args->SXX += args->points[i].x

*args->points[i].x;
args->SY += args->points[i].y;
......

}

Figure 6. The data structure and source code related to a
serious false sharing instance in linear_regression.

4.2.2 Case Study: streamcluster
We do not show the report results for streamcluster due to
limitations of space. For streamcluster, every thread will up-
date the work_mem object concurrently, allocated at line
985 of the streamcluster.cpp file. The authors have
already added some padding to avoid false sharing. However,
they assume the size of the cache line (using a macro) to be
32 bytes, which is smaller than the size of the actual cache
line used in our experimental machine. Thus, streamcluster
will continue to have a significant false sharing problem. The
performance impact of fixing false sharing problems inside
is further discussed in Section 4.3.

4.2.3 Comparing with State-of-the-art

0.998%

0.999%

1%

1.001%

histogram% reverse_index% word_count%

N
or
m
al
iz
ed

+R
un

/m
e+

With:FS%

No:FS%

Figure 7. False sharing problems missed by Cheetah have
negligible (<0.2%) performance impact.

Predator is the state-of-the-art in false sharing detec-
tion, which detects the highest number of instances, but
with approximately 6× performance overhead [20]. Com-
pared to Predator, Cheetah misses false sharing problems in
histogram, reverse_index and word_count [20].

As discussed before, Cheetah only detects actual false
sharing problems that may have significant performance im-
pact on final performance. If the number of accesses on a
falsely-shared object is not large enough, Cheetah may not be
able to detect it due to its sampling feature. Additionally, oc-
currences of false sharing can be affected by the starting ad-
dress of objects, the size of the cache line, or by the cache hi-
erarchy, as observed by Predator [20]. Thus, we further check
the seriousness of these problems based on Predator’s detec-
tion results.

We run these applications on our experimental hardware,
with and without false sharing problems. Figure 7 shows
the performance impact. Actually, these benchmarks do not
show a significant speedup after fixing, with less than 0.2%
performance improvement. This behavior actually exempli-
fies the advantage of Cheetah: because Cheetah only reports
false sharing problems with significant performance impact,
it can potentially save programmers manual effort unneces-
sarily spent on applications capable of only negligible per-
formance improvement.

4.3 Assessment Precision
Cheetah is the first tool that can assess the performance im-
pact of false sharing problems. Based on this information,
programmers may save huge amounts of manual effort spent
unnecessarily on applications with trivial false sharing prob-
lems.

We evaluate the precision of assessment on two
applications that are reported to have false sharing prob-
lems: linear_regression and streamcluster.
We list the precision results in Table 1. In this
table, linear_regression is abbreviated as
“linear_reg”. We evaluate these applications when
the number of threads is equal to 16, 8, 4, and 2, corre-
spondingly. We list the predicted performance impact in the
“Predict” column, and the actual improvement in the “Real”
column of the table. The last column (“Diff”) of this table
lists the difference between the predicted improvement and
the real improvement. If the number is larger than 0, the
predicted performance improvement is less than the real
improvement. Otherwise, it is the opposite.

Table 1 shows that Cheetah can perfectly assess the per-
formance impact of false sharing in every case, with less than
10% difference for every evaluated execution.

5. Discussion
This section addresses some possible concerns related to
Cheetah.

Hardware Dependence. Cheetah is an approach that re-
lies on hardware PMUs to sample memory accesses. To use
Cheetah, users should setup the driver to enable the PMU-
based sampling beforehand. Afterward, they can connect to
the Cheetah library by calling only two APIs: one API is
to setup PMU-based registers, while the other handles ev-

8

Table 1. Precision of assessment.
Application Threads

(#) Predict Real Diff
(%)

linear_reg 16 6.44X 6.7X -3.8
linear_reg 8 5.56X 5.4X +3.0
linear_reg 4 3.86X 4.1X -5.8
linear_reg 2 2.18X 2X +9

streamcluster 16 1.016X 1.015X 0
streamcluster 8 1.017X 1.018X 0
streamcluster 4 1.024X 1.022X 0
streamcluster 2 1.033X 1.035X 0

ery sampled memory access, with less than 5 lines of code
change.

Performance Overhead. On average, Cheetah only intro-
duces 7% performance overhead for all evaluated applica-
tions. However, Cheetah does introduce more than 20% over-
head for two applications that having a large number of
threads, because Cheetah should monitor thread creations
and setup hardware registers for every thread. However, this
should not be of large concern when using Cheetah. First,
the creation of a large number of threads in an application is
atypical. Secondly, we expect this overhead could be further
reduced with improved hardware support.

Effectiveness. Cheetah effectively detects false sharing
problems that occur in the current execution, and have high
impact on performance. For effective detection, Cheetah re-
quires programs to run sufficiently long, perhaps more than
few seconds. This should not be a problem for long-running
applications, which are the primary targets of optimizations.

6. Related Work
In this section, we review existing tools for the detection of
false sharing issues, as well as other techniques of utilizing
PMUs for dynamic analysis.

Cheetah is the first work to predict the potential perfor-
mance improvement after fixing false sharing problems, re-
lying on access latency information provided by the PMU
hardware. Existing work utilizes the latency information to
identify variables and instructions suffering from high access
latency [21, 22].

6.1 False Sharing Detection
Existing tools dealing with false sharing detection can be
classified into different types, based on the method of col-
lecting memory accesses or cache-related events.

Simulation-Based Approaches. Simulation-based ap-
proaches simulate the behavior of program executions
and may report possible false sharing problems within
programs [28]. Simulation-based approaches generally in-
troduce more than 100× performance overhead and cannot
simulate large applications.

Instrumentation-Based Approaches. Tools in this cate-
gory can be further divided into dynamic instrumentation-
based approaches [9, 18, 32], and static-based or compiler-
based approaches [20]. These approaches generally have
large performance overhead, running from 5× slower [20,
32] to 100× slower [9, 18]. Predator is the state-of-the-art
tool in false sharing detection, and uncovers the largest num-
ber of false sharing instances [20]. However, their perfor-
mance overhead is still too high to be used in deployed soft-
ware. Cheetah utilizes a different approach than Predator, and
successfully reduces the detection overhead.

OS-Related Approaches. Sheriff proposes turning threads
into processes, and relies on page-based protection and
isolation to capture memory writes; it reports write-write
false sharing problems with reasonable overhead (around
20%) [19]. Plastic provides a VMM-based prototype system
that combines Performance Counter Monitoring (PMU) with
page granularity analysis (based on page protection) [24].
Both Sheriff and Plastic can automatically tolerate serious
false sharing problems. However, these tools have their own
shortcomings: Sheriff can only work on programs using
pthreads libraries, and without ad-hoc synchronizations
or sharing-the-stack accesses; Plastic requires that programs
run on the virtual machine environment, which is not appli-
cable for most applications.

PMU-based approaches. PMU-based tools are introduced
due to performance reasons. All existing PMU-based ap-
proaches actually detect false sharing by monitoring cache
related events. Jayasena et al. use the machine learning ap-
proach to derive the potential pattern of false sharing bymon-
itoring cache misses, TLB events, interactions among cores,
and resources stalls [16]. DARWIN collects cache coherence
events during the first round, then identifies possible memory
accesses on data structures with frequent cache invalidations
during the second round [30]. Intel’s PTU relies on the PEBS
mechanism to track cache invalidation-related memory ac-
cesses, but it cannot differentiate false sharing and true shar-
ing [12]. However, existing PMU-based tools suffer from the
following problems: (1) they cannot report all existing false
sharing problems due to sampling on very rare cache events
(e.g. cache invalidations) [16, 26, 30] (otherwise they experi-
ence a large quantity of false positives [12]); (2) they rely on
manual annotation [26], experts’ expertise [12, 30], or multi-
ple executions to locate the problem [30]; (3) they cannot pro-
vide sufficient information for optimization [12, 16, 26, 30].

Cheetah specifically addresses these existing problems,
and provides much richer information for optimization, in-
cluding word-level accesses and potential performance im-
pact after fixes. Also, Cheetah provides better effectiveness
than existing PMU-based approaches since it samples much
richer events such as memory accesses.

9

6.2 Other PMU-Related Analysis
PMU-related techniques are widely used to identify other
performance problems due to their low (less than 10%) over-
head, such as memory system behavior and data locality.
Itzkowitz et al. introduce the memory profiling to Sun ONE
Studio, which can collect and analyze memory accesses in
sequential programs, and report measurement data related to
annotated code segment [15]. Buck and Hollingsworth de-
velop Cache Scope to perform data-centric analysis using Ita-
nium2 event address registers (EAR) [5]. HPCToolkit [21]
and ArrayTool [22] use AMD IBS to associate memory ac-
cess latency with both static and heap-allocated data objects,
and further provide optimization guidance for array regroup-
ing. However, these general-purpose tools can only, at best,
identify data objects suffering from high access latency. They
do not determine whether the high latency originates from
false sharing, nor can they provide rich information to as-
sist with optimizations. In contrast, Cheetah can correctly
identify false sharing problems, as well as associate detailed
memory accesses with problematic data objects to help opti-
mizations.

7. Conclusion
This paper presents Cheetah, a lightweight profiler that iden-
tifies false sharing in multithreaded programs. Cheetah em-
ploys the first approach that quantifies the optimization po-
tentials of fixing false sharing instances, without actual fixes.
For detection, Cheetah distinguishes true and false sharing,
and only reports problems that significantly impact overall
program performance. Cheetah provides insightful guidance
for fixing problems while only introducing 7% runtime over-
head, making it ready for real deployment.

Acknowledgements
This material is based upon work supported by startup pack-
ages provided by University of Texas at San Antonio and
College of William and Mary, and Google Faculty Research
Award. This research was also supported by the National Sci-
ence Foundation (NSF) under Grant No. 1464157. We would
like to thank Sam Silvestro, Jinpeng Zhou, Hongyu Liu, and
Jin Han for their invaluable comments and suggestions that
helped improve this paper. Finally, this paper integrates the
implementation of Guangming Zeng on acquiring callstacks
efficiently.

References
[1] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wil-

son. Hoard: a scalable memory allocator for multithreaded
applications. In ASPLOS-IX: Proceedings of the ninth inter-
national conference on Architectural support for programming
languages and operating systems, pages 117–128, New York,
NY, USA, 2000. ACM Press.

[2] E. D. Berger, B. G. Zorn, and K. S. McKinley. Composing
high-performance memory allocators. In Proceedings of the

ACM SIGPLAN 2001 Conference on Programming Language
Design and Implementation, PLDI ’01, pages 114–124, New
York, NY, USA, 2001. ACM.

[3] C. Bienia. Benchmarking Modern Multiprocessors. PhD
thesis, Princeton University, January 2011.

[4] W. J. Bolosky and M. L. Scott. False sharing and its effect on
shared memory performance. In SEDMS IV: USENIX Sympo-
sium on Experiences with Distributed and Multiprocessor Sys-
tems, pages 57–71, Berkeley, CA, USA, 1993. USENIX Asso-
ciation.

[5] B. R. Buck and J. K. Hollingsworth. Data centric cache mea-
surement on the Intel ltanium 2 processor. In SC ’04: Proc.
of the 2004 ACM/IEEE Conf. on Supercomputing, page 58,
Washington, DC, USA, 2004. IEEE Computer Society.

[6] P. J. Drongowski. Instruction-based sampling: A new per-
formance analysis technique for AMD family 10h proces-
sors. http://developer.amd.com/Assets/AMD_IBS_paper_
EN.pdf, November 2007. Last accessed: Dec. 13, 2013.

[7] Gprof community . Gnu gprof. https://sourceware.org/
binutils/docs/gprof/.

[8] S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof:
a call graph execution profiler. In SIGPLAN Symposium on
Compiler Construction, pages 120–126, 1982.

[9] S. M. Günther and J. Weidendorfer. Assessing cache false
sharing effects by dynamic binary instrumentation. In WBIA
’09: Proceedings of the Workshop on Binary Instrumentation
and Applications, pages 26–33, New York, NY, USA, 2009.
ACM.

[10] Intel. Using the rdtsc instruction for performance monitoring.
https://www.ccsl.carleton.ca/~jamuir/rdtscpm1.pdf, 1997.

[11] Intel Corporation. Intel VTune performance analyzer. http:
//www.intel.com/software/products/vtune.

[12] Intel Corporation. Intel Performance Tuning Utility 3.2 Up-
date, November 2008.

[13] Intel Corporation. Avoiding and identifying false sharing
among threads. http://software.intel.com/en-us/articles/
avoiding-and-identifying-false-sharing-among-threads/,
February 2010.

[14] Intel Corporation. Intel 64 and IA-32 architectures software
developer’s manual, Volume 3B: System programming guide,
Part 2, Number 253669-032, June 2010.

[15] M. Itzkowitz, B. J. N.Wylie, C. Aoki, and N. Kosche. Memory
profiling using hardware counters. In SC ’03: Proc. of the 2003
ACM/IEEE Conf. on Supercomputing, page 17, Washington,
DC, USA, 2003. IEEE Computer Society.

[16] S. Jayasena, S. Amarasinghe, A. Abeyweera, G. Amarasinghe,
H. De Silva, S. Rathnayake, X. Meng, and Y. Liu. Detection of
false sharing using machine learning. In Proceedings of SC13:
International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’13, pages 30:1–30:9,
New York, NY, USA, 2013. ACM.

[17] J. Levon and P. Elie. Oprofile: A system profiler for Linux,
2004.

[18] C.-L. Liu. False sharing analysis for multithreaded programs.
Master’s thesis, National Chung Cheng University, July 2009.

10

http://developer.amd.com/Assets/AMD_IBS_paper_EN.pdf
http://developer.amd.com/Assets/AMD_IBS_paper_EN.pdf
https://sourceware.org/binutils/docs/gprof/
https://sourceware.org/binutils/docs/gprof/
https://www.ccsl.carleton.ca/~jamuir/rdtscpm1.pdf
http://www.intel.com/software/products/vtune
http://www.intel.com/software/products/vtune
http://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads/
http://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads/

[19] T. Liu and E. D. Berger. Sheriff: precise detection and au-
tomatic mitigation of false sharing. In Proceedings of the
2011 ACM international conference on Object oriented pro-
gramming systems languages and applications, OOPSLA ’11,
pages 3–18, New York, NY, USA, 2011. ACM.

[20] T. Liu, C. Tian, H. Ziang, and E. D. Berger. Predator: Pre-
dictive false sharing detection. In Proceedings of 19th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPOPP’14, New York, NY, USA, 2014. ACM.

[21] X. Liu and J. M. Mellor-Crummey. A data-centric profiler for
parallel programs. In Proc. of the 2013 ACM/IEEE Conference
on Supercomputing, Denver, CO, USA, 2013.

[22] X. Liu, K. Sharma, and J. Mellor-Crummey. Arraytool: A
lightweight profiler to guide array regrouping. In Proceedings
of the 23rd International Conference on Parallel Architectures
and Compilation, PACT ’14, pages 405–416, New York, NY,
USA, 2014. ACM.

[23] X. Liu and B. Wu. ScaAnalyzer: A tool to identify memory
scalability bottlenecks in parallel programs. In Proc. of the
2015 ACM/IEEE Conference on Supercomputing, Austin, TX,
USA, 2015.

[24] M. Nanavati, M. Spear, N. Taylor, S. Rajagopalan, D. T.Meyer,
W. Aiello, and A. Warfield. Whose cache line is it anyway?:
operating system support for live detection and repair of false
sharing. In Proceedings of the 8th ACM European Confer-
ence on Computer Systems, EuroSys ’13, pages 141–154, New
York, NY, USA, 2013. ACM.

[25] M. S. Papamarcos and J. H. Patel. A low-overhead coherence
solution for multiprocessors with private cache memories. In
Proceedings of the 11th Annual International Symposium on
Computer Architecture, ISCA ’84, pages 348–354, New York,
NY, USA, 1984. ACM.

[26] A. Pesterev, N. Zeldovich, and R. T. Morris. Locating cache
performance bottlenecks using data profiling. In EuroSys ’10:
Proceedings of the 5th European conference on Computer sys-
tems, pages 335–348, New York, NY, USA, 2010. ACM.

[27] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis. Evaluating MapReduce for multi-core and mul-
tiprocessor systems. In HPCA ’07: Proceedings of the 2007
IEEE 13th International Symposium on High Performance
Computer Architecture, pages 13–24, Washington, DC, USA,
2007. IEEE Computer Society.

[28] M. Schindewolf. Analysis of cache misses using SIMICS.
Master’s thesis, Institute for Computing Systems Architecture,
University of Edinburgh, 2007.

[29] W. Wang, T. Dey, J. Davidson, and M. Soffa. DraMon: Pre-
dicting memory bandwidth usage of multi-threaded programs
with high accuracy and low overhead. In High Performance
Computer Architecture (HPCA), 2014 IEEE 20th International
Symposium on, pages 380–391, Feb 2014.

[30] B. Wicaksono, M. Tolubaeva, and B. Chapman. Detecting
false sharing in openmp applications using the darwin frame-
work. In In Proceedings of International Workshop on Lan-
guages and Compilers for Parallel Computing, 2011.

[31] B. Wicaksono, M. Tolubaeva, and B. Chapman. Detecting
false sharing in openmp applications using the darwin frame-
work. In S. Rajopadhye and M. Mills Strout, editors, Lan-
guages and Compilers for Parallel Computing, volume 7146 of
Lecture Notes in Computer Science, pages 283–297. Springer
Berlin Heidelberg, 2013.

[32] Q. Zhao, D. Koh, S. Raza, D. Bruening, W.-F. Wong, and
S. Amarasinghe. Dynamic cache contention detection in
multi-threaded applications. In The International Conference
on Virtual Execution Environments, Newport Beach, CA, Mar
2011.

11

	Cheetah: Detecting False Sharing Efficiently and Effectively
	Recommended Citation

	Introduction
	Detecting False Sharing
	Sampling Memory Accesses
	Locating Problematic Cache Lines
	Computing Cache Invalidations
	Reporting False Sharing

	Assessing the Performance Impact
	Impact on Accesses to the Object
	Impact on Related Threads
	Impact on the Application

	Evaluation
	Runtime Overhead
	Effectiveness
	Case Study: linear_regression
	Case Study: streamcluster
	Comparing with State-of-the-art

	Assessment Precision

	Discussion
	Related Work
	False Sharing Detection
	Other PMU-Related Analysis

	Conclusion

