
W&M ScholarWorks W&M ScholarWorks

Arts & Sciences Articles Arts and Sciences

2016

Mining Performance Regression Inducing Code Changes in Mining Performance Regression Inducing Code Changes in

Evolving Software Evolving Software

Qi Luo
William & Mary

Denys Poshyvanyk
William & Mary

Mark Grechanik

Follow this and additional works at: https://scholarworks.wm.edu/aspubs

Recommended Citation Recommended Citation
Luo, Qi; Poshyvanyk, Denys; and Grechanik, Mark, Mining Performance Regression Inducing Code
Changes in Evolving Software (2016). 13th Working Conference on Mining Software Repositories (Msr
2016).
10.1145/2901739.2901765

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been
accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more
information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/aspubs
https://scholarworks.wm.edu/as
https://scholarworks.wm.edu/aspubs?utm_source=scholarworks.wm.edu%2Faspubs%2F818&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu

Mining Performance Regression Inducing Code Changes
in Evolving Software

Qi Luo
College of William and Mary

qluo@cs.wm.edu

Denys Poshyvanyk
College of William and Mary

denys@cs.wm.edu

Mark Grechanik
University of Illinois at Chicago

drmark@uic.edu

ABSTRACT
During software evolution, the source code of a system fre-
quently changes due to bug fixes or new feature request-
s. Some of these changes may accidentally degrade perfor-
mance of a newly released software version. A notable prob-
lem of regression testing is how to find problematic changes
(out of a large number of committed changes) that may be
responsible for performance regressions under certain test
inputs.

We propose a novel recommendation system, coined as
PerfImpact, for automatically identifying code changes that
may potentially be responsible for performance regression-
s using a combination of search-based input profiling and
change impact analysis techniques. PerfImpact indepen-
dently sends the same input values to two releases of the
application under test, and uses a genetic algorithm to mine
execution traces and explore a large space of input value
combinations to find specific inputs that take longer time to
execute in a new release. Since these input values are likely
to expose performance regressions, PerfImpact automati-
cally mines the corresponding execution traces to evaluate
the impact of each code change on the performance and
ranks the changes based on their estimated contribution to
performance regressions. We implemented PerfImpact and
evaluated it on different releases of two open-source web ap-
plications. The results demonstrate that PerfImpact ef-
fectively detects input value combinations to expose perfor-
mance regressions and mines the code changes are likely to
be responsible for these performance regressions.

CCS Concepts
•Software and its engineering → Software perfor-
mance; Software testing and debugging;

Keywords
Performance regression testing, mining execution traces, change
impact analysis, genetic algorithms

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR’16, May 14-15, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4186-8/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2901739.2901765

1. INTRODUCTION
Performance is an important metric of software quality

[60, 43], whereas performance testing is a vital activity that
developers routinely perform during software developmen-
t and maintenance to ensure quality [19]. During software
evolution, a number of code changes are committed, and
some of them may be responsible for performance regression-
s. A performance regression is a situation in which an ap-
plication under test (AUT) exhibits unexpectedly worsened
performance in a new release as compared to the previous
version for the same input values and for a given workload
(i.e., the number of users, their requests and frequencies of
interactions). Stakeholders are interested in understanding
code changes behind these regressions.

Performance regression testing is challenging due to at
least the following reasons. Firstly, modern software systems
evolve rapidly. Many of them follow agile-driven cycles and
release new versions in short iterations [18]. With a large
number of commits submitted, the cost of detecting perfor-
mance regressions and linking code changes to performance
behaviors increases drastically. Therefore, performance re-
gression testing is usually performed continuously during
software maintenance [15, 41]. Secondly, detecting perfor-
mance regressions and locating the associated code changes
for specific inputs in AUTs with large spaces of input com-
binations are non-trivial and time-consuming tasks [61].

Let’s consider a simplified scenario for detecting perfor-
mance regressions. Assume there are two versions of an
AUT, a newly released version (vi+1) and a previous version
(vi). Programmers commit a number of changes between
these two versions. Given the same test inputs, vi and vi+1

the application may exhibit different performance behaviors
with respect to its execution time. The test inputs that
lead to worsened performance (e.g., longer execution time)
in vi+1 but not in vi are the desired inputs that may expose
new performance regressions. Their corresponding execu-
tion traces are helpful for troubleshooting [41]. In order to
find such inputs, stakeholders need to iterate through a large
number of input combinations while mining the execution
traces for both of vi and vi+1 with the same inputs to moni-
tor changes in performance for each input set. It is challeng-
ing for stakeholders to mine a large body of execution traces
for identifying the ones can expose potential performance
regressions and linking the inputs to these traces. Once
such inputs are found (manually or automatically), the cor-
responding execution traces need to be further examined to
detect changes responsible for observed performance regres-

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 25

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 25

sions. Unfortunately, this process is domain and knowledge
dependent, oftentimes manual and expensive.

We propose a novel recommendation system, PerfIm-
pact, to automatically recommend inputs and code changes
for programmers that may be closely related to performance
regressions using a combination of search-based input profil-
ing [69] and change impact analysis [51]. The search-based
input profiling has been extended to execute two different re-
leases of AUT (vi and vi+1) independently with the same in-
put values, mine execution traces to link inputs with AUT’s
behaviors, and use a genetic algorithm as a search heuristic
for exploring the input value combinations for finding the
ones likely exposing performance regressions. After the in-
puts are selected, PerfImpact mines the execution traces
generated with these inputs, and uses change impact analy-
sis to rank each code change based on its contribution to the
AUT’s performance regression(s). The code changes hav-
ing significant impact on AUT’s performance degradation
in vi+1 are marked as problematic for follow-up code re-
views. The goal of PerfImpact is to improve effectiveness
of performance regression testing via identifying input com-
binations than worsen performance behaviors (i.e., longer
execution time) in vi+1, and mining the corresponding exe-
cution traces to prioritize code changes likely responsible for
these regressions. It is possible that some code changes with
longer execution time implement new features or fix bugs,
not necessarily leading to performance regressions. Our ap-
proach may not precisely locate root cases behind perfor-
mance regressions, but provide a ranked list of code changes
potentially leading to performance regressions that can be
used as a starting point for programmers in regression test-
ing. This paper makes the following contributions:

• We propose a novel recommendation system, PerfIm-
pact, that relies on search-based input profiling to ex-
pose performance regressions manifested in newer soft-
ware versions, mines the corresponding traces, and us-
es change impact analysis to prioritize the code changes
likely responsible for these performance regressions;

• We empirically evaluated PerfImpact on different re-
leases of two open-source web applications, Agilefant
(v3.2, v3.3, and v3.5) and JPetStore (v3.0.0 and v4.0.5)
containing numerous real changes. The results demon-
strate that PerfImpact is able to effectively explore
the combinations of input values and identify perfor-
mance regressions between different releases. The re-
sults also demonstrate that PerfImpact can effective-
ly recommend the changes (both real and injected)
likely responsible for the identified regressions;

• We have made PerfImpact and the experimental re-
sults publicly available in our online appendix [7].

2. PROBLEM STATEMENT
In this section, we survey the state of the art and prac-

tice in performance regression testing, discuss an illustrative
example, and describe the problem statement.

2.1 State of the Art and Practice
Many recent approaches aim at detecting performance re-

gressions by comparing the values of different performance
metrics (e.g., performance counters) in two system versions
[60, 61, 52]. Typically, they execute the same test cases in
each version and use control charts to check if the perfor-
mance of a target test in vi+1 is similar to the performance of

Figure 1: A performance regression example due to
possible thread blocking.

a baseline test in vi. Other approaches use statistical meth-
ods, such as ANOVA, to detect performance differences be-
tween vi+1 and vi [41]. All these approaches require running
a complete set of test cases for detecting regressions. Howev-
er, since performance testing is usually time-consuming [60],
it is imperative to identify a subset of effective inputs or test
cases more likely to exhibit performance regressions. While
techniques for selecting regression tests have been proposed
and evaluated in the context of functional testing [26, 49,
56, 71, 72], generating and selecting performance regression
tests still remains a significant challenge.

Understanding which code changes are responsible for par-
ticular performance regressions poses to be even more chal-
lenging problem. Precisely pinpointing changes (out of t-
housands of commits) that may be responsible for perfor-
mance regressions (for certain inputs) is a fairly involved
task, requiring deep knowledge of the AUT’s source code,
behavioral semantics, and even change history. The closest
approach to address this problem is the one by Huang et
al. who proposed a model for estimating the risk of each
commit and tagging commits likely leading to performance
regressions [43]. This solution relies on static analysis and
focuses on specific types of performance regressions, such as
dramatic cost difference in intra-procedural paths and loop
termination conditions affected by code changes (it does not
identify changes responsible for input-specific bottlenecks).

2.2 An Example Performance Regression
Let’s consider the example shown in Fig. 1. This example

illustrates that understanding AUT’s behaviors and their re-
lationships to input values (and combinations of inputs) is
critical for detecting performance regressions. The example
shows code snippets in two versions of a system, vi and vi+1.
In both versions, lines 1-2 declare method calculate() as a
synchronized method. Line 3 presents input variables a and
b, and line 4 the object item of the type A is instantiated.
In vi, lines 5-7 assign a new instance to item; while, in vi+1,
lines 5-7 assign a new instance to item or invoke method
getItem() to assign an existing instance to item, depend-
ing on the result of the branch condition in line 5. In both
vi and vi+1, item calls method calculate() in line 8. Note
that calculate() is a synchronized method, so if it is called
with the same instance in multiple threads simultaneously,
the threads will be blocked. However, in vi+1, item is as-
signed an existing instance if the branch condition in line
5 is not satisfied. Thus, when multiple threads are execut-
ing concurrently and sharing the same instance of an item,
method calculate() may be blocked, which can lead to a
performance regression for certain inputs of a and b in vi+1,
but not in vi. Moreover, even if the input values leading to
this performance regression are identified, it may be diffi-
cult to locate code changes responsible for this performance

2626

regression. If we simply rely on total execution time to eval-
uate performance, we would be able to observe performance
degradation, for certain inputs, for method calculate(). Yet,
in this case, the actual changes responsible for the perfor-
mance regression are those in line 5 and line 7 in vi+1.

2.3 The Problem Statement
In order to prioritize code changes likely responsible for

performance regressions, first we need to find input com-
binations that execute the code changes which may trigger
performance regressions. As an AUT evolves, a large num-
ber of changes are made between vi+1 and vi, such as code
changes, database restructuring, as well as changes in config-
uration files, potentially leading to performance regressions.
In our paper, we only focus on the performance regression-
s caused by code changes. Static analysis techniques alone
may not be suitable to solve this problem, since they are
expensive and oftentimes language-dependent, whereas dy-
namic analysis techniques are likely to provide higher pre-
cision when understanding AUT’s performance behaviors in
terms of input values for detecting performance regressions.
When running vi+1 and vi with the same inputs, only cer-
tain combinations of inputs can trigger specific code changes
that may cause AUT to take longer time to execute in vi+1

as compared to vi. However, for non-trivial AUTs with large
input spaces, the number of permutations of input values is
too large to run in a reasonable amount of time. Also, it is
nontrivial to mine a large body of execution traces for find-
ing the ones likely to expose performance regressions. The
first problem to solve is how to explore the large input space
and mine the corresponding execution traces to effectively
find a subset of inputs exposing performance regressions.

After finding the inputs triggering performance regression-
s, we aim at mining their execution traces to prioritize code
changes associated with these input-specific performance re-
gressions. The key problem here is how to link all code
changes to AUT’s performance behaviors and understand
their impacts on observed performance regressions. Note
that our approach is not precise root causes analysis of per-
formance regressions. Instead, we propose to improve the
effectiveness of performance regression testing for program-
mers by recommending a list of code changes likely respon-
sible for performance regressions.

3. APPROACH
In this section, we describe our key ideas, algorithms, and

the detailed workflow behind PerfImpact.

3.1 An Overview of Our Approach
PerfImpact rests on two key ideas: (1) rely on the search-

based input profiling for mining execution traces to expose
the AUT’s performance degradations between two releas-
es, vi+1 and vi, and detecting input value combinations
that maximize these degradations, and (2) mine execution
traces and utilize change impact analysis to identify the code
changes having significant impact on performance degrada-
tion for a given set of inputs.

Finding Inputs That Lead to Performance Regres-
sions. The first key idea of PerfImpact is to rely on search-
based input profiling [69] to mine execution traces for un-
derstanding AUT’s performance behaviors, and use genetic
algorithms (GAs) to explore different combinations of input
values for finding the ones that take unexpectedly longer
time to execute in vi+1 but not in vi. Our hypothesis is that

Figure 2: Examples of URLs and a chromosome in
our GA implementation. Each number in the chro-
mosome refers to a unique URL ID.

the input value combinations with larger execution time dif-
ference among two studied versions are more likely to trigger
performance regressions. While search-based input profiling
has been recently used for detecting performance bottleneck-
s in a given software version [69], PerfImpact instruments
and runs two versions of the AUT with the same inputs inde-
pendently. PerfImpact also defines a new fitness function
aimed at mining execution traces to obtain the ones using
more time to complete in vi+1 than in vi and selecting input
combinations associated with these executions. This fitness
function is designed as a proxy for identifying inputs leading
to performance regressions in vi+1.

Identifying Code Change That Induce Performance
Regression by Mining Execution Traces. The second
key idea is to find the changes associated with the meth-
ods related to performance degradations. Specifically, Per-
fImpact obtains execution times of the invoked methods in
vi+1 and vi during profiling and compares their performance
differences respectively. The methods with increased execu-
tion time in vi+1, for the same inputs as in vi, are tagged
as potentially “problematic”. Given a code change, Per-
fImpact relies on dynamic change impact analysis (CIA)
[51] to mine execution traces and estimate a set of method-
s (i.e., an impact set) that is potentially impacted by this
code change. Then, all the changes between vi+1 and vi are
ranked based on the performance of the methods in their
respective impact sets. The changes that have more “prob-
lematic” methods in their impact sets are ranked higher.
Conversely, the changes that have fewer or no “problematic”
methods in their impact sets are ranked lower. The heuristic
is that the higher ranked changes usually have more signifi-
cant impact on performance regressions.

3.2 Search-based Input Profiling for Perfor-
mance Regressions

Search-based input profiling mines a large body of exe-
cution traces and utilizes GAs to automatically search the
input space for possible combinations of inputs responsible
for the performance regressions. GAs are evolutionary al-
gorithms that mimic the natural selection process to search
for the solutions to optimization problems [42, 58], and have
been widely used to generate test cases in the software test-
ing domain [39, 45, 40]. In GAs, a solution or an individual
is represented as a chromosome, which contains a sequence
of genes. Typically, the initial individuals are generated ran-
domly, and then GAs exploit a pre-defined fitness function
to evaluate each individual. The fitter ones (i.e., parents)
that have larger fitness values are selected to generate the in-
dividuals for the next generation (i.e., offsprings) via genetic
operators, such as crossover and mutation.

The key idea behind our GA implementation is to identify
the input combinations likely to expose performance regres-
sions. In our implementation, an individual (i.e., a chro-

2727

(a) The crossover operator in GAs.

(b) The mutation operator in GAs.

Figure 3: The examples of GA operators, crossover
and mutation.

mosome) refers to a test case (or a set of inputs). Each
chromosome contains a sequence of genes, referring to the
inputs with different parameters. In case of a web-based
application that takes URLs as inputs, the example of a
chromosome encoding is shown in Fig. 2. Each URL is as-
signed an unique ID and a chromosome encoding represents
a sequence of URL IDs. An URL input containing different
parameters (e.g., URL 3 and 4 shown in Fig. 2) will be as-
signed different IDs. The implementation of crossover and
mutation operators is illustrated in Fig. 3. The crossover
operator selects a pair of parent chromosomes (i.e., ID se-
quences) and randomly chooses a cut point to swap these
two sequences. The mutation operator takes a chromosome
and changes the value of a selected gene (i.e., an ID) with
another random value. The probabilities of these two oper-
ations are predefined as the crossover and mutation rates.

We define a fitness function to evaluate inputs and pro-
mote the ones that are more likely to trigger performance
regressions. PerfImpact first mines execution traces to ex-
tract time information for each combination of inputs, then
measures the inputs using the time difference, which is de-
fined as the difference between the times it takes vi+1 and
vi to execute with the same inputs. The larger the time d-
ifference, the higher the probability that the corresponding
inputs might lead to performance regressions. We define the
fitness function as shown in Eq. 1, where Ij is a set of inputs
selected from the whole AUT input set (i.e., Iall), tdj is the
time difference for input Ij , tj is the time it takes AUT to
execute Ij , the superscripts ‘i’ and ‘i+1’ refer to vi and the
vi+1 software releases respectively.

tdj = tij − ti+1
j (1)

Our GA implementation is outlined in Alg. 1, which takes
the whole AUT input set (Iall) and two releases (vi, vi+1) as
inputs, and outputs the sets of inputs (I) for which perfor-
mance regressions are observed. In detail, the initial pop-
ulation is selected randomly from Iall (1). Then crossover
and mutation operators are executed with the pre-defined
rates (rc, rm) on the initial population to generate new indi-
viduals (3-4). After that, each individual is sent as an input
to vi and vi+1, and two traces are collected during the pro-
filing (5-7). Then the fitness value is calculated based on
the pre-defined fitness function (Eq. 1) for each individual
(8-9). The fitter ones are selected to create the next gener-
ation (10). The above process repeats until the termination
criterion is reached (2), and then sets of inputs (I) are re-
turned (11-12). Typically, there are two types of termination
criteria. One is a pre-defined maximum number of genera-
tions and the other one is the average fitness value. When
the maximum number of generations is reached or the chil-
dren’s average fitness value does not increase significantly

as compared to their parents’ average fitness value (the in-
creased percentage is less than a pre-defined threshold), the
evolution process is terminated. The values of two types of
termination criteria are settled experimentally (Section 4.3).

Algorithm 1: The Genetic Algorithm.

Input : Input (Iall), Two software releases (vi, vi+1)
Output: Sets of inputs (I) that might trigger

performance regressions.
1: Initial population I ← Iall
2: while Termination criterion is not satisfied do
3: I ← crossover(I, rc)
4: I ← mutation(I, rm, Iall)
5: for all Ij ∈ I do
6: tij ← Run Ij in vi
7: ti+1

j ← Run Ij in vi+1

8: tdj ← ti+1
j − tij , where tdj ∈ TD

9: end for
10: I ← selectPopulation(I, TD)
11: end while
12: return I

3.3 Identifying Performance Regression Induc-
ing Changes via Mining

In general, performance regressions are exposed when some
specific methods experience longer execution time in vi+1.
PerfImpact relies on path-based dynamic CIA [51] to i-
dentify the changes leading to performance regressions. For
each change, the impact analysis is used to build an impact
set containing all the methods that are potentially impact-
ed by this change. PerfImpact mines execution traces to
understand the performance of the impacted methods in t-
wo releases to rank the changes. The key hypothesis here is
that if the methods in the impact set exhibit longer execu-
tion times in vi+1 but not in vi, for the same sets of inputs,
then it is more likely that a change for this impact set is
responsible for the observed performance regression. Obvi-
ously, there may be cases where multiple inputs and changes
are responsible for one or multiple performance regression(s)
(i.e., some fault interaction may be present [24]). Note that
CIA may not be helpful to accurately locate the code causing
performance regressions. However, our goal is to pinpoint a
starting point (i.e., changes related to observed performance
regressions) for a detailed root cause analysis that needs to
be performed by developers. In our paper, the code changes
are extracted at the method level granularity. In particu-
lar, we consider changes in a method between vi+1 and vi
involving additions, modifications or deletions to the body,
signature, or a return type, excluding comments.

The impact analysis technique that we rely upon in our
implementation considers a change’s impact that propagates
along any (and only) dynamic paths that pass through the
change [51]. Given a change c, only the methods, which
are called after c and which are in the call stack after c
returns, are added into the impact set. For example, three
execution traces are shown in Fig. 4. Given a method a, ae

represents a method’s entry and ar represents a method’s
return. x represents the execution termination. In fig. 4, in
the first execution, m is called first, then m calls b, b calls
c, c calls f , f and c return, b returns, m returns, and finally
the execution terminates. Assuming that the method c has
been changed, its impact set in the first execution is {b, f ,
m}, since f is called after c, and b, m are in the call stack

2828

Algorithm 2: Ranking changes for a given set of inputs.

Input : Changes C(c1, c2, ...), Impact sets
IM(imc1 , imc2 , ...), Method Statistics.

Output: Ranked lists of changes RC.
1: for all ck ∈ C do
2: for all mq ∈ imck do
3: detmq = mti+1

mq
−mtimq

4: sdetck+ = detmq , where sdetck ∈ SDET
5: end for
6: end for
7: RC ← RANK(C, SDET)
8: return RC

Figure 4: Three sample execution traces of an AUT.

after c returns. Similarly, its impact set is {a, f , m} in the
second execution, and its impact set is {b, e, m} in the third
execution. Thus, the final impact set for the method c is the
union of these three sets, which is {a, b, e, f , m}.

In PerfImpact, a trace is collected for one set of inputs.
We considered the trace segment of one distinct input (i.e., a
URL) as an execution, so each trace can be divided into dif-
ferent executions corresponding to different inputs. In CIA,
when one trace contains multiple executions, the backward
and forward searching do not cross the termination symbol
of each execution (i.e., x in Fig. 4). For a web application,
one set of inputs refers to a sequence of URLs, thus a trace
is collected for each sequence of URLs. Each trace can be
divided into different trace segments for different URLs. For
example, if there are 50 URLs in one set of inputs, the cor-
responding trace is divided into 50 trace segments, where
each segment refers to one execution used in CIA.

For a given set of inputs, the impact set of each change is
estimated using CIA. PerfImpact mines execution traces
to obtain the performance differences of each method in the
impact set and ranks the code changes based on their im-
pacted methods’ performance. The performance difference
of a method is measured using the difference in its execu-
tion times between vi+1 and vi. PerfImpact ranks the
changes based on the sum of the differences in execution
times of all methods in its impact set, which is shown in
Alg. 2. Alg. 2 takes the changes C, the corresponding im-
pact sets IM and method execution times (execution time
for each method would exclude its callee’s execution time)
as inputs, and outputs a ranked list of changes RC. For
each change ck in C (line 1), it calculates the difference in
execution time for each method in its impact set imck (line
2). For example, the method mq’s difference in execution
times (i.e., detmq) is equal to the method execution time in

vi+1, mti+1
mq

, minus the method execution time in vi, mtimq

(line 3). If mq is not invoked in vi, mtimq
is assigned zero.

sdetck is the sum of the differences in execution times of all
methods in the impact set imck (lines 4-6). Finally, each
code change (e.g., ck) is ranked based on its value sdetck
and Alg. 2 terminates (lines 7-8). PerfImpact runs CIA
on vi+1 to estimate impact sets of changes, hence the meth-
ods deleted in vi+1 are not included in the impact sets. As
a result, the differences in execution times of these methods
are not taken into account while evaluating the impact of
changes on AUT’s performance.

Figure 5: The workflow of PerfImpact.

3.4 Workflow of PerfImpact

The workflow of PerfImpact is shown in Fig. 5. Solid
arrows indicate command and data flows between compo-
nents, and the numbers in circles indicate the sequence of
operations in the workflow. The dashed arrows denote tran-
sition in control flow once GA termination criteria is sat-
isfied. Initially, sequences of inputs (i.e., individuals) are
selected randomly for the first generation (1). While our
paper starts this step (i.e., GA component) with random
inputs, in practice, developers can also supply inputs that
reveal performance bottlenecks in vi (or any other input-
s they would like to start with). JMeter [5] simulates users
sending the inputs into two releases of the AUT automatical-
ly (2-4). Profileri and Profileri+1 collect execution traces of
each set of inputs on vi and vi+1 respectively (5, 6). Profilers
are implemented using Probekit [8], a lightweight profiling
tool that injects the code fragments into specific points (e.g.,
method entry and exit) of the binary code for collecting the
runtime data. Execution Trace Analyzer processes the ex-
ecution traces (7) and extracts Trace Statistics (8) for GA
Analyzer to evaluate each set of inputs (9). GA analyzer
calculates the fitness value for each set of inputs according
to Eq. 1 and selects the fitter ones to generate new inputs.
The new inputs are sent back the AUT, starting the next
iteration (10). GAs are implemented using JGAP [4].

After the GA component terminates, which means that
PerfImpact finds the inputs likely to expose performance
regressions, the second stage of PerfImpact (i.e., CIA com-
ponent) is initiated with these inputs. By combining the
Change information (e.g., full method names, signatures,
return types) (11) and Trace Statistics (12), an Impact Set
is derived for each change for the given inputs, using the
Impact Analysis algorithm (13). Method Statistics are ex-
tracted to calculate the execution time in two releases for
each method (14). In Mining phase, PerfImpact integrates
Method Statistics (15) with Impact Sets (16), and uses the
Alg. 2 to rank the changes for the given inputs (17). The
changes ranked higher on the list are the ones likely leading
to performance regressions. Note that the CIA component
is initiated right after the GAs’ search is terminated, since
we expect mining execution traces for selected inputs to be
useful to analyze the impact of each change on performance
regressions. Alternatively, the CIA component can be also
run simultaneously while running the GA component. This

2929

usage of PerfImpact depends on two specific scenarios. In
the first scenario, when stakeholders want to obtain the fi-
nal ranked lists of changes, they can run the CIA component
after GA component is terminated, as shown in Fig. 5. How-
ever, if stakeholders prefer to monitor the impact of inputs
on performance changes, they can run the CIA component
for the inputs that are selected at each generation (second
scenario). To evaluate PerfImpact thoroughly, we choose
the second scenario for our empirical study (section 4.3).

4. EVALUATION
In this section, we state our research questions (RQs)

and explain how we conducted an empirical study aimed at
evaluating our approach on two open-source applications.

4.1 Research Questions
RQ1: How effective is PerfImpact in finding inputs that

likely expose performance regressions in vi+1?

RQ2: Can PerfImpact effectively recommend changes be-
tween vi and vi+1 likely responsible for performance
regressions in vi+1 for a given set of inputs?

To answer RQ1, we introduced the following null (H0) and
alternative (H1) hypotheses aimed at comparing inputs s-
elected by PerfImpact with random inputs. Inputs with
larger time differences (defined in Eq 1) are more likely to
lead to performance regressions. The hypotheses are evalu-
ated at a 0.05 level of significance:

H0: There is no statistically significant difference in the
time differences for the inputs generated by PerfIm-
pact and random inputs.

H1: There is a statistically significant difference in the time
differences for the inputs generated by PerfImpact and
random inputs.

To answerRQ2, after GA component is finished and changes
are ranked, we run AUTs with the selected inputs to further
understand the changes’ impact on performance of two re-
leases. We expect the changes ranked higher would lead to
much longer execution time in vi+1 as compared to vi.

4.2 Subject AUTs
We evaluated PerfImpact on two open-source web ap-

plications, JPetStore (v3.0.0, v4.0.5) and Agilefant (v3.2, v3.3,
v3.5). The statistics for all subjects are shown in Table 1.
JPetStore [6] is a three-tier Java implementation of PetStore,
which is widely used as performance benchmark [46, 47, 68,
27]. The GUI front end accepts users’ URL requests, and
the backend executes the requests and communicates with
its database. Both JPetStore versions are deployed in Tom-
cat 6.0.35 and rely on Apache Derby 10.6.2.1 [2] as the back-
end database. Agilefant [1] is an open source application for
managing agile software development, written in Java. Al-
l versions of Agilefant are deployed in Tomcat 7.0.47 with
MySQL as the backend database.

4.3 Methodology
The first goal of the empirical study is to determine that

whether the inputs selected by PerfImpact are likely to
trigger performance regressions. To achieve this goal, we ran
PerfImpact to obtain the inputs and compared them with
randomly selected inputs. Random inputs are widely used
in the testing field as they appear to be remarkably effective
and reliable in test case generation [64, 38]. Time difference
(see Eq. 1) was chosen to evaluate both the selected and

Table 1: The stats of the subject programs.

Subjects Version #Methods #Classes
Inputs(URLs)
Get Post

JPetStore v3.0.0 307 52
115 5

JPetStore v4.0.5 407 43

Agilefant v3.2 3,212 382
51 70Agilefant v3.3 3,314 413

Agilefnat v3.5 3,339 408

random inputs. The inputs with larger time differences were
more likely to trigger performance regressions.

The second goal of the empirical study is to demonstrate
that PerfImpact can effectively mine execution traces for
ranking the changes that lead to performance regressions on
the top. This goal is twofold. First, we show the ranks of
each change across generations in our GA implementation.
With GA search converging, we expect the inputs to steer
AUT executions to expose performance regressions. Thus,
we conjecture that the ranks of some changes would stably
converge to some high positions, identified as the ones high-
ly likely to trigger regressions. Second, after ranking the
changes, we show the changes’ impacts on the performance
of two releases with selected inputs (i.e., inputs selected in
the last generation) to see whether the top ones really led
to the expected performance regressions when increasing the
workload. The impact of each change on AUT’s performance
was evaluated using its total execution time, which was e-
qual to the sum of the execution time of all methods in
its respective impact set. We expected the changes ranked
higher on the list to have longer total execution times in
vi+1, yet shorter total execution times in vi, which implies
that changes with higher ranks impacted many methods that
took longer time to execute in vi+1. Especially when in-
creasing the workload, the total execution times in vi+1 is
expected to increase nonlinearly, implying that the perfor-
mance may be degrading noticeably. We vary a number of
users to simulate several realistic workloads.

We chose three pairs of AUT releases, JPetStore v3.0.0
and v4.0.5, Agilefant v3.2 and v3.3, and Agilefant v3.2 and
v3.5, to evaluate PerfImpact . Two types of changes, real
and injected, were involved. To extract the real changes, we
computed diffs for each pair of releases [3]. Some changes
were ignored since their inputs cannot be tested in our ex-
periments (e.g., an input that triggers specific functionality
that removes the same data from database and, hence, caus-
es a database error). As a result, we extracted 68 changes
between JPetStore v3.0.0 and v4.0.5, 24 changes between Ag-
ilefant v3.2 and v3.3, and 95 changes between Agilefant v3.2
and v3.5. Furthermore, we also wanted to determine how
well PerfImpact is able to identify the known problematic
changes. Thus, we also injected artificial changes in the sec-
ond set of experiments. Injecting artificial changes to mimic
the real performance regressions has been widely used in e-
valuating the effectiveness of performance regression testing
techniques [41, 61, 67]. We randomly injected nine artificial
changes (three for each group) into the source code of vi+1

(JPetStore v4.0.5, Agilefant v3.3 or Agilefant v3.5). All these
changes will lead to the synchronization problems similar in
nature to one explained in the illustrative example (section
2.2), which would lead to longer latency during execution.
The complete information on the injected changes is provid-
ed in our online appendix [7].

The inputs in our study were URLs, since we focused on
web applications. One sequence of URLs sent by one user
is defined as a transaction. Once URLs are selected ran-
domly or by PerfImpact, JMeter simulates multiple users
sending transactions into two releases of the AUT, and their

3030

Figure 6: The box-and-whisker plots represent time
differences between two released versions across gen-
erations on JPetStore (JP) and Agilefant (AG).

backends executing URL requests independently (see Fig. 5).
Each transaction contained 50 URLs, and the number of
users for the initial workload was set to five. Since PerfIm-
pact selected random URLs to generate the initial popula-
tion, it was necessary to conduct every experiment multiple
times to avoid skewed results. Following the guidelines for
using statistical tests to assess randomized algorithms [11,
10], we ran our experiments with the same configurations
thirty times on JPetStore and ten times on Agilefant. That
is, we ran JPetStore with random inputs thirty times and
Agilefant with random inputs ten times. For each time, the
number of combinations of inputs is equal to the number
of individuals per generation. After identifying performance
regression inducing changes, we also experiment with in-
creased workloads (5, 10, 15, 20 and 25 users) to analyze
these changes’ impacts on performance regressions. The ex-
periment with the same workload was run five times.

Our genetic algorithm was instantiated with a crossover
rate of 0.3 and a mutation rate of 0.1. There were 30 in-
dividuals in each population, and the time difference was
used as the fitness value. We set two criteria experimen-
tally to terminate the GA cycle. First, if the increment of
average time difference was less than or equal to 3% in ten
successive generations, the GAs were terminated automat-
ically. Second, we limited the number of generations to 30
- since each experiment is computationally expensive (e.g.,
Agilefant needs more than five days to finish one run on our
hardware infrastructure).

The experiments on JPetStore were carried out using a
Think Pad W530 laptop with Intel Core i7-3840QM pro-
cessor 2.80 GHz, 32 GB DDR3 RAM. The experiments on
Agilefant were carried out using two servers with 8 Intel X-
eon Core E5-2609 CPU 2.40 GHz, 10 M Cache, 32 GB RAM.

5. EMPIRICAL RESULTS
This section analyzes the results of our empirical study.

More experimental results are available online [7].

5.1 Finding Performance Regression Inputs
Fig. 6 shows the results of time differences between two

releases across GA generations on JPetStore and Agilefan-
t. The x-axis represents the generations, and the y-axis
represents time differences between two releases (in second-

Table 2: The time difference between two versions for

random inputs (Rd) and PerfImpact selected inputs (PI)

in JPetStore (JP) and Agilefant (AF).

App Inputs MIN MAX AVG SD P-value

JP3.3.0&4.0.5
Rand 2.13 90.39 32.17 23.77

<1.23E-296
PI 66.47 109.22 79.82 6.28

AF3.2&3.3
Rand 25.50 58.22 34.75 6.30

1.37E-236
PI 76.84 125.03 100.33 11.19

AF3.2&3.5
Rand 57.07 93.66 70.54 6.70

2.64E-198
PI 96.12 134.84 114.52 10.84

s). The central box represents the values from the lower
to upper quartile (i.e., 25 to 75 percentile). The middle
line represents the median. The vertical line extends from
the minimum to the maximum value. Note that, if a set
of inputs leads to larger time difference, this set is likely
to trigger performance regressions. As shown in Fig. 6, the
time difference increases as the GAs progress, implying that
PerfImpact steered execution of the AUTs to the paths
which triggered performance regressions. Specifically, Ta-
ble 2 compares the time differences of selected inputs in the
last generation with the random inputs in the first genera-
tion. The average time differences for the selected inputs are
significantly larger than the time differences for the random
inputs (162.35%− 288.72% increase), which clearly demon-
strates that the inputs selected by PerfImpact were more
likely to trigger performance regressions. The values of the
standard deviation (SD) of the selected inputs are much s-
maller as compared to the random inputs for JPetStore. We
suggest that the selected inputs converge to a stable subset
of inputs. However, the values of SD of the selected inputs
are larger as compared to the random inputs in Agilefan-
t. Recall that Agilefant has relatively more sophisticated
architecture than JPetStore. Thus, PerfImpact has more
chances to steer the executions to different paths, leading to
larger values of SD. Additionally, a paired t-test with one-
tailed distribution was performed to compare the time differ-
ences of random inputs and selected inputs. The p−value of
these three groups are significantly smaller than 0.05. Based
on these results we reject the null hypothesis. These results
demonstrate that PerfImpact can find the combinations of
inputs that were significantly more effective as compared to
random inputs in exposing these performance regressions.

5.2 Identifying Code Changes
To evaluate PerfImpact’s effectiveness in identifying prob-

lematic code changes, we provide the rankings of six random-
ly chosen code changes from Agilefant as examples, including
five real and one injected change. The detailed information
on the changes is shown in Table 3. Due to lack of space, the
experimental results for other changes can be found in the
online appendix [7]. Fig. 7 shows the ranks of these changes
across generations. The central box represents the values
from the lower to upper quartile (i.e., 25 to 75 percentile).
The middle line represents the median. The vertical line
extends from the minimum to the maximum value. The
blue lines are the fitting lines generated using generalized
linear model. For Agilefant, there are 27 changes (i.e., 24
real and three injected changes) between v3.2 and v3.3, and
98 changes (i.e., 95 real and three injected changes) between
v3.2 and v3.5, thus the range of ranks in v3.3 was from 1 to 27
and the range of ranks in v3.5 was from 1 to 98. Note that,
the methods with smaller values (close to one) for ranks
are ranked higher. Fig. 7 shows that the ranks for changes
vary in the first generation, since the inputs are generated
randomly. As the GAs progress, the executions are steered

3131

Figure 7: The box-and-whisker plots represent the ranks of the changes in Table 3. The x-axis represents the
generations, and the y-axis represents the ranks. Smaller values that appear on y-axis imply higher ranks.

Figure 8: The figures show the average of total execution times of the changes in Table 3. This total execution
time of one change is the total execution time of all methods in its respective impact set. The blue dots
show the average of total execution time in old version of Agilefant (v3.2), and the red dots show the average
of total execution time in new version of Agilefant (v3.3 or v3.5). The curves are the fitting curves generated
using Polynomial Function model. The inputs were selected in the last generation. The x-axis represents the
average of total execution time, and the y-axis represents the number of users. Time is measured in seconds.

to the paths where the performance regressions are exposed,
thus the ranks of some changes (e.g., change (b), (c), (d) and
(e)) become more stable and converge to the final ranks.

Based on the stable ranks in the last generation, we can
easily identify two types of changes. One change type that
has relatively higher ranks (i.e., smaller values on y-axis in
Fig. 7), such as changes (b), (c), and (e), is identified as rep-
resenting problematic changes. Specially, change (c) is an
injected change. We also checked the ranks of other injected
changes. All of them were ranked on the top, demonstrat-
ing that PerfImpact can effectively identify the injected
changes. The other change type that has noticeably lower
ranks (i.e., larger values on y-axis in Fig. 7), such as change
(d), is identified as the one less likely to trigger performance
regressions. Unlike the changes that have stable ranks in the
last generation, change (a) and (f) vary significantly. We fur-
ther analyzed their ranks to understand the reason behind
these variations. Change (f) had relatively higher median
ranks (middle lines in boxplots), implying that it may trig-
ger performance regressions for some specific inputs. We will
discuss its source code later to show more details. However,
the median ranks of change (a) were close to the bottom (i.e,
rank 27 in v3.3), implying that it was not invoked for most
of the selected inputs and it had less contribution to per-
formance regressions. PerfImpact tended to discard the
inputs less likely to trigger performance regressions as the
GAs progressed, thus the corresponding methods were not
invoked. In conclusion, based on the ranks in the last gen-
eration, we can identify different types of changes.

To demonstrate that the changes with higher ranks were
likely to trigger performance regressions, we ran the selected
inputs on AUTs with different workloads (i.e, different num-
bers of users) and obtained the average total execution times
for each change in two releases. In general, one change with

Table 3: Examples of code changes in Agilefant.
Method Name Versions

a
fi.hut.soberit.agilefant.business.impl.

v3.2 vs v3.3SearchBusinessImpl.taskListSearchResult

b
fi.hut.soberit.agilefant.business.impl.

v3.2 vs v3.3SettingBusinessImpl.retrieveByName

c injected code change v3.2 vs v3.3

d
fi.hut.soberit.agilefant.business.impl.

v3.2 vs v3.5StoryHierarchyBusinessImpl.calculateStoryTreeMetrics

e
fi.hut.soberit.agilefant.business.impl.

v3.2 vs v3.5ProjectBusinessImpl.retrieveLeafStories

f
fi.hut.soberit.agilefant.web.

v3.2 vs v3.5TimesheetAction.generateTree

longer total execution times in vi+1 is more likely to trigger
performance degradation. As the results show in Fig. 8, the
changes with higher ranks (e.g., changes (b), (c), (e) and
(f)) have much larger averages of the total execution times
in vi+1 (i.e., red lines in Fig. 8) as compared to the ones in
vi (i.e., blue lines in Fig. 8). We used polynomial functions
to fit the results, demonstrating that the average of the to-
tal execution times increased nonlinearly when the workload
increased. The polynomial functions for all examples in Ta-
ble 3 are shown in our online appendix [7]. Conversely, the
changes with lower ranks (e.g., changes (a) and (d)) have rel-
atively shorter average total execution times in both vi and
vi+1. Recall that change (a) was not invoked by most of
selected inputs. Its averages of total execution times in v3.2
and v3.3 were close to zero. As expected, the changes with
higher ranks led to longer execution times in vi+1, and the
times increased nonlinearly given an increase in the work-
load.

To further demonstrate that PerfImpact identified the
problematic changes effectively, we looked into the source
code of each change. Fig. 9 shows two examples of such
code changes. More examples are available in the online ap-
pendix [7]. Fig. 9 (a) shows the source code of change (f) in
Table 3, which was ranked highly for some selected inputs.
As expected, PerfImpact found the inputs that satisfied

3232

Figure 9: Examples of code changes in Agilefant. (a) shows the source code of change (f) in Table 3, and (b)
shows the source code of change (d) in Table 3.

the if clauses, which led to different performance in two
releases. In v3.2, the method was returned directly with a
Action.ERROR. Instead, in v3.5, it called storeaAllT ime-
Sheets to obtain a collection of Products, and added prod-
ucts’ IDs into selectdBacklogIds. Then, the execution wen-
t through the following steps in change (f). Apparently,
change (f) required more time to execute in v3.5, especially
when the size of the products increased, leading to a perfor-
mance regression. Note that the inputs that did not satisfy
the if clause would not lead to performance degradation.
This example demonstrates that PerfImpact can find spe-
cific inputs that trigger the performance regressions and ef-
fectively locate the problematic changes. Fig. 9 (b) shows
the source code of change (d) in Table 3, which got rela-
tively lower ranks in PerfImpact. The change was that,
in the for loop, the current iteration would be skipped in
v3.5, when story.getId was equal to child.getId. Apparently,
change (d) would not degrade the performance in v3.5, thus
it was correctly ranked lower by PerfImpact. These results
show that PerfImpact can be used to effectively identify the
changes that are responsible for performance regressions.

6. LIMITATIONS
First, our current implementation of PerfImpact only

focuses on the identical input values that are valid for both
releases, vi and vi+1. The differences in inputs between two
releases, such as the new inputs in vi+1 that may no longer
be valid in vi, were not tested, since they cannot be sent into
both of two releases for performance comparison. Moreover,
when generating new inputs, some constraints (e.g., the or-
der of URLs in a chromosome) must be considered to guar-
antee that the new inputs are valid. However, our current
implementation deals with some straightforward constraints,
such as a login with a predefined username and the password
at the beginning. Testing different inputs between two re-
leases and considering other constraints are currently out of
the scope of this paper and we leave them for future work.

Second, PerfImpact does not analyze root causes behind
detected performance regressions and does not take into ac-
count potential interactions among performance regressions
[24, 50]. Multiple inputs and changes may be responsible
for one or many performance regressions, thus, our approach
may not necessarily be able to capture cases where the be-
haviors of performance regressions are changing due to inter-
actions among those regressions (e.g., a situation where one
performance regression obscures effects of another regression

for certain inputs). Also, if an AUT is multithreaded, even
if it runs twice with the same input, the execution time may
be different due to multithreaded interleavings.

Third, in our empirical study, we only applied PerfIm-
pact to several releases of two open-source web applications.
It is hard to generalize the results given that our experiments
are based on the two applications (even though we consid-
ered five releases of these two apps in total). However, JPet-
Store has been widely used as a benchmark in performance
testing [46, 47, 68, 27] and Agilefant is an enterprise-level
real-world application. Thus, we believe that these applica-
tions are representative real-world software systems. Also,
another potential threat is that we only considered one type
of inputs (i.e., URL requests), since we experimented with
web-based applications. However, PerfImpact can be used
with other types of applications and inputs (the chromo-
somes can be reformatted to accommodate other types of
inputs). We leave this extension for future work.

Finally, we only injected one type of artificial changes to
simulate performance regressions. Also we had to discard
some real changes since they can not be covered by Per-
fImpact. However, we extracted 187 different real changes
in the subject applications. Thus, we believe that all the
changes (real and injected) used in evaluation constitute
a solid experimental design to support our current conclu-
sions. Furthermore, PerfImpact only focuses on method-
level changes in the native source code. Currently, PerfIm-
pact does not take into account different granularity and
possible changes in the underlying third-party or standard
libraries. While analyzing the impact of changes in under-
lying libraries on the performance of a client application is
an important problem [37], we leave it for the future work.

7. RELATED WORK
Genetic algorithms. Genetic algorithms are widely used

in different areas of software engineering [14, 35, 70], and
software testing in particular [29, 44, 33, 34, 12, 56, 23]. In
software testing, many approaches rely on GAs for test case
generation. Fraser et al. proposed EvoSuite, that uses GAs
to optimize whole test suites to smaller subsets which satisfy
certain coverage criteria [28, 30]. Since EvoSuite works only
locally on the individual statements, they extended EvoSuite
with a memetic algorithm enabling a global search algorith-
m to increase branch coverage [30]. An approach proposed
by Gross et al. introduced a test case generation technique
that employs GAs to systematically generate test cases at

3333

GUI level while learning the code behavior for achieving
high coverage and avoiding false failures in unit testing [36].
Test suite augmentation techniques are used to generate test
cases that cover code changes or code elements affected by
changes [72, 71]. These approaches focus on finding new
test cases to achieve higher code coverage, whereas PerfIm-
pact focuses on using GAs to identify the inputs exposing
performance regressions during profiling process.

In our own recent work, we proposed GA-Prof, which us-
es GAs to search for input values leading to performance
bottlenecks in a given software release (e.g. vi+1)[69]. In
contrast, PerfImpact uses GAs to find the inputs that re-
veal performance regressions between two AUT releases (e.g.
vi and vi+1) and is designed to work in the context of soft-
ware evolution to support performance regression testing. A
performance bottleneck (in vi+1) detected by GA-Prof is not
necessarily a performance regression. Since this bottleneck
may already exist in vi, no performance degradation is in-
volved between two releases. PerfImpact is able to further
help developers to ignore this type of performance problems,
and focus on the methods with larger differences in perfor-
mance between two releases. Additionally, the goals of these
two works are quite different. GA-Prof identifies the bottle-
necks that have significant contributions to longer execution
time, but PerfImpact uses CIA to analyze the impact of
code changes on the problematic methods for identifying the
ones that are responsible for actual performance regressions.

Change Impact Analysis is a technique aimed at help-
ing developers to understand the effects of a change on the
rest of the source code [55, 53]. Many CIA approaches have
been proposed [31, 13, 54, 25, 16]. Law and Rothermel
proposed a dynamic path-based impact analysis, which as-
sumes that a change has a potential impact on the code
reachable from this change [51]. Following this approach,
Apiwattanapong et al. presented a method that only con-
siders essential dynamic information by using execute-after
sequences [9]. Ren et al. presented a tool, Chianti, to iden-
tify the changes that induce the failure of one specific test
[65]. Zhang et al. introduced FaultTracer, which adapts
spectrum-based fault localization techniques with a CIA-
based algorithm to rank the changes for identifying failure-
inducing ones [78, 79, 80]. However, these approaches do
not focus on performance regressions. To the best of our
knowledge, PerfImpact is the first technique to combine
CIA with search-based input profiling to analyze the impact
of changes on an AUT’s performance.

Regression Testing. The default approach for regres-
sion testing is to retest all test cases after releasing a new ver-
sion, which is an expensive proposition. To solve this prob-
lem, a number of techniques for selecting regression tests
have been proposed [26, 49, 21, 66, 32, 74]. Grosso et al. pro-
posed an approach that uses GAs to generate test cases that
cause buffer overflows and integrate domain knowledge with
slicing and static analysis to reduce the search space [22].
Yu et al. provided a new approach, namely SimRT, which
identifies variables shared by multiple threads and employs
a test selection technique to select the test cases that exer-
cise these shared variables, detecting data races [75]. These
techniques prioritize functional test cases and may not be
directly applicable in the context of performance testing.

Performance faults have been found to be more difficult
to fix as compared to non-performance faults [77, 76, 63],
hence, several approaches have been proposed to support

Table 4: Performance regression testing approaches.

Approaches
Analysis

Profiling Repository Identify Changes
Static Dynamic

Our approach · • • · •
Shang et al. [67] • · · ·
Huang et al. [43] • · · · •
Nguyen et al. [62] · • · • •
Heger et al. [41] · • • · •
Lee et al. [52] · • • · •

Nguyen et al. [61] · • · · ·
Foo et al. [27] · • · • ·

Mostafa et al. [59] · • • • •
Mi et al. [57] · • • · ·

Chen et al. [20] · • · · ·
Kalibera et al. [48] · • · · ·
Bulej et al. [17] · • · · ·
Yilmaz et al. [73] · • · · ·

performance regression testing see Table 4. There are three
major differences between these approaches (see Table 4).
First, some approaches rely on profiling of the AUT and
some do not. Profiling is a well-established and useful tech-
nique for analyzing the AUT’s behaviors, and is widely used
in performance testing field [52, 57]. PerfImpact uses d-
ifferential profiling to run the same inputs in two software
versions simultaneously, which enables accurate detections
of performance regressions. Second, some approaches mine
information from repositories to identify performance re-
gressions [27]. However, many software systems may not
necessarily maintain well-structured repositories. PerfIm-
pact detects performance regressions without relying on the
testing history, which makes it applicable to other contexts
including testing legacy systems. Third, performance regres-
sion testing is not completed until the code changes respon-
sible for performance regressions are identified. Yet, only
a very few approaches address this concern. For instance,
Huang et al. detect high-risk commits that may lead to
performance regressions using static analysis [43]. Howev-
er, this work relies on static analysis and focuses on specific
types of performance regressions. A recent work analyzes
root causes behind performance regressions, yet it requires
the AUT to maintain an accurate set of unit tests [41]. On
the contrary, PerfImpact does not require unit tests and
relies on dynamic information to automatically and effec-
tively identify actual bottlenecks (that can be observed and
confirmed at run-time) as well as problematic changes.

8. CONCLUSION
We propose a novel recommendation system, PerfIm-

pact, aimed at automatically recommending code changes
likely responsible for performance regressions. Our approach
uses search-based input profiling to detect input combina-
tions likely leading to performance regressions, and mines
execution traces to estimate the impact of code changes on
detected performance regressions. We implemented Per-
fImpact and tested it on different releases of two open-
source web applications. The results demonstrate that Per-
fImpact can effectively select the inputs exposing perfor-
mance regressions. Also, the ranked lists of changes comput-
ed with PerfImpact are useful for stakeholders to identify
potential changes behind performance regressions for further
inspection and root cause analysis.

Acknowledgments
This work is supported in part by the NSF CCF-1217928,
CCF-1218129, IIP-1547597 grants and Microsoft SEIF. Any
opinions, findings, and conclusions expressed herein are the
authors’ and do not necessarily reflect those of the sponsors.

3434

9. REFERENCES
[1] Agilefant, http://agilefant.com/.

[2] Apache derby, http://db.apache.org/derby/.

[3] Beyond compare, http://www.scootersoftware.com/.

[4] Jgap, http://jgap.sourceforge.net/.

[5] Jmeter, http://jmeter.apache.org/.

[6] Jpetstore,
http://sourceforge.net/projects/ibatisjpetstore.

[7] Perfimpact, http:
//www.cs.wm.edu/semeru/data/MSR16-PerfImpact/.

[8] Probekit, http://www.eclipse.org/tptp/platform/
documents/probekit/probekit.html.

[9] T. Apiwattanapong, A. Orso, and M. J. Harrold.
Efficient and precise dynamic impact analysis using
execute-after sequences. In ICSE ’05, pages 432–441.

[10] A. Arcuri and L. Briand. A hitchhiker’s guide to
statistical tests for assessing randomized algorithms in
software engineering. STVR ’14, 24:219–250.

[11] A. Arcuri and L. Briand. A practical guide for using
statistical tests to assess randomized algorithms in
software engineering. In ICSE ’11, pages 1–10.

[12] A. Baars, M. Harman, Y. Hassoun, K. Lakhotia,
P. McMinn, P. Tonella, and T. Vos. Symbolic
search-based testing. In ASE ’11, pages 53–62.

[13] L. Badri, M. Badri, and D. St-Yves. Supporting
predictive change impact analysis: A control call
graph based technique. In APSEC ’05, pages 167–175.

[14] E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and
F. Sarro. The plastic surgery hypothesis. In FSE ’14,
pages 306–317.

[15] B. Boehm. Software engineering economics. TSE,
SE-10(1):4–21, 1984.

[16] J. Branchaud, S. Person, and N. Rungta. A change
impact analysis to characterize evolving program
behaviors. In ICSM ’12, pages 109–118.

[17] L. Bulej, T. Kalibera, and P. Tma. Repeated results
analysis for middleware regression benchmarking.
Perform. Eval., 60(1-4):345–358, 2005.

[18] A. Capiluppi, J. Fernandez-Ramil, J. Higman, H. C.
Sharp, and N. Smith. An empirical study of the
evolution of an agile-developed software system. In
ICSE ’07, pages 511–518.

[19] N. Chapin, J. E. Hale, K. M. Kham, J. F. Ramil, and
W.-G. Tan. Types of software evolution and software
maintenance. Journal of Software Maintenance,
13(1):3–30, 2001.

[20] T. Chen, L. I. Ananiev, and A. V. Tikhonov. Keeping
kernel performance from regressions. In Linux
Symposium, volume 1, pages 93–102, 2007.

[21] Y.-F. Chen, D. S. Rosenblum, and K.-P. Vo. Testtube:
A system for selective regression testing. In ICSE ’94,
pages 211–220.

[22] C. Del Grosso, G. Antoniol, and M. Di Penta. An
evolutionary testing approach to detect buffer
overflow. In ISSRE ’04.

[23] M. Di Penta, G. Canfora, G. Esposito, V. Mazza, and
M. Bruno. Search-based testing of service level
agreements. In GECCO ’07, pages 1090–1097.

[24] N. DiGiuseppe and J. A. Jones. Fault interaction and
its repercussions. In ICSM ’11, pages 3–12.

[25] B. Dit, M. Wagner, S. Wen, W. Wang,

M. Linares-Vásquez, D. Poshyvanyk, and H. Kagdi.
Impactminer: A tool for change impact analysis. In
ICSE ’14, pages 540–543.

[26] S. Elbaum, A. G. Malishevsky, and G. Rothermel.
Prioritizing test cases for regression testing. In ISSTA
’00, pages 102–112.

[27] K. Foo, Z. M. Jiang, B. Adams, A. Hassan, Y. Zou,
and P. Flora. Mining performance regression testing
repositories for automated performance analysis. In
QSIC ’10, pages 32–41.

[28] G. Fraser and A. Arcuri. Evolutionary generation of
whole test suites. In QSIC ’11, pages 31–40.

[29] G. Fraser and A. Arcuri. Achieving scalable
mutation-based generation of whole test suites.
EMSE, pages 1–30, 2014.

[30] G. Fraser, A. Arcuri, and P. McMinn. Test suite
generation with memetic algorithms. In GECCO ’13,
pages 1437–1444.

[31] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk.
Integrated impact analysis for managing software
changes. In ICSE ’12, pages 430–440.

[32] M. Gligoric, R. Majumdar, R. Sharma, L. Eloussi, and
D. Marinov. Regression test selection for distributed
software histories. In CAV ’14, pages 293–309.

[33] P. Godefroid and S. Khurshid. Exploring very large
state spaces using genetic algorithms. Int. J. Softw.
Tools Technol. Transf., 6(2), 2004.

[34] A. Goffi, A. Gorla, A. Mattavelli, M. Pezzè, and
P. Tonella. Search-based synthesis of equivalent
method sequences. In FSE ’14, pages 366–376, 2014.

[35] C. L. Goues, T. Nguyen, S. Forrest, and W. Weimer.
Genprog: A generic method for automatic software
repair. TSE, 38:54–72, 2012.

[36] F. Gross, G. Fraser, and A. Zeller. Search-based
system testing: High coverage, no false alarms. In
ISSTA ’12, pages 67–77.

[37] J. Gui, S. Mcilroy, M. Nagappan, and W. G. Halfond.
Truth in advertising: The hidden cost of mobile ads
for software developers. 2015.

[38] R. Hamlet. Random testing. In Encyclopedia of
Software Engineering, pages 970–978, 1994.

[39] M. Harman, Y. Jia, and W. B. Langdon. Strong
higher order mutation-based test data generation. In
FSE ’11, pages 212–222.

[40] M. Harman and P. McMinn. A theoretical and
empirical study of search-based testing: Local, global,
and hybrid search. TSE ’10, 36(2):226–247.

[41] C. Heger, J. Happe, and R. Farahbod. Automated
root cause isolation of performance regressions during
software development. In ICPE ’13, pages 27–38.

[42] J. H. Holland. Adaptation in natural and artificial
systems: An introductory analysis with applications to
biology, control, and artificial intelligence. 1975.

[43] P. Huang, X. Ma, D. Shen, and Y. Zhou. Performance
regression testing target prioritization via performance
risk analysis. In ICSE 2014, pages 60–71.

[44] S. Huang, M. B. Cohen, and A. M. Memon. Repairing
gui test suites using a genetic algorithm. In ICST ’10,
pages 245–254.

[45] M. Z. Iqbal, A. Arcuri, and L. Briand. Empirical
investigation of search algorithms for environment

3535

model-based testing of real-time embedded software.
In ISSTA ’12, pages 199–209.

[46] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora.
Automated performance analysis of load tests. In
ICSM ’09, pages 125–134.

[47] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora.
Automatic identification of load testing problems. In
ICSM ’08, pages 307–316.

[48] T. Kalibera, L. Bulej, and P. Tuma. Automated
detection of performance regressions: the mono
experience. In MASCOTS ’05, pages 183–190.

[49] J.-M. Kim and A. Porter. A history-based test
prioritization technique for regression testing in
resource constrained environments. In ICSE ’02, pages
119–129.

[50] J.-M. Kim, A. Porter, and G. Rothermel. An empirical
study of regression test application frequency. In ICSE
’00, pages 126–135.

[51] J. Law and G. Rothermel. Whole program path-based
dynamic impact analysis. In ICSE ’03, pages 308–318.

[52] D. Lee, S. K. Cha, and A. H. Lee. A performance
anomaly detection and analysis framework for dbms
development. IEEE Trans. on Knowl. and Data Eng.,
24(8), 2012.

[53] S. Lehnert. A taxonomy for software change impact
analysis. In IWPSE-EVOL ’11, pages 41–50.

[54] B. Li, X. Sun, and H. Leung. Combining concept
lattice with call graph for impact analysis. Adv. Eng.
Softw., 53:1–13, 2012.

[55] B. Li, X. Sun, H. Leung, and S. Zhang. A survey of
code-based change impact analysis techniques. Softw.
Test., Verif. Reliab., 23(8):613–646, 2013.

[56] Z. Li, M. Harman, and R. M. Hierons. Search
algorithms for regression test case prioritization. IEEE
Trans. Softw. Eng., 33(4), 2007.

[57] N. Mi, L. Cherkasova, K. Ozonat, J. Symons, and
E. Smirni. Analysis of application performance and its
change via representative application signatures. In
NOMS ’08, pages 216–223.

[58] M. Mitchell. An Introduction to Genetic Algorithms.
1998.

[59] N. Mostafa and C. Krintz. Tracking performance
across software revisions. In PPPJ ’09, pages 162–171.

[60] T. Nguyen, B. Adams, Z. M. Jiang, A. Hassan,
M. Nasser, and P. Flora. Automated verification of
load tests using control charts. In APSEC ’11, pages
282–289.

[61] T. H. Nguyen, B. Adams, Z. M. Jiang, A. E. Hassan,
M. Nasser, and P. Flora. Automated detection of
performance regressions using statistical process
control techniques. In ICPE ’12, pages 299–310.

[62] T. H. D. Nguyen, M. Nagappan, A. E. Hassan,
M. Nasser, and P. Flora. An industrial case study of
automatically identifying performance
regression-causes. In MSR ’14, pages 232–241.

[63] A. Nistor, T. Jiang, and L. Tan. Discovering,
reporting, and fixing performance bugs. In MSR ’13,
pages 237–246.

[64] S. Park, B. M. M. Hossain, I. Hussain, C. Csallner,
M. Grechanik, K. Taneja, C. Fu, and Q. Xie. Carfast:
Achieving higher statement coverage faster. In FSE
’12, pages 35:1–35:11.

[65] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley.
Chianti: A tool for change impact analysis of java
programs. In OOPSLA ’04, pages 432–448.

[66] G. Rothermel and M. J. Harrold. A safe, efficient
regression test selection technique. ACM Trans. Softw.
Eng. Methodol., 6(2):173–210, 1997.

[67] W. Shang, A. E. Hassan, M. Nasser, and P. Flora.
Automated detection of performance regression using
regression models on clustered performance counters.
In ICPE ’15.

[68] A. Shankar, M. Arnold, and R. Bodik. Jolt:
Lightweight dynamic analysis and removal of object
churn. In OOPSLA ’08, pages 127–142.

[69] D. Shen, Q. Luo, D. Poshyvanyk, and M. Grechanik.
Automating performance bottleneck detection using
search-based application profiling. In ISSTA’15.

[70] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest.
Automatically finding patches using genetic
programming. In ICSE ’09, pages 364–374.

[71] Z. Xu, M. B. Cohen, and G. Rothermel. Factors
affecting the use of genetic algorithms in test suite
augmentation. In GECCO ’10, pages 1365–1372.

[72] Z. Xu, Y. Kim, M. Kim, and G. Rothermel. A hybrid
directed test suite augmentation technique. In ISSRE
’11, pages 150–159.

[73] C. Yilmaz, A. S. Krishna, A. Memon, A. Porter, D. C.
Schmidt, A. Gokhale, and B. Natarajan. Main effects
screening: A distributed continuous quality assurance
process for monitoring performance degradation in
evolving software systems. In ICSE ’05, pages
293–302.

[74] T. Yu, X. Qu, M. Acharya, and G. Rothermel.
Oracle-based regression test selection. In ICST ’13,
pages 292–301.

[75] T. Yu, W. Srisa-an, and G. Rothermel. Simrt: An
automated framework to support regression testing for
data races. In ICSE ’14, pages 48–59.

[76] S. Zaman. Empirical studies of performance bugs and
performance analysis approaches for software systems.
In Master thesis, 2012.

[77] S. Zaman, B. Adams, and A. E. Hassan. A qualitative
study on performance bugs. In MSR ’12, pages
199–208.

[78] L. Zhang, M. Kim, and S. Khurshid. Localizing
failure-inducing program edits based on spectrum
information. In ICSM ’11, pages 23–32.

[79] L. Zhang, M. Kim, and S. Khurshid. Faulttracer: A
change impact and regression fault analysis tool for
evolving java programs. In FSE, page 40, 2012.

[80] L. Zhang, M. Kim, and S. Khurshid. Faulttracer: a
spectrum-based approach to localizing failure-inducing
program edits. JSEP, 25(12):1357–1383, 2013.

3636

	Mining Performance Regression Inducing Code Changes in Evolving Software
	Recommended Citation

	Mining Performance Regression Inducing Code Changes in Evolving Software

