
W&M ScholarWorks W&M ScholarWorks

Arts & Sciences Articles Arts and Sciences

2016

Automatic Performance Testing using Input-Sensitive Profiling Automatic Performance Testing using Input-Sensitive Profiling

Qi Luo
William & Mary

Follow this and additional works at: https://scholarworks.wm.edu/aspubs

Recommended Citation Recommended Citation
Luo, Qi, Automatic Performance Testing using Input-Sensitive Profiling (2016). Fse'16: Proceedings of the
2016 24th ACM Sigsoft International Symposium on Foundations of Software Engineering.
10.1145/2950290.2983975

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been
accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more
information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/aspubs
https://scholarworks.wm.edu/as
https://scholarworks.wm.edu/aspubs?utm_source=scholarworks.wm.edu%2Faspubs%2F820&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu

Automatic Performance Testing using
Input-Sensitive Profiling

Qi Luo
Department of Computer Science

College of William and Mary
Williamsburg, VA, USA

qluo@cs.wm.edu

ABSTRACT
During performance testing, software engineers common-
ly perform application profiling to analyze an application’s
traces with different inputs to understand performance be-
haviors, such as time and space consumption. However, a
non-trivial application commonly has a large number of in-
puts, and it is mostly manual to identify the specific inputs
leading to performance bottlenecks. Thus, it is challenge is
to automate profiling and find these specific inputs. To solve
these problems, we propose novel approaches, FOREPOST,
GA-Prof and PerfImpact, which automatically profile appli-
cations for finding the specific combinations of inputs trig-
gering performance bottlenecks, and further analyze the cor-
responding traces to identify problematic methods. Special-
ly, our approaches work in two different types of real-world
scenarios of performance testing: i) a single-version scenari-
o, in which performance bottlenecks are detected in a single
software release, and ii) a two-version scenario, in which code
changes responsible for performance regressions are detected
by considering two consecutive software releases.

CCS Concepts
•Software and its engineering → Software perfor-
mance; Software testing and debugging;

Keywords
Input-sensitive profiling, performance testing, machine learn-
ing algorithms, genetic algorithms, change impact analysis

1. INTRODUCTION
Performance testing is one of the most important activities

for engineers to identify inadequate performance behaviors,
such as longer execution time and/or lower throughput, for
an Application Under Testing (AUT) [17]. During testing,
engineers commonly utilize profiling tools to collect dynam-
ic information (e.g., execution time) with some inputs for
linking AUT performance behaviors with inputs. After se-

lecting the specific inputs likely to trigger bottlenecks, engi-
neers further analyze the corresponding traces to locate the
problematic methods. Specifically, they need to consider t-
wo real-world scenarios during testing: i) a single-version
scenario, in which bottlenecks are identified in a single soft-
ware version, and ii) a two-version scenario, in which code
changes responsible for performance regressions are identi-
fied in two consecutive releases.

For a non-trivial AUT, application profiling is mostly man-
ual and time-consuming due to the large body of combina-
tions of inputs. A big challenge of profiling is to automate
the profiling process with the specific input data to trigger
bottlenecks. Furthermore, it is also difficult to analyze exe-
cution traces to deeply understand the behaviors for identi-
fying the causes of the exposed performance bottlenecks. To
solve these problems, we proposed several novel approaches
(e.g., FOREPOST, GA-Prof, and PerfImpact) to automati-
cally profile AUTs for exposing performance bottlenecks and
further identifying the problematic methods in two perfor-
mance testing scenarios [17, 26, 15, 16, 18, 9, 14].

2. RELATED WORK
A large body of research work has focused on improv-

ing performance testing [21, 27, 1, 28, 24, 8]. Coppa et al.
introduce a profiling idea to automatically measure the rela-
tionship between performance scalability and input sizes [6].
Zhang et al. introduce a mixed symbolic execution approach
to generate tests with worsen time and memory consumption
[28]. Nguyen et al. use control charts to identify the specif-
ic tests with worsen performance in a new release [19, 20].
However, little effort has been put on investigating the prob-
lematic methods leading to performance bottlenecks. Jin et
al. performed an empirical study on 109 real performance
bugs to extract efficiency-related rules for performance prob-
lem detection [12]. Huang et al. built a static model to
measure the risk of each commit for targeting the ones re-
sponsible for the performance problems [10]. However, they
are only applicable for specific patterns of performance prob-
lems and utilize static analysis to understand performance
behaviors, which is prone to be time-consuming. Conversely,
our approaches are aimed at selecting specific inputs to ex-
pose performance bottlenecks, and analyzing corresponding
execution traces to identify problematic methods for those
input-sensitive performance bottlenecks.

3. APPROACHES
This section shows approaches that automate input-sensi-

tive profiling for performance testing in two scenarios.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

FSE’16, November 13–18, 2016, Seattle, WA, USA
ACM. 978-1-4503-4218-6/16/11...$15.00
http://dx.doi.org/10.1145/2950290.2983975

1139

3.1 A Single-Version Scenario
We propose FOREPOST and its alternative version FORE-

POSTRAND [17, 16], which rely on a Machine Learning al-
gorithm (ML), RIPPER [2], to extract rules mapping per-
formance behaviors to inputs. These rules are used to guide
input selection for automating profiling and exposing bot-
tlenecks. Furthermore, FOREPOST and FOREPOSTRAND

utilize Independent Component Analysis (ICA) [11, 7] to
analyze the corresponding traces for identifying bottleneck-
s. Initially, random inputs are selected and a profiling tool
is used to collect trace information (e.g., execution time) for
each combination of inputs. All traces are classified into t-
wo groups, “good” and “bad”. Traces with longer execution
times are marked as good, which are “good” to expose bot-
tlenecks. Traces with shorter execution times are marked
as bad, which are “bad” to expose bottlenecks. Based on
the classified traces, ML extracts rules for describing per-
formance behaviors with the corresponding inputs. FORE-
POST uses these rules to choose inputs exposing perfor-
mance bottlenecks (FOREPOSTRAND also involves some
random inputs), and start the profiling process for next iter-
ation. Once there is no new rules extracted, profiling process
is terminated. ICA is used to understand method’s contri-
butions to different performance behaviors and identify the
problematic methods. Our hypothesis is that the method-
s with significant contributions to good traces but less/no
contributions to bad traces are marked as bottlenecks.

In addition, we introduce PRESTO, which deploys FORE-
POST in the cloud to help developers improve provision-
ing strategies guiding the cloud to (de)allocate resources for
AUTs [9]. It first utilizes FOREPOST to build performance
behavior models for AUTs, and then performs sensitivity
analysis into provisioning strategies based on behavior mod-
els to obtain the strategies that concisely describe the rela-
tionship between inputs and resources (e.g., CPU, memory).
These strategies are used to recommend requested sources
to engineers who maintain AUTs’ quality of service.

While FOREPOST finds specific inputs for automating
profiling and identifies performance bottlenecks, it has been
shown to miss some bottlenecks due to the limitations of ex-
tracted rules. FOREPOST only selects specific inputs based
on extracted rules, thus, it is likely to focus on some locally
hot paths but fails to explore the whole AUT comprehen-
sively. To explore input data space as whole, we propose
GA-Prof [26], which uses Genetic Algorithms (GAs) to s-
elect the specific input data likely to expose bottlenecks,
automating profiling. The intuition behind this approach is
mapping the selection of input data to a search and opti-
mization problem. In GA-Prof, the instrumented AUT is
running with initial inputs, and profiling information is col-
lected and analyzed. After analyzing profiling information,
GAs marks the inputs with longer elapsed execution times
as fitter ones, and selects these inputs to create inputs for
the next generation. GA process will be terminated when
the pre-defined termination criteria are satisfied. The inputs
selected by GA-Prof in the last generation are considered as
the ones exposing bottlenecks.

3.2 A Two-Version Scenario
While FOREPOST and GA-Prof are able to identify bot-

tlenecks in a single-version scenario of performance testing,
they are not suitable to expose performance regressions in
a two-version scenario and further locate the problematic

code changes leading to the exposed performance regres-
sions. Thus, we propose PerfImpact [18], which uses GAs to
select test input data with worsen performance behaviors in
a newly released version as compared to the behaviors in a
previous version, and further utilizes Change Impact Anal-
ysis (CIA) [13] to analyze change’s impact on performance
degradation for identifying the problematic ones. First, in-
puts are selected randomly and sent to two versions of AUT
independently. After profiling tool collects traces for each
version, we obtain execution times of two versions for each
combination of inputs. We hypothesize that the regression-
exposing inputs have longer execution times in a new ver-
sion as compared to the times in an old version.Thus, Per-
fImpact calculates the difference of execution times between
two versions for each combination of inputs as its fitness val-
ue, and selects the ones with larger differences to create new
inputs for the next generation, exposing performance regres-
sions.Then, CIA is used to analyze corresponding execution
traces to understand a method’s impact on performance be-
haviors. We obtain an impact set for each code change,
which contains a set of methods dynamically impacted by
the code change. The code changes whose impact sets con-
tain more methods with performance degradations in new
version are marked as problematic ones.

4. RESULTS AND CONTRIBUTIONS
We evaluated FOREPOST, FOREPOSTRAND and GA-

Prof on one commercial software and three open-source ap-
plications [8, 17, 26]. The experimental results show that
FOREPOST and FOREPOSTRAND are able to select the
inputs with longer time for exposing bottlenecks as com-
pared to random inputs, and effectively identify real-world
bottlenecks confirmed by developers. GA-Prof has been
shown to be able to locate more performance bottlenecks
(i.e., 5.6 bottlenecks) as compared to FOREPOST (i.e., 2
bottlenecks) [26]. The potential reason behind this is that
GA-Prof is able to search test input space as a whole for find-
ing inputs exposing performance bottlenecks, while FORE-
POST only focuses on the specific ones based on extract-
ed rules, missing some computationally intensive execution
paths. Furthermore, we evaluated PerfImpact on multiple
versions of open-source AUTs [18]. The results show that
PerfImpact performs much better in selecting inputs leading
to performance regressions (i.e., 162% - 289% longer time d-
ifferences between two versions as compare to random input-
s) and is able to identify problematic code changes. More-
over, the results also show that those identified code changes
have non-linearly increased execution times of their impact
sets in the newly released version when workload is increas-
ing. The major contribution of this work is in using MLs
and GAs for selecting inputs for exposing bottlenecks via
automating application profiling. The corresponding exe-
cution traces are further analyzed for locating problematic
methods. We are also planning on tailoring our approaches
to feature-level granularity [22, 23, 4, 5, 25, 3] in addition
to method-level, like recovering traceability links between
features and bottlenecks to detect risky features.

5. ACKNOWLEDGMENTS
This work is supported in part by the NSF CNS-1510239

and CCF-1253837 grants. Any opinions, findings, and con-
clusions expressed herein are the authors’ and do not neces-
sarily reflect those of the sponsors.

1140

6. REFERENCES
[1] T.-H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan,

M. Nasser, and P. Flora. Detecting performance
anti-patterns for applications developed using
object-relational mapping. In Proceedings of the 36th
International Conference on Software Engineering,
ICSE 2014, pages 1001–1012, 2014.

[2] W. W. Cohen. Fast effective rule induction. In Twelfth
ICML, pages 115–123. Morgan Kaufmann, 1995.

[3] B. Dit, E. Moritz, and D. Poshyvanyk. A
tracelab-based solution for creating, conducting, and
sharing feature location experiments. In Program
Comprehension (ICPC), 2012 IEEE 20th
International Conference on, pages 203–208, 2012.

[4] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk.
Feature location in source code: a taxonomy and
survey. Journal of Software: Evolution and Process,
25(1):53–95, 2013.

[5] B. Dit, M. Revelle, and D. Poshyvanyk. Integrating
information retrieval, execution and link analysis
algorithms to improve feature location in software.
Empirical Software Engineering, 18(2):277–309, 2013.

[6] I. F. Emilio Coppa, Camil Demetrescu. Input-sensitive
profiling. TSE, 40(12):1185–1205, 2014.

[7] S. Grant, J. R. Cordy, and D. Skillicorn. Automated
concept location using independent component
analysis. In 2008 15th Working Conference on Reverse
Engineering, pages 138–142, 2008.

[8] M. Grechanik, C. Fu, and Q. Xie. Automatically
finding performance problems with feedback-directed
learning software testing. In ICSE’12, pages 156–166,
2012.

[9] M. Grechanik, Q. Luo, D. Poshyvanyk, and A. Porter.
Enhancing rules for cloud resource provisioning via
learned software performance models. In Proceedings
of the 7th ACM/SPEC on International Conference
on Performance Engineering, ICPE ’16, pages
209–214, 2016.

[10] P. Huang, X. Ma, D. Shen, and Y. Zhou. Performance
regression testing target prioritization via performance
risk analysis. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014,
pages 60–71, 2014.

[11] A. Hyvärinen and E. Oja. Independent component
analysis: Algorithms and applications. Neural Netw.,
13(4-5):411–430, May 2000.

[12] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu.
Understanding and detecting real-world performance
bugs. In Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and
Implementation, PLDI ’12, pages 77–88, 2012.

[13] J. Law and G. Rothermel. Whole program path-based
dynamic impact analysis. In ICSE ’03, pages 308–318.

[14] M. Linares-Vásquez, C. Vendome, Q. Luo, and
D. Poshyvanyk. How developers detect and fix
performance bottlenecks in android apps. In Software
Maintenance and Evolution (ICSME), 2015 IEEE
International Conference on, pages 352–361. IEEE,
2015.

[15] Q. Luo, K. Moran, and D. Poshyvanyk. A large-scale
empirical comparison of static and dynamic test case
prioritization techniques. In Proceedings of The 24th

ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE), 2016.

[16] Q. Luo, A. Nair, M. Grechanik, and D. Poshyvanyk.
Forepost: A tool for detecting performance problems
with feedback-driven learning software testing.
Proceedings of the 38th International Conference on
Software Engineering (ICSE), pages 593–596, 2016.

[17] Q. Luo, A. Nair, M. Grechanik, and D. Poshyvanyk.
Forepost: Finding performance problems
automatically with feedback-directed learning software
testing. Empirical Software Engineering(EMSE),
pages 1–51, 2016.

[18] Q. Luo, D. Poshyvanyk, and M. Grechanik. Mining
performance regression inducing code changes in
evolving software. In Proceedings of the 13th
International Workshop on Mining Software
Repositories (MSR), pages 25–36. ACM, 2016.

[19] T. Nguyen, B. Adams, Z. M. Jiang, A. Hassan,
M. Nasser, and P. Flora. Automated verification of
load tests using control charts. In APSEC ’11, pages
282–289.

[20] T. H. Nguyen, B. Adams, Z. M. Jiang, A. E. Hassan,
M. Nasser, and P. Flora. Automated detection of
performance regressions using statistical process
control techniques. In ICPE ’12, pages 299–310.

[21] S. Park, B. M. M. Hossain, I. Hussain, C. Csallner,
M. Grechanik, K. Taneja, C. Fu, and Q. Xie. Carfast:
Achieving higher statement coverage faster. In FSE
’12, pages 35:1–35:11.

[22] D. Poshyvanyk, M. Gethers, and A. Marcus. Concept
location using formal concept analysis and information
retrieval. ACM Transactions on Software Engineering
and Methodology (TOSEM), 21(4):23, 2012.

[23] D. Poshyvanyk and A. Marcus. Combining formal
concept analysis with information retrieval for concept
location in source code. In Proceedings of 15th IEEE
International Conference on Program
Comprehension(ICPC), pages 37–48. IEEE, 2007.

[24] M. Pradel, M. Huggler, and T. R. Gross. Performance
regression testing of concurrent classes. In Proceedings
of the 2014 International Symposium on Software
Testing and Analysis, ISSTA 2014, pages 13–25, New
York, NY, USA, 2014. ACM.

[25] M. Revelle, B. Dit, and D. Poshyvanyk. Using data
fusion and web mining to support feature location in
software. In Program Comprehension (ICPC), 2010
IEEE 18th International Conference on, pages 14–23,
2010.

[26] D. Shen, Q. Luo, D. Poshyvanyk, and M. Grechanik.
Automating performance bottleneck detection using
search-based application profiling. In ISSTA’15, pages
270–281.

[27] X. Xiao, S. Han, D. Zhang, and T. Xie.
Context-sensitive delta inference for identifying
workload-dependent performance bottlenecks. In
ISSTA ’13, pages 90–100, 2013.

[28] P. Zhang, S. Elbaum, and M. B. Dwyer. Automatic
generation of load tests. In Proceedings of the 2011
26th IEEE/ACM International Conference on
Automated Software Engineering, ASE ’11, pages
43–52, 2011.

1141

	Automatic Performance Testing using Input-Sensitive Profiling
	Recommended Citation

	Automatic Performance Testing using Input-Sensitive Profiling

