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ABSTRACT: Potential responses of marine mammals to anthropogenic underwater sound are
 usually assessed by researchers and regulators on the basis of exposure to a single, relatively loud
sound source. However, marine mammals typically receive sounds from multiple, dynamic
sources. We developed a method to aggregate modeled sounds from multiple sources and esti-
mate the sound levels received by individuals. To illustrate the method, we modeled the sound
fields of 9 sources associated with oil development and estimated the sound received over 47 d by
a population of 10 000 simulated bowhead whales Balaena mysticetus on their annual migration
through the Alaskan Beaufort Sea. Empirical data were sufficient to parameterize simulations of
the distribution of individual whales over time and their range of movement patterns. We ran 2
simulations to estimate the sound exposure history and distances traveled by bowhead whales:
one in which they could change their movement paths (avert) in response to set levels of sound
and one in which they could not avert. When animals could not avert, about 2% of the simulated
population was exposed to root mean square (rms) sound pressure levels (SPL) ≥180 dB re 1 µPa,
a level that regulators in the U.S. often associate with injury. When animals could avert from sound
levels that regulators often associate with behavioral disturbance (rms SPL >160 dB re 1 µPa),
<1% of the simulated population was exposed to levels associated with injury. Nevertheless,
many simulated bowhead whales received sound levels considerably above ambient throughout
their migration. Our method enables estimates of the aggregated level of sound to which popula-
tions are exposed over extensive areas and time periods.

KEY WORDS:  Arctic · Cumulative effects · Harassment · Incidental take · Marine mammals · 
Negligible impact
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INTRODUCTION

Anthropogenic underwater sounds from activities
such as seismic exploration for oil and gas, commer-
cial shipping, and operation of offshore oil platforms
and wind turbines can reduce the condition and fit-
ness of marine mammals. In some cases these sounds
may cause temporary or permanent loss of hearing or
shifts in hearing thresholds (reviewed in Southall et
al. 2007). Exposure to chronic and impulsive under-
water sounds also can increase levels of stress hor-
mones (Rolland et al. 2012) and change behaviors as-
sociated with migration (McDonald et al. 2012),
acoustic communication (Holt et al. 2011, Blackwell
et al. 2013), diving (Costa et al. 2003, Tyack et al.
2011), and foraging (Goldbogen et al. 2013). Anthro-
pogenic underwater sounds may decrease the ability
of marine mammals to recognize either conspecific
sounds or sounds used to perceive the environment,
find prey, or avoid predators (Ellison et al. 1987a,
George et al. 1989, Clark et al. 2009). Underwater
sounds associated with certain sonar systems have
been implicated as the cause of strandings of multiple
species of beaked whales (D’Amico et al. 2009). Addi-
tionally, changes in the distribution or behavior of
marine mammals in response to anthropogenic sound
may reduce the availability of those animals to sub-
sistence hunters in Alaska. The US Marine Mammal
Protection Act (MMPA) (16 USC 1361-1423) prohibits
activities that will have an ‘unmitigable adverse im-
pact’ on subsistence uses ‘by any Indian, Aleut, or Es-
kimo who resides in Alaska and who dwells on the
coast of the North Pacific Ocean or the Arctic Ocean.’

The anthropogenic underwater sounds detectable
at any one location often emanate from multiple
sources. However, assessments of the potential re-
sponses of marine mammals to anthropogenic sound
typically evaluate responses to a single, relatively
loud source, such as sonar or an airgun array from a
particular ship. Attempts to assess responses to ag-
gregated sounds, or responses to the aggregated bio-
logical effects of sound from multiple sources, have
seldom progressed beyond a statement of need and,
occasionally, qualitative descriptions. For example,
the German government examined the potential ef-
fects of seismic research on Antarctic marine ecosys-
tems, acknowledging the challenges of rigorously as-
sessing the potential environmental effects of sound
(Siebert et al. 2012). Similarly, Moore et al. (2012)
summarized major anthropogenic sources of sound in
the Arctic Ocean and potential mechanisms by which
marine mammals and their prey may respond physio-
logically or behaviorally. Moore et al. (2012) proposed

that aggregated sound fields from human activities
and natural phenomena be mapped and compared to
spatial data on the  distribution and abundance of
marine mammals at different life stages. Another
 effort supported by  federal agencies in the U.S.
mapped distributions of cetaceans and anthropogenic
underwater sound throughout the country’s exclusive
economic zone, including the Alaskan Arctic (NOAA
2012). Although these maps illustrated that some spe-
cies of marine mammals occupy regions with sub-
stantial levels of underwater anthropogenic sound,
the effort did not document contributions to the
acoustic environment from individual sources of
sound, the distribution of individuals and populations
as the acoustic environment changed over time and
space, or the levels of sound to which animals were
exposed as their acoustic environment changed.

Biological responses to aggregated sound ex -
posure are highly relevant to decision-making about
diverse human activities in marine ecosystems. The
National Marine Fisheries Service (NMFS) of the US
National Oceanic and Atmospheric Administration
(NOAA), which is charged with implementing the
MMPA as it applies to pinnipeds and cetaceans, cur-
rently considers a received root mean square (rms;
essentially an average over the duration of a pulse or
over a short, fixed period for non-pulse sounds)
sound pressure level (SPL; in dB re 1 µPa) ≥160 dB for
impulsive sounds and ≥120 dB for continuous sounds
as thresholds beyond which behavioral patterns of
pinnipeds and cetaceans may be disturbed by human
activities. A non-technical definition of the SPL is the
instantaneous level of sound received. NOAA typi-
cally considers a received rms SPL ≥180 dB as the
threshold above which cetaceans may be injured
physically. Southall et al. (2007) suggested that these
rms SPL-based injury thresholds are not supported
by empirical data on the physical effects of sound.
They further suggested that ceta ceans with sensitiv-
ity to low-frequency sounds (e.g. baleen whales) may
receive an auditory injury from impulsive sounds
with peak SPL ≥230 dB or cumulative sound ex -
posure levels (SEL; in dB re 1 µPa2 s, accumulated
over 24 h) >198 dB, and by non-pulse sounds with cu-
mulative SEL ≥215 dB (Southall et al. 2007). The SEL
is an integrative measure of the received SPL over a
given period of time, e.g. 24 h.

The nature and methods of calculating SPL versus
cumulative SEL are fundamentally different. How-
ever, in most regulatory assessments in the U.S., both
SPL and cumulative SEL are treated as static thresh-
olds for the onset of injury or behavioral effects. Data
are rarely sufficient to consider dynamic interactions
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among an animal, the sound field to which it is
exposed at a particular time and place, and the biol-
ogy of the animal (e.g. its identity, age, sex, and con-
dition). Recent workshops and forums have consid-
ered potential methods for estimating the cumulative
effects of anthropogenic underwater sound that are
more informative than simple thresholds of take (i.e.
a single specified level of sound that indicates poten-
tial injury or harassment; NOAA 2012). The individual-
based Acoustic Integration Model© (AIM) (Frankel et
al. 2002, Independent  System for Peer Review 2006)
that we used in this study can evaluate complex
cumulative SELs. To date, the AIM has been applied
to inform diverse major environmental studies and
environmental impact statements that examined
potential responses of marine mammals to multiple
sources of sound, such as shipping, airguns, and
sonar (e.g. Department of the Navy 2001, Gabriele et
al. 2010, NSF-USGS 2011).

Clark et al. (2009) examined potential effects on
endangered baleen whales of the aggregated sound
field generated by one or more commercial ships.
They used the aggregated sound field to measure the
potential effect of a reduction in communication
space, referred to as communication masking. Hatch
et al. (2012) calculated communication-masking met-
rics to evaluate the aggregated effects of sound from
117 commercial ships on a modeled population of 89
North Atlantic right whales Eubalaena glacialis off
Boston, Massachusetts, over 1 mo. Clark et al. (2009)
calculated measures of communication masking for
individual modeled whales, whereas Hatch et al.
(2012) calculated masking at the level of the group of
simulated whales. We built on those previous meth-
ods of assessment by quantifying the aggregated
contributions to exposure from multiple sources of
underwater sound, both continuous and impulsive,
associated with the offshore oil and gas industry.

The US National Environmental Policy Act (NEPA)
is generally interpreted to require an analysis of ‘the
impact on the environment which results from the in-
cremental impact of the action when added to other
past, present, and reasonably foreseeable future ac-
tions’ (40 CFR §§ 1500−1508; Council on Environ-
mental Quality 1997). An analysis of the cumulative
effects of human activities ideally would encompass
the effects not only of sound, but of all potential stres-
sors. Nevertheless, developing a quantitative process
to estimate exposure to multiple sound sources could
enhance cumulative-effects analyses.

Our objective was to develop a quantitative method
for estimating the sound exposure level of marine
mammals to multiple sources of continuous and

impulsive anthropogenic sound over weeks to
months, and, as a proof of concept, to apply this
method to a simulated population of marine mam-
mals. Some species of marine mammals, such as gray
whales, have been observed avoiding sound sources
in their migratory path (Malme et al. 1984, Buck &
Tyack 2000, Ellison et al. 2012). Therefore, we aimed
to conduct an initial exploration of how changes in
movement paths of modeled animals programmed to
avoid certain received levels of sound (i.e. aversion)
might affect both sound exposure and travel distance.

METHODS

To develop the modeling method and our simula-
tions, we focused on bowhead whales Balaena mys-
ticetus in the Alaskan Beaufort Sea. Bowhead whales
have cultural meaning for Alaska natives, and sub-
sistence hunting of the species is protected under the
MMPA. The species is also listed as endangered
under the US Endangered Species Act. Each autumn,
bowhead whales move westward from feeding areas
in the Canadian Beaufort Sea through the Alaskan
Beaufort Sea and into the Chukchi Sea. This region
increasingly is a focus of exploration for and produc-
tion of oil and gas. We bounded our model in space
from about 144−152°W and in time from 1 September
through 23 October 2008. These extents encompass
most of the autumn migration through the region. We
selected 2008 because it was a year of relatively high
intensity of seismic exploration in the region (Roth et
al. 2012).

As detailed below, we first modeled the sound field
generated by each anthropogenic sound source dur-
ing a defined period of time. Second, we simulated
the movements of migrating whales through each of
these sound fields. We refer to the simulated whales
as animats. Each animat functions as an acoustic
dosimeter that records its exposure at 30 s intervals.
In 1 run of the simulation model, we assumed that
the animats would not or could not change their
 movement path to avoid a given received level of
sound (i.e. would not or could not avert). In another
model run, we allowed the animats to avert from
 certain received sound levels. Third, we recorded the
 modeled SPL rms history and then calculated the
resulting cumulative SEL for each animat from each
source. Fourth, we estimated the aggregated ex -
posure from all sources for each modeled whale.
Individual animats migrated through the sound fields
in 3−4 d. The entire modeled population moved
through the area over 47 d.
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Acoustic modeling

We compiled data on sounds from oil and gas
production, seismic exploration, and vessel traffic
from publicly available sources. These sources
included a multi-year comprehensive report (Funk
et al. 2010), applications for incidental harassment
authorizations under the MMPA, and post-explo-
ration season  monitoring reports (www.nmfs.noaa.
gov/pr/permits/incidental.htm#applications). On the
basis of these empirical data, we modeled the
sound fields generated by the Northstar and
Oooguruk production islands, 1 offshore and 1
nearshore vessel towing a barge (‘barge tow’), and
2 offshore and 3 nearshore seismic survey opera-
tions (Fig. 1). The production islands and barge

tows produced sound throughout the assessment
period, whereas seismic exploration was episodic
and varied among operations (Table 1).

Our intent was not to recreate the precise temporal,
spectral, and spatial properties of the anthropogenic
sound field but to generate a plausible aggregated
sound field. We kept the acoustic model relatively
simple and tractable by selecting sources of sound
that represented different major classes of activities,
including those with the strongest outputs of sound.
We further prioritized simplicity and tractability of
the acoustic model by assuming that all sound
sources were stationary. These simplifications pre-
cluded a quantitative estimate or validation of true
sound exposure in the region during the simulated
period. However, they allowed for realistic, transfer-
able modeling of a dynamic, anthropogenic sound
field in which the moving animats were exposed to
received sound levels greater than nominal ambient
sound, which we considered to be a biologically
meaningful scenario.

We estimated 3 acoustic metrics: rms SPL, per-
impulse SEL (in dB re 1 µPa2 s), and cumulative SEL
(see Southall et al. 2007, their Appendix A). We
based cumulative SEL on the aggregated exposure of
each animat to all sound sources for the duration of
its exposure period (e.g. Madsen 2005, Madsen et al.
2006). Estimates of aggregated exposure are domi-
nated by the source producing the highest received
level, which typically occurs when the receiver is at
or near its closest point of approach to the sound
source.

Southall et al. (2007) proposed new criteria for
sound exposure that were based on M-weighted
SEL (i.e. sound exposure levels adjusted to the hear-
ing curve of a hypothetical marine mammal). We
instead used unweighted values of SEL (i.e. meas-
ures of sound not adjusted to a hearing curve) to
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Fig. 1. Locations of sound-producing operations included in
the model of the aggregated anthropogenic sound field in
the Alaskan Beaufort Sea. Oooguruk and Northstar are pro-
duction islands. The darker grey toward the south indicates 

mainland Alaska. Contour lines are in 10 m increments

Activity Dates of activity Characterization of activity

Northstar production island 1 Sep−23 Oct Routine production with vessel support
Construction of Oooguruk production island 1 Sep−23 Oct Construction with vessel support
Offshore barge tow 1 Sep−23 Oct Generic barge tow typical of Beaufort Sea
Nearshore barge tow 1 Sep−23 Oct Generic barge tow typical of Beaufort Sea
Offshore seismic exploration in Harrison Bay 3−12 Sep and 1−9 Oct ~3000 inch3 airgun array
Offshore seismic exploration in Camden Bay 14−29 Sep ~3000 inch3 airgun array
Nearshore seismic exploration 1 3−5 and 20−28 Sep ~900 inch3 airgun array
Nearshore seismic exploration 2 1−28 Sep ~900 inch3 airgun array
Nearshore seismic exploration 3 6−13 Sep ~450 inch3 airgun array

Table 1. Major anthropogenic sources of sound in the Alaskan Beaufort Sea during the autumn bowhead whale (Balaena 
mysticetus) migration in 2008 (1 September−23 October). 1 inch3 ≈ 16.39 cm3
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calculate cumulative exposures. Use of unweighted
values tends to result in higher estimated levels of
exposure than use of weighted values, and therefore
is likely to be con sidered by regulators as a more
conservative method. On the basis of data on hear-
ing in cetaceans, the most recent draft guidelines
for low-frequency weighting (NOAA 2013) proposed
modifications to the M-weighting curve, but these
modifications have not been validated for general
application.

We assumed that during a given 24 h period, each
of the airgun arrays used in seismic surveys could be
either inactive (silent) or constantly active and firing
at 10 s intervals with a 100 ms impulse duration. For
these impulsive sources, we modeled the per-
impulse SEL and assumed a nominal impulse dura-
tion across the sound field of 100 ms (Richardson et
al. 1995a) regardless of the distance from the source,
with no acoustic energy in the periods between
impulses. We calculated rms SPL values as SPL = SEL
− 10 log10 (impulse duration in seconds); for a 100 ms
impulse, the SPL is SEL + 10 dB. Acoustic measure-
ments taken in the highly reverberant shallow waters
of the North Slope of Alaska (Guerra et al. 2011) do
not support the assumption that pulse dispersion and
multipath propagation are functions of range from
the source. However, the net result of the simplified
relation we used to calculate SPL is an overestima-
tion of rms SPL as distance from the seismic source
increases.

We estimated the source levels (per-impulse SEL in
1/3-octave bands) for the airgun arrays used in the
seismic surveys (Table 1) on the basis of a full-wave-
form airgun array source signature model (AASM;
MacGillivray 2006). This model is based on the oscil-
lation and radiation of air bubbles released as air-
guns discharge (Ziolkowski 1970). The model accounts
for pressure interaction between bubbles, effects of
reflection from the water’s surface on pressure, heat
transfer from bubbles to the surrounding water, and
buoyancy of the bubbles.

We estimated source levels for barge tows and
production islands on the basis of underwater meas-
urements from these and comparable activities (e.g.
Blackwell et al. 2004). For the barge tow, we used a
single, ocean-bound tug in cruise transit mode as
the representative source; we obtained its 1/3-
octave band source levels from an extensive collec-
tion of sound source measurements (Hannay et al.
2004). We assumed that support vessels operating in
proximity of production islands would generate the
highest levels of sound, and we obtained represen-
tative 1/3-octave band source levels for a shallow-

draft  utility and crew-transfer vessel transiting at
low speed from Hannay et al. (2004). The broad-
band rms source level (10−1000 Hz) of this vessel
was set at 172 dB re 1 µPa @ 1 m (Hannay et al.
2004).

We obtained basin-level bathymetry data from
the Geographic Information Network of Alaska
(GINA) online database (Lindquist et al. 2004). We
derived sound velocity profile curves from the Gen-
eralized Digital Environmental Model Variable
Resolution (GDEM-V) database published by the
US Naval Oceanographic Office (Teague et al.
1990). Given the seabed composition of the regions
where the sources were located, we used 2 sets of
geo-acoustic para meters in the models: one for
Harrison Bay and adjacent regions to the east,
where some of the sound-producing activities were
located, and one for Camden Bay (Fig. 1). We
derived the parameters from the geo logical proper-
ties of the seafloor strata with the method of Hamil-
ton (1980).

We used the Marine Operations Noise Model
(MONM) (Hannay & Racca 2005) to estimate the
sound field produced by individual sources. This
model computes acoustic-transmission loss in indi-
vidual frequency bands and solves the acoustic
wave equation as a parabolic function as imple-
mented in the US Naval Research Laboratory’s
Range- dependent Acoustic Model (RAM) (Collins
1993). The MONM uses a complex density approxi-
mation (Zhang & Tindle 1995) to account for reduc-
tions in water-borne sound caused by transfer of
energy from the water column to the seabed in the
form of shear waves. We estimated 3-dimensional
acoustic propagation over an extensive region by
modeling transmission loss in 1/3-octave bands
from 10 to 1000 Hz center frequency along a fan of
2-dimensional radial grids at uniform angular
increments, each grid evenly spaced in depth and
range from the source. Most of the sound intensity
for the sources modeled is concentrated in this fre-
quency band. We applied the calculated frequency-
dependent transmission loss to the estimated source
levels in corresponding bands. For each sound
source, we computed the resulting broadband
sound levels (10−1000 Hz) on a uniform grid of
points over the modeled geographic region of inter-
est. For each of the 7 weeks during the modeled
time period, we computed the aggregated received
sound level at each animat by summing the
received sound energy from each source. Different
sources operated each week, and their locations
varied (Fig. 2).
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Modeling movements and exposures

We used the Acoustic Integration Model® (Frankel
et al. 2002), a Monte Carlo-based statistical model, to
simulate movements of bowhead whales through
each of the aggregated sound fields and to calculate
each modeled whale’s exposure over time. The AIM
is based in part on a model of whale movement and
tracking developed for acoustic censuses of bowhead
whales (Ellison et al. 1987b).

The parameters in our model of bowhead whale
movement and exposure were the local population
size for each week during the modeled time period,
percentage of the population in the Alaskan Beaufort
Sea throughout the migration period, distance of
individual animats from the coastline, direction and
speed of motion, dive time and dive depth, surface
time, water depth, sound exposure level, and aver-
sion or no aversion to sound. Empirical data are lim-
ited, but we felt they were sufficient to estimate these
parameters as a proof of concept of the method. We
did not aim to assess the goodness-of-fit between the
outputs of our simulations and field observations.

We extrapolated the size of the bowhead whale
population migrating westward in 2008 (14 400) from
the estimated population size (10 470) and population
growth rate (3.4%) in 2001 (George et al. 2004). On
the basis of traditional and scientific observations in
the local region, we estimated that 80% of the popu-

lation migrated through the Alaskan Beaufort Sea
between 1 September and 12 October. Therefore, the
population size for our simulations was 11 566. For
each modeled week, we designated a percentage of
the population as migrating (Table 2).

Aerial survey data suggested that the density dis-
tribution of bowhead whales is a function of water
depth and distance offshore (Clarke & Ferguson
2010), with approximately 95% of the animals in the
nearshore region (depths of 20−200 m) and 5% in the
offshore region (depths of 50−2000 m). Therefore, we
modeled bowhead whales in the nearshore and off-

Endang Species Res 30: 95–108, 2016100

Modeled period Nearshore Offshore

1−7 Sep 2198 (21) 119 (20)
8−13 Sep 2352 (21) 126 (21)
14−19 Sep 2352 (21) 126 (22)
20−26 Sep 1959 (18) 102 (17)
27 Sep−2 Oct 1098 (10) 56 (10)
3−9 Oct 671 (6) 36 (6)
10−16 Oct 350 (3) 21 (4)

Table 2. Dates within each modeled period, number of ani-
mats (simulated whales) traveling nearshore (20−200 m
water depth) or offshore (50−2000 m water depth) during
each period, and percentage of each group (in parentheses)
migrating during each period.  Modeled animats were
placed throughout the 144−152° W area. New animats
entered the simulation from the east as the westernmost 

animats swam out of the modeled area to the west

Fig. 2. Two examples of the aggregated acoustic environment (maximum level of sound over the full water column) for periods
during which 5 sound sources were operating in the Alaskan Beaufort Sea (left panel, 3−5 September; right panel, 20−28 Sep-

tember). SEL: sound exposure level. For further details see Fig. 1
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shore regions separately, allowing some overlap of
the 2 regions at depths of 50−200 m.

We populated each simulation with westward-
migrating animats (i.e. animats east of 144° W that
moved into the modeled area over time) at the begin-
ning of each 1 wk period. A week is long enough for
a westward migrating bowhead whale to traverse the
modeled portion of the Alaskan Beaufort Sea.

We assumed that animats began their migration on
a generally westerly heading. We allowed each
 animat’s heading to change randomly by ≤10° every
5 min, always maintaining an attraction to the west,
but confining the travel path to the allocated depth
contours for the nearshore and offshore distributions
(i.e. following the contour of the coast). We allowed
the speed of each animat to vary from 4 to 6 km h−1

on the basis of limited data from satellite tags
deployed by Mate et al. (2000). The tags recorded a
mean speed of 3.8 km h−1 among 8 bowhead whales
that were either feeding or migrating, with individual
mean speeds of 1.1−5.8 km h−1. One of the tagged
bowhead whales (DZ-1) was tracked along its full
migration route from Canada to Russia. The mean
speed of this whale was 5.0 km h−1. Because cal -
culations of distances between locations assumed
straight-line travel, and therefore represent the
 minimum distance and speed, the speeds reported
by Mate et al. (2000) probably underestimated true
speeds.

On the basis of satellite tag data, we modeled both
the duration and depths of 2 types of dives: relatively
short, shallow dives and relatively long, deep dives.
Bowhead whales tagged by Krutzikowsky & Mate
(2000) spent 60% of their time diving at depths
<16 m, 33% of their time at depths from 17 to 96 m,
and <3% of their time at depths >96 m, with a maxi-
mum dive depth of 352 m (water depth permitting);
they spent a mean of 5.5% of their time at or near the
surface. We assigned 60% of the nearshore and off-
shore animals to the short, shallow dive type, with
5−16 m dive depths in both regions, and 40% to the
long, deep dive type. Because water depth decreases
as distance from the shoreline decreases, we
assumed that depths of the longer, deeper dives of
nearshore bowhead whales ranged from 17 to 50 m
and those of offshore bowhead whales ranged from
17 to 96 m. The satellite tag data also showed that the
durations of dives >1 min were 2.6−30.4 min, inde-
pendent of dive depth, with individual means from
6.9 to 14.1 min and an ensemble mean of 10.4 min.
However, when ice cover was <90%, the majority of
dives were ≤13 min, with a relatively small percent-
age of longer dives (Fig. 7a in Krutzi kowsky & Mate

2000). Because duration and dive depth were inde-
pendent, we selected durations of 3−10 min for the
shorter dives and 8−13 min for the longer dives.
These dive durations are consistent with those
reported earlier (Dorsey et al. 1989, Richardson et al.
1995b).

As described in the previous subsection, we
 modeled the exposure of the animats to sound during
7 wk (Table 2), corresponding approximately to the
onset and completion of the population’s migration
period (Table 1). We used the AIM to estimate the
instantaneous level of sound (continuous or impulse
rms SPL, depending on the source type) received by
the animat from each source at 30 s intervals as it
migrated westward through the Alaskan Beaufort
Sea. In essence, the model created an aggregated
acoustic dosimeter record at 30 s increments for each
animat.

To illustrate the exposure-modeling process, we
calculated the exposure over a 78 h period (the
approximate duration of one animal’s migration
through the Alaskan Beaufort Sea) for a single
inshore migrating animat that passed close to both
offshore and nearshore seismic operations, the
Northstar production island, and one of the barge
tows. We used these results to calculate both the
maximum SPL and the cumulative SEL for each ani-
mat. We compared our modeled estimates of the
aggregated received sound levels to the potential
range of sound levels to which a marine mammal in
this region might be exposed in the absence of
anthropogenic sound. To estimate the latter range,
we used empirical measurements of non-impulsive
ambient sound levels for September 2008 at a
 location on the shelf slope near the border between
the Chukchi and Beaufort Seas (Roth et al. 2012).
The Roth et al. (2012) data present broadband
(10−1000 Hz) values of 96 dB re 1 µPa2 for the 10th

percentile and 117 dB re 1 µPa2 for the 90th per-
centile; these values are higher than those provided
in earlier assessments for this region (Urick 1983,
Richardson 1995a). Because Roth et al. (2012) moni-
tored sound at a depth of 235 m in a location exposed
to sound propagated from full ocean depth, their
reported ambient levels potentially could be higher
than in the shallow water of the inshore migrating
animats.

We ran 2 separate sets of AIM simulations, one in
which the whales in the simulated population could
not change their movement path to avoid certain
sound levels (i.e. avert) and one in which they could
avert. In the simulations that did not allow aversion,
animats were not programmed to respond to the
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sound exposure level, and as a result their migration
paths were unaffected by the modeled sound sources.
In the second set of simulations, animats were pro-
grammed to avert from a sound source as a function
of their acoustic environment. The 4 parameters in
the aversion function were the SPL threshold at
which an animat was assumed to respond, the prob-
ability that the animat would respond, the aversion
response angle, and the rate at which the animat sub-
sequently evaluated the sound field (SPL) (Table 3).
Our selection of aversion parameters for bowhead
whales was intended to represent a reasonably ex -
pected behavioral response to sound exposure, not to
predict response behavior explicitly.

Of the 4 parameters, probability of aversion had
the greatest effect on the behavioral response, and
aversion would be the most tractable to validate in
the field. Although we set the probability of aversion
at SPL ≥160 dB re 1 µPa at 0.60, the sound level at the
animat was reevaluated every 5 min. Accordingly, an
animat that continued toward the sound source and
did not avert at the first level eventually would be

exposed to SPL ≥160 dB re 1 µPa and again would
have the opportunity to avert. We acknowledge that
bowhead whales may respond to received impulsive
and continuous sound at SPL <120 dB re 1 µPa
(Richardson et al. 1995a, Davies 1997, Richardson
1999, McDonald et al. 2012). However, we limited
aversion responses to received SPL ≥160 dB re 1 µPa
to allow the animats to move through the sound field
and to run the model more efficiently. Again, our
intent was not to yield outputs that fit field observa-
tions, but to develop a transferable method that can
be parameterized with data on different activities,
locations, and species.

We summarized the exposure for all animats in the
modeled populations. We used the single maximum
received SPL value for each animat, regardless of
source type, as data for both of the aversion options.
We binned values in 5 dB increments from 120 to
220 dB re 1 µPa. We calculated the corresponding
distribution of cumulative SEL values, computed for
each animat by summing the sound exposures from
all active sources over all time steps in a run.

RESULTS

Example of individual-level exposure

A single inshore migrating animat (not pro-
grammed to change its movements in response to a
given sound level) selected from the migrating
 population illustrates exposure to multiple sources as
the animat traveled close to both offshore and near-
shore seismic operations, the Northstar production
island, and one of the barge tows (Fig. 3) over 78 h. In
this case, the large offshore seismic array was the
 dominant contributor to received sound levels
throughout the animat’s entire passage, except from
about 32−41 h after the simulated migration began
(Fig. 4). During those 9 h, the animat passed in close
proximity to the nearshore seismic operation, which
then dominated the received sound level. The ani-
mat’s closest point of approach to the offshore seismic
source was about 25 km, and occurred about 5 h after
the simulation began. The SPL at that point was
about 150 dB re 1 µPa. The received SPLs from indi-
vidual pulses from the offshore seismic source were
>120 dB re 1 µPa throughout the animat’s migration.
The animat reached its closest range of approach to
the nearshore seismic operation — a few kilome-
ters — approximately 36 h after its simulated migra-
tion began, and the received SPL of impulses from
the nearshore seismic operation peaked at just above
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Fig. 3. Example of an animat (simulated whale) track over
the 78 h period of its migration through the Alaskan Beau-
fort Sea (without aversion). For further details see Fig. 1

Received SPL Probability Aversion Interval
threshold (rms of aversion angle (°) between SPL
SPL, dB re 1 µPa) evaluations (s)

≥160 0.60 10 300
≥170 0.85 20 60
≥180 0.99 30 30

Table 3. Aversion parameters for  animats (simulated whales)
used in models of movement and sound exposure. rms: root 

mean square; SPL: sound pressure level
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150 dB re 1 µPa. The maximum received SPL levels
were about 45 dB higher than the mean ambient
band level (10− 1000 Hz) estimated by Roth et al.
(2012).

The next-highest received SPL values occurred
during the animat’s closest approach to the
nearshore barge tow as the animat passed
between the barge tow and the nearshore seis-
mic source. At this point, the received sound
level at the animat reached a maximum SPL for
both the nearshore seismic operation (150 dB re
1 µPa) and the nearshore barge tow (125 dB re 1
µPa), the latter at a closest point of approach of
2.4 km. Although the continuous sound expo-
sure from the barge tow for this animat never
exceeded the impulse SPL from either of the
seismic sources, the level of sound from the
barge tow was the highest that reached the ani-
mat in the short intervals between airgun
impulses. During the 78th hour of this animat’s
transit, it was exposed to sound levels from
some combination of the seismic sources above
the 90th percentile ambient in the 10−1000 Hz
band (Roth et al. 2012). With respect to the SPL
levels from the continuous sources, only those
from the 2 barge tows exceeded the 10th per-
centile ambient levels, and the levels in the
same band from the production activities at

Northstar and Oooguruk were well below the
10th percentile ambient. For 83% of the 78 h
migration period, the animat received sound
levels that were >20 dB re 1 µPa greater than
the estimated mean ambient in the 10−1000 Hz
band (Roth et al. 2012). These insights would
not be evident from traditional reports of a
 single peak measurement.

Population-level exposure

The proportion of the simulated population
that was exposed to SPL >165 dB re 1 µPa
decreased markedly when the animats were
allowed to avert (Fig. 5a). However, some ani-
mats in the population that could avert were still
exposed to SPL >165 dB re 1 µPa, probably
because they had a finite probability of not
averting at each time step and because new
sound sources were activated during the migra-
tion. The cumulative SEL was considerably
lower for a population of animats that could
avert than for a population of animats that could
not avert (Fig. 5).

We calculated the percentage of animats in each
modeled population that were exposed to a range of
maximum SPLs (Fig. 6). For example, about 6% of
the animats in the population that could not avert
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Fig. 4. Instantaneous levels of sound (broadband continuous or
impulse root mean square sound pressure level [rms SPL]) re -
ceived from each source at 30 s intervals by the animat  (simulated
whale) represented in Fig. 3. Gray horizontal lines denote the
median and upper (90%) and lower (10%) bounds of broadband 

(10−1000 Hz) ambient sound (Roth et al. 2012)

Fig. 5. Aggregated maximum received sound pressure levels (rms
SPL; in dB re 1 µPa) (upper panel) and cumulative sound exposure
levels (CSEL; in dB re 1 µPa2 s) (lower panel) for all animats (simu-
lated whales) during their autumn migration through the Alaskan
Beaufort Sea. The CSEL for each animat is the sum of its exposure 

to sound from all sources over all time steps
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were exposed to SPL ≥170 dB re 1 µPa. By contrast,
about 1% of the animats in the population that could
avert were exposed to SPL ≥170 dB re 1 µPa.

In our models, aversion from any sound source had
little effect on travel distance. For example, between
145.5 and 146.5°W, where a seismic operation was
positioned, the average distance traveled by animats
in the population that could not avert from rms sound
levels of ≥160 dB re 1 µPa was 41 ± 14 km (mean ±
SD). The average distance traveled by animats in the
population that could avert was 46 ± 19 km. When we
assessed sound exposure along the full migration
path (Fig. 1), we found the difference in mean total
distance swum by either population was <1 km. This
result is consistent with the fact that the 160 dB SPL
threshold for the onset of aversion occurred at a nom-
inal range of 10 km from the largest airgun array.
Each animat encountered a large array once during
the 78 h mean duration of passage, and only animats
that passed within 10 km of an active large array had
the potential to avert. Overall, approximately 5% of
individuals in the population that could avert
changed their movement paths.

DISCUSSION

Our approach differed in 2 ways from conventional
acoustic impact assessment analyses. First, we esti-
mated both SPL and cumulative SEL for each
 migrating animat as it moved through a temporal
series of representative, static, aggregated sound
fields generated by multiple sources, including ves-

sels and seismic airguns. Second, one of our 2 model
runs included the potential for an animat to avert
from a sound source with a probability proportional
to the received SPL. Altering the aversion parameters
could result in substantial changes in the modeled
results, especially if the SPLs at which animats
averted were reduced. As a result, a higher propor-
tion of animats would be exposed to lower levels of
sound. To illustrate, if the 160 dB threshold was low-
ered to 155 dB and the probability of aversion was set
to 50%, then approximately 50% of the animats pre-
viously exposed to 155−160 dB would be exposed to
<155 dB. The use of aversion as a modeling method
emphasizes the need for more-extensive empirical
data on avoidance behaviors. For example, addi-
tional sensitivity analyses of our stochastic aversion
approach might inform prioritization of empirical
data collection on bowhead whales’ aversion re -
sponses. Such data might be similar to those of
Thompson et al. (2013), who used detections of
 foraging-related sounds to demonstrate sound-level
proportional a version by harbor porpoise Phocoena
phocoena to airgun activity over an extent similar to
that of our case study.

Understanding the effects of sound exposure will
be improved by analyzing dynamic interactions be -
tween animals and sound fields or biological vari-
ables that affect how animals respond to exposure
(Ellison et al. 2012). On the basis of our results, we
emphasize the potential increase in information that
can be gained not only by modeling the spatial and
spectral variability in the sound field produced by
multiple sources, but also by broadening the assess-
ment to explicitly quantify the time-varying dynam-
ics of the interaction between animals and the
acoustic environment over ecologically meaningful
durations.

Extended periods of chronic exposure to impulsive
sound at levels above ambient, but <160 dB re 1 µPa
SPL, are not considered in current assessments of
regulatory take, although exposures to continuous
sounds >120 dB re 1 µPa SPL are considered as reg-
ulatory takes. Measures of exposure such as signal-
to-noise ratio, sensation level, or perceived sound
level are not typically addressed in environmental
studies, although they are now recognized as biolog-
ically relevant to both behavioral responses and
chronic effects of sound (Ellison et al. 2012). Chronic
exposure at levels substantially above ambient may
inform spatial planning, and is likely to have some
effect on bowhead whales and other species of
whales, perhaps by masking of acoustic communica-
tion signals or navigational cues (Ellison et al. 1987a,
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Fig. 6. Percentage of animats (simulated whales) in the
 population that were exposed to maximum sound pressure
levels (MSPL) equal to or greater than given values as a 

function of whether they averted from those levels
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George et al. 1989, Clark & Ellison 2004, Clark et al.
2009, Hatch et al. 2012).

Our model treated impulsive and continuous
sounds in the same way — that is, by estimating the
maximum level in every 30 s interval. In reality,
sounds from seismic airgun arrays are sequential
 discrete impulses, with a single array producing an
impulse at intervals of about 8 to 15 s. Continuous
sources, if present and included in the aggregate
sound level, maintain elevated sound levels during
the interstitial periods between impulses. Further-
more, the timing of the impulse from the large and
the small seismic sources may be staggered, so sound
is generated between each source’s impulses. Pro -
pagation of acoustic energy from impulsive sources
also raises sound levels between seismic impulses
through boundary reverberation and multipath prop-
agation effects (Guerra et al. 2011). Thus, sounds
originating from a single source potentially arrive at
a receiver via different pathways and at different
times. Reverberation from the ocean floor near air-
gun activity may be substantially above ambient
sound levels in extremely shallow nearshore envi-
ronments such as those we modeled, and reverbera-
tion and ambient sound levels may be elevated
 further when multiple seismic operations are being
conducted in the same region. Although increases in
sound levels between impulses typically are below
current regulatory thresholds, they raise background
levels and potentially could hinder the ability of ani-
mals to communicate or to acoustically sense their
environment.

Biological effects of aversion

The tendency of bowhead whales to avert from
areas in which industrial sound sources operate was
noted by Richardson et al. (1985, 1995a) and in
 numerous reports (see Schick & Urban 2000). Al -
though it is logical to assume that animals averting
from sound sources swim greater distances than
those that do not, the extent to which aversion affects
the overall migration distance or duration of migra-
tion is unknown. Additionally, the biological effects
of increased migration distances are not known. Our
analysis was essentially a parametric exploration of
the possible movement response of bowhead whales
to a given sound level. Our estimated input para -
meter values of aversion behavior were bounded by
160 and 180 dB re 1 µPa SPL, the long-established
NOAA assumptions of levels that affect behavior and
cause injury. This range of reference values thus is

well-understood by industry, researchers, and regu-
lators. More substantive estimates, particularly for
initial aversion that might occur at lower SPLs, will
require empirical studies similar to those reported by
Thompson et al. (2013).

We also recognize that some, perhaps a majority, of
bowhead whales migrating in autumn stop to feed. In
that case, aversion could lead to 2 energetic costs, the
cost of movement itself and the cost of a reduction in
food consumption. The total energetic cost would
depend on the spatial and temporal extent of the
sound source and the proportion of the population
affected. Alternatively, if animals feed in an area
with high sound levels without averting, then the
probability of biologically harmful levels of exposure
might increase.

Transferability and applications

Our approach allowed us to assess the feasibility of
simulating the migration of a population of >10 000
bowhead whales over a migration period of >2 mo.
We encountered no fundamental or intrinsic chal-
lenges to estimating aggregated acoustic exposure
over extensive areas and time periods. One could
adapt the model to include a greater number and
variety of sound sources or apply it to different spe-
cies, longer durations of simulation, or location- and
season-specific life stages such as cow−calf pairs or
juveniles. It would be tractable to model sound fields
created by reverberation and multipath arrivals. Esti-
mating the loss of acoustic communication space as a
result of masking would require knowledge of vocal-
ization rates, frequency band, source level, and the
change in background sound spectrum due to both
natural changes in ambient sound and the introduc-
tion of anthropogenic sources (see Hatch et al. 2012).
By including mobile sound sources such as shipping
traffic, the animat aversion model could also be
adapted for proximity to vessel traffic (Ellison et al.
2012, Pirotta et al. 2015).

Our estimates of the instantaneous sound level to
which individuals were exposed over time from mul-
tiple sources suggested that the presence of multiple
sound sources might not substantially increase the
maximum SPL to which most individuals in a given
population are exposed, but may affect the duration
of exposures above a given level. However, infer-
ences might differ at higher modeled levels of indus-
trial activity, such as a greater number of concurrent
seismic surveys. Additionally, the cumulative effects
of exposure to multiple sound sources may be more
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relevant at the population level on a chronic basis
than at the individual level on an acute basis, partic-
ularly if the exposure includes increases in other
anthropogenic activities, such as commercial ship-
ping and other types of vessel traffic.

Although the model presented here is relatively
simple, it can be modified to yield increasingly
sophisticated representations of the exposure of indi-
vidual animals and populations to dynamic combina-
tions of continuous and impulsive sounds, whether
anthropogenic or natural, and can be parameterized
on the basis of traditional ecological knowledge or
research on behaviors or behavioral responses.
Accordingly, the method improves understanding of
the cumulative sounds to which marine mammals are
exposed. When coupled with information on bioener-
getics, communication, potential habituation to cer-
tain sources of sound, and environmental covariates
(e.g. distributions of prey), such analyses could begin
to reduce some of the considerable uncertainty as to
whether sound exposure changes population viabil-
ity and whether alternative mitigation strategies may
be effective. Quantitative assessments of population-
level effects of sound are becoming a higher priority
given increases in human access to and levels of
activity in the Arctic, coupled with increased scrutiny
of potential effects of sound on marine mammals.
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