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INTRODUCTION

The Dungeness crab Metacarcinus magister sup-
ports large commercial fisheries and is harvested by
commercial, First Nation, and recreational fishers
along the west coast of North America from the Aleu-
tian Islands, Alaska, to Point Conception, California
(Pauley et al. 1989). In British Columbia (BC), Can-
ada, the Fraser River delta in the Strait of Georgia is

a highly productive habitat for Dungeness crab and
supports the second largest commercial crab fishery
there. Since 1998, Dungeness crabs exhibiting pink-
to orange-colored joints and opaque white muscula-
ture have been sporadically observed from the Fraser
River delta. In 2003, a preliminary investigation into
the cause of the discolored musculature and joints
revealed heavy infections of small ovoid spores re -
sembling microsporidians (G. R. Meyer unpubl. data).
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ABSTRACT: The Dungeness crab Metacarcinus magister supports a large and valuable fishery
along the west coast of North America. Since 1998, Dungeness crabs exhibiting pink- to orange-
colored joints and opaque white musculature have been sporadically observed in low prevalence
from the Fraser River delta of British Columbia, Canada. We provide histological, ultrastructural,
and molecular evidence that this condition is caused by a new microsporidian parasite. Crabs dis-
playing gross symptoms were confirmed to have heavy infections of ovoid-shaped microsporidian
spores (~1.8 × 1.4 µm in size) within muscle bundles of the skeletal musculature. The parasite
apparently infected the outer periphery of each muscle bundle, and then proliferated into the
muscle fibres near the centre of each infected bundle. Light infections were observed in heart tis-
sues, and occasionally spores were observed within the fixed phagocytes lining the blood vessels
of the hepatopancreas. Transmission electron microscopy (TEM) revealed multiple life stages of a
monokaryotic microsporidian parasite within the sarcoplasm of muscle fibres. Molecular analysis
of partial small subunit rRNA sequence data from the new species revealed an affinity to Ameson,
a genus of Microsporidia infecting marine crustaceans. Based on morphological and molecular
data, the new species is distinct from Nadelspora canceri, a related microsporidian that also infects
the muscles of this host. At present, little is known about the distribution, seasonality, and trans-
mission of A. metacarcini in M. magister.
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The Microsporidia comprise a phylum of spore-
forming unicellular parasites that infect host groups
from all major animal taxa in all environments (Can-
ning & Vávra 2000, Smith 2009, Stentiford et al.
2013a). Recent phylogenetic assessments place them
within the phylum Cryptomycota (James et al. 2013),
but they have traditionally been placed in the king-
dom Animalia as Microspora, or more recently in the
kingdom Fungi (Lee et al. 2008). Microsporidians
infect terrestrial hosts including humans, and benefi-
cial and pest insects, but they are also frequently
described from aquatic hosts where they can cause
important diseases to commercial species. Of the 187
genera described to date, almost half are known to
infect aquatic organisms (Stentiford et al. 2013a). The
Microsporidia are considered to be one of the most
common and pathogenic parasites of marine and
freshwater crustaceans and parasitize all orders of
Crustacea (Sparks 1985, Meyers 1990, Sindermann
1990, Morado 2011). However, only 11 to 12 recog-
nized species use brachyuran crabs, and they are not
well described or studied from these hosts.

Dungeness crabs are susceptible to a variety of
infective agents including a Chlamydia-like organism
(Sparks et al. 1985), a parasitic ciliate Me sanophrys
pugettensis (Morado & Small 1994, Morado et al.
1999), a rarely encountered Hematodinium-like par-
asitic dinoflagellate (Meyers & Burton 2009), and an
unusual microsporidian, Nadelspora canceri (Olson et
al. 1994). The microsporidian N. canceri has unique
needle-shaped spores and was originally described
in Dungeness crabs from Alsea Bay, Oregon (Olson
et al. 1994), and was later identified in Dungeness
crabs from Bodega Bay, California, to Gray’s Harbor,
Washington (Childers et al. 1996). Prevalence of the
parasite ranged from 0.4% in crabs from Gray’s Har-
bor, Washington, to 41.2% in crabs from Tillamook
Bay, Oregon. The only other known reports of micro -
sporidian infections in Dungeness crabs is the brief
mention of an undescribed species (family Nosemati-
dae) in 2 conference abstracts (Morado & Sparks
1988a,b), the mention of a microsporidian separate
from N. canceri infecting 3 of 1134 Dungeness crabs
from Puget Sound, Washington, and Winchester Bay,
Oregon (Childers et al. 1996), and the mention of an
undescribed microsporidium causing ‘pink crab’ in a
small percentage (<1%) of Dungeness crabs from
Yaquina Bay, Oregon (www. dfw. state. or.us/ MRP/
shell fish/ crab/ research.asp).

As part of a routine stock assessment survey of the
crabs from the Fraser River delta in 2011, samples of
Dungeness crabs displaying discolored joints were
collected for histology, electron microscopy, and nu -

cleic acid analysis in an effort to further characterize
the parasite. In this paper we provide field observa-
tions on prevalence, a histopathological description
of the disease caused by this parasite, and use ultra-
structural features, a proposed life cycle, and molec-
ular phylogenetic analysis of a partial small subunit
(SSU) rRNA sequence to describe a new microsporid-
ian from the Dungeness crab M. magister.

MATERIALS AND METHODS

Sample collection

Dungeness crabs Metacarcinus magister were
 collected by standardized trap gear from the Fraser
River delta, British Columbia, Canada (49° 05’ N,
123° 19’ W; Fig. 1), during spring and fall, 2011 to
2013. Fishing gear was circular commercial traps
with stainless steel mesh and closed escape ports to
retain smaller crabs. Trap mesh size generally pre-
cluded crabs smaller than approximately 120 mm
carapace width (CW, longest width between epi-
branchial notches) from being vulnerable to research
traps. Traps were baited with dead herring Clupea
pallasi enclosed in a bait jar and deployed for ap -
proximately 24 h (overnight soak). Sampling depths
ranged from 5 to 100 m. Crabs from each trap haul
were examined for gross signs of infection (orange-
colored joints; Fig. 2) and relevant biological infor-
mation, including sex and carapace width were
recorded. The potential sexual bias in prevalence
was investigated using the Mantel-Haenszel chi-
squared test with time (month and year) as strata. In
October 2011, tissue samples from specimens show-
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Fig. 1. British Columbia, Canada; the Fraser River delta study 
area is indicated with an asterisk
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ing gross signs of infection were preserved for
pathology, TEM, and DNA analyses.

Histopathology

Small pieces of the muscles, heart, gill, and hepa -
topancreas were excised from crabs displaying exter-
nal signs of infection (Fig. 2) and fixed in Davidson’s
fixative (Howard et al. 2004), then processed using
routine histological techniques. Tissue sections were
cut at 5 µm and stained with Harris’s modified
haematoxylin and eosin (H&E), and a subset of sec-
tions was processed through modified Giemsa and
Gram techniques (Howard et al. 2004). Histological
slides were examined and photographed via light
microscopy at 100 to 1000× magnification.

TEM

Small pieces of muscle and heart tissue (approxi-
mately 3 mm3) were excised from crabs displaying
external signs of infection (Fig. 2) and fixed in 2.5%
glutaraldehyde in 0.1 M phosphate buffer at 4°C (for
up to 25 d), and then rinsed 3 times in 0.1 M phos-
phate buffer. Fixed tissue samples were placed in
0.1 M sodium cacodylate buffer (pH 7.4) for transport
to the Cefas Laboratory, Weymouth, UK. Fixed tissue
samples were post-fixed for 1 h in 1.0% osmium
tetroxide in 0.1 M sodium cacodylate buffer. Speci-
mens were washed 3 times in 0.1 M sodium cacody-
late buffer before dehydration through a graded ace-
tone series. Specimens were embedded in Epoxy
Resin 812 (Agar Scientific-pre-mix kit 812, Agar Sci-

entific) and polymerized overnight at 60°C. Semi-
thin (1 to 2 µm) sections were stained with Toluidine
Blue for viewing with a light microscope to identify
suitable target  areas. Ultrathin sections (70 to 90 nm)
of these areas were mounted on uncoated copper
grids and stained with uranyl acetate and Reynolds’
lead citrate (Rey nolds 1963). Grids were examined
using a JEOL JEM 1210 transmission electron micro-
scope and digital images captured using a Gatan Er -
langshen ES500W camera and Gatan Digital Micro-
graph™ software.

DNA extraction, SSU rRNA gene amplification, 
and sequencing

Muscle and heart tissue samples from infected
crabs were preserved directly in 95% ethanol. Total
DNA was isolated from preserved muscle tissues
from 4 crabs infected with the microsporidian (3 from
2011 and 1 from 2003) using a modified protocol con-
sisting of glass beads to rupture the parasite cysts prior
to DNA isolation and recovery (see Stentiford et al.
2010). Briefly, samples of the ethanol-preserved
micro sporidian-infected muscle tissues (~1 to 2 mm3)
were placed in sterile deionized water to facilitate
the removal of residual ethanol. The tissue samples
were minced with a sterile scalpel blade, added to
300 µl buffer AE (Qiagen) with 0.3 g of 0.1 mm glass
beads prior to disruption using a Fast Prep FP120
homogenizer (Thermo Savant) for 2 rounds of 30 s at
full speed. The tubes were briefly centrifuged on a
bench-top mini-centrifuge to sediment the glass
beads and cell debris, and DNA was recovered from
the supernatants using a Tissue Kit (Qiagen) follow-
ing the manufacturer’s recommendations. Also ex -
tracted by the same methods was an archived
ethanol-preserved microsporidian-infected muscle
sample from a single female Dungeness crab caught
in February, 2003, from Sansum Narrows, British
Columbia, Canada (48° 47’N, 123° 33’ W). All ex -
tracted DNA samples were quantified using a Nan-
oDrop 2000 spectrophotometer and stored at −20°C.

A fragment of the SSU rRNA gene from the micro -
sporidian infecting the crabs was amplified from all 4
genomic DNA samples using previously described
primers (Zhu et al. 1993): the forward primer V1 (5’-
CAC CAG GTT GAT TCT GCC TGA C-3’) and the
reverse primer 1492R (5’-GGT TAC CTT GTT ACG
ACT T-3’). Each 20 µl reaction contained 10 mM Tris-
HCl, pH 8.3, 50 mM KCl, 1.5 mM MgCl2, 0.2 mM of
each dNTP, 0.2 µM of each primer, 0.5 U of Taq poly-
merase (Applied Biosystems), and 1 µl genomic DNA
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Fig. 2. The female Dungeness crab Metacarcinus magister
on the left exhibits orange-colored joints, a typical gross sign
of infection with Ameson metacarcini sp. nov., compared to a 

normal (uninfected) crab on the right
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(100 to 140 ng µl−1). Amplifications were performed
with an initial denaturation temperature of 94°C for
5 min; followed by 40 cycles at 94°C for 1 min, 52°C for
1 min and 72°C for 2 min; with a final elongation step
at 72°C for 5 min. Amplified products were visualized
by agarose gel electrophoresis (1.5% w/v), stained
with ethidium bromide, and viewed under an ultra -
violet light source.

Amplification products of approximately 1300 bp
were excised from agarose gels using a sterile scalpel
blade and purified using a QIAquick Gel Extraction
Kit (Qiagen). The purified amplification products
were cloned into the plasmid pCR®4-TOPO® (Invit-
rogen) and transformed into competent Escherichia
coli using a TOPO TA Cloning® Kit (Invitrogen) fol-
lowing the manufacturer’s protocols. Transformed
bacterial colonies were screened for inserts using a
PCR-based screening reaction using the M13 primers
included in the TOPO TA Cloning Kit. Aliquots of
M13 amplification products containing the correct
size insert were treated with shrimp alkaline phos-
phatase (SAP) and exonuclease I (Exo I) (Amersham
Biosciences) prior to sequencing. PCR products were
bi-directionally sequenced using the Big Dye Termi-
nator kit (Applied Biosystems) with M13 sequencing
primers and one-quarter of the recommended con-
centration of Big Dye. Aliquots of 10 µl of each se -
quencing reaction product were electrophoretically
separated on an ABI 3130 Genetic Analyzer (Applied
Biosystems). Three clones were bidirectionally se -
quenced for each sample.

Phylogenetic analysis

Forward and reverse sequencing reactions were
imported into CodonCode Aligner (Version 3.7.1.1)
for trimming of vector and primer sequences. Con-
sensus sequences were aligned in MacVector (Ver-
sion 12.5.1) and then subjected to Basic Local Align-
ment Search Tool (BLAST) searches of
the National Center for Biotechnology
(NCBI) database (www. ncbi. nlm. nih.
gov). Partial SSU sequences from micr -
o sporidia with the highest similarity
scores, as well as 22 others found
infecting aquatic hosts, were down-
loaded from GenBank for inclusion in
phylogenetic analyses. Multiple align-
ments of the micro sporidian SSU se -
quences were performed using the
CLUSTALW algorithm in MacVector
12.5.1 using the default gap settings

for multiple and pairwise alignment. The full align-
ment was 1115 bp in length. Maximum-likelihood
and neighbor-joining analyses were performed using
MEGA 6 (Tamura et al. 2013). All models of evolution
available in this sequence analysis package were
independently assessed during maximum-likelihood
analyses. The partial SSU sequence from Thelohania
solenopsae (AF031538) was used as an outgroup.
Robustness of trees was tested with 1000 bootstrap
replicates. Genetic distance (uncorrected ‘p’) calcu-
lations were performed using MEGA6 on an align-
ment of partial SSU sequences (898 bp in length) from
Ameson pulvis, A. michaelis, and the micro sporidian
from M. magister.

RESULTS

Field observations

Dungeness crabs Metacarcinus magister with gross
signs of infection (orange-colored joints and opaque,
white muscles, see Fig. 2) were observed in 0.00 to
0.38% of the total catch (Table 1) from stock assess-
ment surveys conducted in the Fraser River delta
during the period from 2011 to 2013. While the over-
all number of infections was low (38 out of 27 782
crabs), the prevalence of infection showed a strong
bias for females when controlled for time (month and
year) of capture (Mantel-Haenszel chi-squared =
50.69, p = 0.00). No male crabs were in fected, and the
prevalence in females varied from 0.00 to 1.22%
(Table 1). Infected females ranged in size from 107 to
150 mm CW and were caught at depths from 5 to
100 m. Infected crabs behaved similarly to normal
crabs, with no apparent lethargy or signs of morbid-
ity. Most infected crabs were collected where the
main arm of the Fraser River empties into the Strait of
Georgia. This area also produced the highest trap
catches of females.
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Date                 Female crabs (%)          Male crabs (%)         Total catch (%)

May 2011            0.15 (4/2699)                0.00 (0/2476)             0.08 (4/5175)
Oct 2011              0.55 (8/1455)                0.00 (0/1750)             0.25 (8/3205)
May 2012            0.18 (4/2209)                0.00 (0/3243)             0.07 (4/5452)
Oct 2012              0.69 (9/1302)                0.00 (0/2123)             0.26 (9/3425)
May 2013            0.00 (0/1826)                0.00 (0/3155)             0.00 (0/4981)
Oct 2013             1.22 (15/1230)               0.00 (0/2706)            0.38 (15/3936)

Table 1. Prevalence of gross signs of microsporidian infection among Dunge-
ness crabs Metacarcinus magister caught by trap in the Fraser River delta,
British Columbia, Canada. In brackets: number of individuals with gross signs 

of infection/total caught
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Prior to 2011, only 10 Dungeness crabs (6 males, 4
females) with colored joints were observed and
recorded by fisheries biologists in the Fraser River
delta. Five males were observed in 1998, and one in
2003; these crabs ranged in size from 132 to 172 mm
CW and were collected at depths of 18 to 90 m. Four
females were observed in 1998, 2003, and 2006, and
they ranged in size from 128 to 142 mm CW and were
collected from depths of 20 to 99 m.

Pathology and ultrastructure

Histological and wet mount smears of infected
muscle from Dungeness crabs with gross signs of dis-
ease confirmed the presence of ovoid microsporidian
spores (Fig. 3A,D). Although some staining variabil-
ity was observed between specimens and tissue type,
individual parasites were defined as Gram positive
(blue to deep purple staining). The Gram staining
technique was superior to both H&E and Giemsa for
visualizing infections by histology, presumably be -
cause the former penetrated the exospore wall and
did not decolorize with the destaining step.

Examination of histological tissue sections revealed
heavy infection of the skeletal muscles. Infections
were apparently initiated on the periphery of a mus-
cle bundle, with lateral spread around the circumfer-
ence of the bundle (Fig. 3B). In more advanced infec-
tions, all of the muscle fibres within the bundle were
infected. Numerous spores were observed within the
myocytes of the striated muscles (Fig. 3C); other de -
velopmental stages were difficult to discern via light
microscopy. Degenerative and necrotic mussel bun-
dles, heavily infected with spores, were commonly
observed. Light infections were also observed in the
heart myocytes where the spores had a tendency to
stain deep purple rather than blue (Fig. 3D). Addi-
tionally, necrotic spores were occasionally ob served
in the hemal sinuses and clusters of fixed phagocytes
lining the blood vessels of the hepa topancreas (Fig. 3E)
and gills (Fig. 3F). Spores were likely re leased from
ruptured muscle fibres and transported to these tis-
sues via the hemolymph.

TEM revealed multiple life cycle stages of a mono -
karyotic microsporidian within the sarcoplasm of
infected muscle fibres. The earliest stage observed
was an apparent uninucleate meront (Fig. 4A), al -
though a sectioning artefact may have masked the
presence of a partner nucleus. Diplokaryons were
likely formed by division of the uninucleate meront
nucleus (Fig. 4B). Diplokaryotic meronts were sur-
rounded by a simple cell membrane and appeared to

undergo vacuolation as they matured (Fig. 4C). The
transition to diplokarytic sporont was marked by
thickening of the spore wall (Fig. 4D) and a further
mitotic event in which each nucleus comprising the
diplokaryon underwent division to create a quadra -
nucleate sporont (Fig. 4E). The quadranucleate spor -
ont developed into a chain-like form in which nuclei
became isolated, and associated with a distinct peri-
nuclear vacuole (Fig. 4F). At this stage, the quad-
ranucleate spore wall remained thick, but precursors
of the spore extrusion apparatus (e.g. polar filament
and anchoring disk) had not yet formed within each
developing sporoblast.

Ultrastructurally, sporoblasts were distinguished
from sporonts by the formation of precursors of the
spore extrusion apparatus in close association with
isolated nuclei and their peripheral vacuole (Fig. 5A).
This apparatus formed prior to the separation of indi-
vidual sporoblasts from the quadranucleate sporont
(Fig. 5B). Eventual cytokinesis of the sporoblasts co -
incided with coiling of the polar filament at the peri -
phery of the sporoblast cytoplasm and the formation
of the anchoring disk (Fig. 5C). Maturation of liber-
ated uninucleate sporoblasts into spores was charac-
terized by elongation of the spore wall, centralization
of the monokaryotic nucleus, peripheral coiling of the
polar filament, terminal positioning of the anchoring
disk, and formation of a laminar polaroplast between
the anchoring disk and the nucleus (Fig. 5D). Fully
developed spores measured approximately 1.8 ×
1.4 µm and possessed a trilaminar wall consisting of a
plasma membrane, a thick electron-lucent endospore,
and a thinner electron-dense exospore. The isofilar
polar filament had 9 to 12 turns, 8 to 9 of which form
a linear outer coil, and the remainder occupy a posi-
tion towards the centre of the spore. The polar fila-
ment culminated in a manubrial region that passed
through the laminar polaroplast to a terminal anchor-
ing disk (Fig. 5E−G). Mature spores possessed hair-
like appendages projecting from the exospore into
the surrounding sarcoplasm (Fig. 6). All observed life-
cycle stages occurred in direct contact with the mus-
cle sarcoplasm.

Molecular phylogeny

All partial SSU gene sequences generated from the
2003 and 2011 samples were 1232 bp in length (after
removal of primer sequences), and all were identical.
BLAST analysis of this SSU fragment indicated an
affinity to microsporidia-infecting crustaceans, with
Nadelspora canceri from M. magister and Ameson
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Fig. 3. Light microscopy of Ameson metacarcini sp. nov. infecting Metacarcinus magister. (A) Muscle smear showing numer-
ous ovoid shaped spores (arrows), phase contrast. Scale bar = 5 µm. (B−F) Histological tissue sections with Gram stain. (B)
Transverse section through skeletal musculature showing heavy infection of spores in the peripheral regions of a muscle bun-
dle (blue staining area) with an uninfected or lightly infected central area (pink). Scale bar = 50 µm. (C) Longitudinal section
through striated (s) muscle showing numerous spores (arrows) and myocyte nucleus (n). Scale bar = 5 µm. (D) Heart muscle
showing spores (arrows) that stain deep purple instead of blue. Note that these spores are ovoid in shape. Scale bar = 3 µm. (E)
Spores in the fixed phagocytes of the arterioles in the hepatopancreas. The fixed phagocytes have been activated and appear
to be phagocytizing the spores (arrows). Scale bar = 10 µm. (F) Necrotic spores in the vascular spaces of the gills (arrows). 

Scale bar = 5 µm.
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Fig. 4. Transmission electron microscopy of meronts and early sporogony in Ameson metacarcini sp. nov. infecting the muscles
of Metacarcinus magister. (A) Uninucleate meront (arrow). Scale bar = 500 nm. (B) Diplokaryotic meront (arrow). Scale bar =
500 nm. (C) Diplokaryotic meront (arrow) with vacuolated cytoplasm (asterisk). Scale bar = 500 nm. (D) Diplokaryotic sporont
with relatively electron-dense membrane forming (arrow) and highly vacuolated cytoplasm (asterisk). Scale bar = 500 nm. (E)
Diplokaryotic sporont in the process of nuclear division (arrows) to form a quadranucleate sporont. Scale bar = 1 µm. (F) Tetra -
nucleate sporont chain (arrow) containing 4 single nuclei (asterisks) prior to the formation of spore extrusion precursors. 

Scale bar = 1 µm
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Fig. 5. Transmission electron microscopy of late-stage sporogony in Ameson metacarcini sp. nov. infecting the muscles of
Metacarcinus magister. (A) Late tetranucleate sporont chain with early development of spore extrusion precursors (arrows).
Scale bar = 1 µm. (B) Budding of uninucleate pre-sporoblasts from quadranucleate sporont. Spore extrusion precursors, such
as the nascent polar tube, are clearly visible (arrows). Parasites lie in close contact with host cell mitochondria (m). Scale bar =
500 nm. (C) Liberation and early development of sporobasts. Spore extrusion precursors migrate to approximate positions ob-
served within the mature spore (arrows). Scale bar = 500 nm. (D) Sporoblasts become increasingly electron dense and contain
a visible polaroplast (white arrow), an anchoring disk (black arrow), peripheral arrangement of polar filament coils (arrow-
head), and a single nucleus (n). Scale bar = 500 nm. (E) Mature spore. Similar cellular arrangement to the late sporoblast but
containing approximately 10 turns of the polar filament (asterisk), laminar polaroplast, an electron-dense cytoplasm, and a tril-
aminar spore wall comprised of an inner plasmalemma, a thick electron lucent endospore (white arrow), and a thin electron-
dense exospore (black arrow). Scale bar = 100 nm. (F) Detail of terminal anchoring disk of mature spore. Scale bar = 100 nm. 

(G) Detail of coiled isofilar polar filament in mature spore. Scale bar = 50 nm
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pulvis from Carcinus maenas having the highest
maximum identity scores (both 95%). All maximum
likelihood (Fig. 7) and neighbor-joining (data not
shown) analyses produced similar tree topologies
and confirmed a close affiliation among other species
of Ameson, placing the microsporidian from M. mag-
ister within a highly supported (100%) clade contain-
ing A. michaelis, A. pulvis, and N. canceri. Genetic
distances between the microsporidian from M. mag-
ister and A. pulvis (‘p’ = 0.047) and A. micha elis (‘p’ =
0.060) were comparable to that observed between A.
pulvis and A. michaelis (‘p’ = 0.040). The partial SSU
rRNA gene sequences obtained from the micro -
sporidian-infecting M. magister were deposited in
GenBank with Accession Numbers KJ652546 to
KJ652549. We used ultrastructural and phylogenetic
data to erect a new species within the genus Ameson.

Taxonomic summary

Type species: Ameson metacarcini sp. nov.
Description: Parasite stages infecting the skeletal

and heart muscles of a marine crustacean host. Spores
ovoid, monokaryotic, approximately 1.8 × 1.4 µm in
size in tissues fixed for TEM; in direct contact with
muscle sarcoplasm of infected host cells. Polar fila-
ment with 9 to 12 coils, the majority forming a linear
outer coil and the remainder occupying a position
towards the centre of the spore. The observed life
cycle progresses from an apparent uninucleate meront
to diplokaryotic meront, quadranucleate meront,
chain-like quadranucleate sporont, with cytokinesis
to produce individual sporoblasts which develop into
spores.

Type host: Metacarcinus magister (Dana, 1852)
Type locality: Fraser River delta (5 to 100 m depth),

British Columbia, Canada.
Site of infection: Sarcoplasm of skeletal myofibrils,

rarely in cardiac muscles, fixed phagocytes of hemal
vessels.

Etymology: The specific name refers to its infection
in the crab host Metacarcinus magister.

Type material: Syntype specimens of stained histo-
logical sections have been deposited with the Cana-
dian Museum of Nature, Ottawa, Canada. TEM resin
blocks have been deposited in the Registry of Aquatic
Pathogens (RAP) at the Cefas Weymouth Laboratory,
UK. The partial SSU rRNA gene sequences obtained
from A. metacarcini have been deposited in Gen-
Bank with Accession Numbers KJ652546 to KJ652549.

DISCUSSION

Histological, ultrastructural, and molecular data
were used to describe a new microsporidian, Ame-
son metacarcini, infecting Dungeness crabs, Meta -
carcinus magister, from British Columbia. Electron
micro scopy revealed developmental features of a
mono karyotic microsporidian that are consistent with
members of the genus Ameson. Likewise, phylo -
genetic analyses of a partial sequence of the SSU
rRNA gene grouped A. metacarcini beside, but dis-
tinct, from A. michaelis, A. pulvis, and Nadelspora
canceri previously described from marine crabs
Callinectes sapidus, Carcinus maenas, and M. mag-
ister, respectively.

The putative earliest stages infecting muscle bundles
of M. magister were apparently uninucleate, or mono -
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Fig. 6. Mature spore of Ameson metacarcini sp. nov. showing (A) bristle-like appendages (white arrows) on the exospore 
surface. Scale bar = 500 nm. (B) Increased magnification of bristle-like appendages. Scale bar = 100 nm
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karyotic meronts. Binucleate (diplokaryotic) meronts
showed remarkable similarity to stages observed in
A. atlanticum infecting Cancer pagurus, A. pulvis
 in fecting C. maenas, and A. michaelis infecting C.
sapidus (Weidner 1970, Vivarès & Sprague 1979,
Vivarès & Azevedo 1988, Sprague 1965, Stentiford et
al. 2013b). Meronts underwent vacuolation, thicken-
ing of the parasite spore wall, and a decrease in the
nuclear:cytoplasm ratio as they progressed to be -
come the chain-forming quadranucleate sporonts
that are characteristic of the genus. Precursors of the
spore extrusion apparatus were observed in sporo -
blasts prior to their separation from the sporont.

Morphologically, A. metacarcini can be tentatively
distinguished from other species in the genus by the
size of the fully developed spore (Table 2). The
spores are most similar in size to those reported from

A. atlanticum (1.8 × 1.4 µm vs. 2.0 × 1.5 µm); how-
ever, the latter species was described from a different
host (C. pagurus) from the French Atlantic coastline.
Few other morphological characters appear to be
useful, and these characters are generally compara-
ble to other reported but undescribed species in the
genus (Shields & Wood 1991, Kiryu et al. 2009,
Ryazanova & Eliseikina 2010). Spores of A. meta -
carcini had hair-like villous projections that have
previously been observed in other Ameson species
(Vivarès & Sprague 1979, Vivarès & Azevedo 1988,
Kiryu et al. 2009, Ryazanova & Eliseikina 2010, Sten-
tiford et al. 2013b). Vivarès & Azevedo (1988) used
the projections on the spore to separate the genera
Ameson from Perezi within the family Pereziidae
(see also Canning & Vávra 2000). The role of these
organelles is still unknown, though Vávra et al.
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Fig. 7. Maximum-likelihood tree resulting from analysis of the small subunit rRNA gene sequence from Ameson metacarcini
sp. nov. (in bold) and other aquatic microsporidia. Thelohania solenopsae was used as the outgroup. This analysis was per-
formed using the Tamura-Nei model of evolution within MEGA 6. Numbers at nodes represent bootstrap support values for 

each clade
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(1981) suggested that they may aid dispersal of the
released spore stage in aquatic environments and
Lom & Corliss (1967) conjectured that they may be
involved in transporting metabolites from the host to
the parasite.

Phylogenetic data confirmed our ultrastructural ob -
servations of an affiliation of A. metacarcini within
the genus Ameson as it placed with 100% support
within a clade containing A. michaelis, A. pulvis, and
N. canceri. Genetic distances between A. meta car cini
and previously described Ameson species (for which
there is molecular sequence data available) were
similar to those observed between previously de -
scribed species, further supporting the new species
proposal. The inclusion of N. canceri within a clade
containing species of Ameson, at least based upon
SSU rRNA sequences, is surprising as it has a di plo -
karyotic lineage and produces elongated, needle-like
spores, and would seem to be at odds with conven-
tional taxonomy using morphological features. How-
ever, Stentiford et al. (2013b) recently observed mor-
phological plasticity in a microsporidian (presumed to
be A. pulvis) infecting the marine crab C. maenas.
Those authors observed A. pulvis having 2 spore mor-
phologies based on their location within host tissues
and state of infection. The needle-like spores, similar
to N. canceri from M. metacarcini, occurred early in
infections and primarily in cardiac muscles, whereas
the ovoid Ameson-like spores, with pronounced sur-
face projections, occurred later in infections and pri-
marily in skeletal muscles (Stentiford et al. 2013b). In
histological assessments of in fected M. metacarcini
muscles, heart, gill, and hepa topancreas tissues we
did not observe elongated needle-like spores resem-
bling N. canceri in either early or advanced in -
fections. Olson et al. (1994) in the original description
of N. canceri only encountered needle-like spore
forms infecting M. meta car cini. However, in a subse-
quent study, 3 of 1134 M. metacarcini infected with
microsporidia were found to harbor a microsporidian

with ovoid spores morphologically dissimilar to N.
canceri (Childers et al. 1996). Recent studies combin-
ing ecological, morphological, and molecular data
have demonstrated significant plasticity in morpho-
logical features within certain taxa (Vossbrinck &
 Debrunner-Vossbrinck 2005, Stentiford et al. 2010,
2013b). Indeed, some genera of microsporidians change
their spore characteristics with temperature, switch-
ing between free spores and octospores within a
sporo phorous vesicle depending on environmental
temperature (e.g. Maddox & Sprenkel 1978, Jouvenaz
& Lofgren 1984). Thus, additional studies should now
include a combination of morphological and molecu-
lar data to investigate plasticity in the life cycles of
these parasites.

At present the geographic distribution of A. meta -
carcini in Dungeness crabs from British Columbia
remains essentially unknown. The 2003 sample in -
cluded in our molecular analysis was from a female
Dungeness crab captured from Sansum Narrows,
which is located between Vancouver Island and Salt-
spring Island, approximately 40 km from the Fraser
River delta. Aside from confirming its presence in
Dungeness crabs from these 2 sample locations in
British Columbia, and in Canada, for at least 10 yr,
gross clinical signs similar to those described above
(exhibiting pink- to orange-colored joints) have only
been reported in Dungeness crabs from Yaquina Bay,
Oregon, USA (Oregon Department of Fish and Wild -
life, ODFW). As staff from ODFW were also identify-
ing N. canceri infections based on different gross
signs of infection, and given that these 2 pathogens
are the only microsporidia known to infect Dunge-
ness crabs, it is possible that the crabs from Oregon
may have been infected with A. metacarcini. If con-
firmed, the known range of this parasite may extend
throughout the range of its host species. Because of
the pathological nature of the parasite, future studies
aimed at documenting its distribution and impacts
may be warranted.
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Species                             Spore size (µm)                           Spore projections               Polar tube     Reference

A. michaelis       2.2 × 1.7 (live, light microscopy)                                                                                Sprague (1965)
                         1.7 × 1.2 (stained, light microscopy)                                                                             Sprague (1965)
                             1.6 × 1.2 (electron microscopy)                                                             11 coils        Sprague et al. (1968)
A. pulvis              1.3 × 1.0 (electron microscopy)            Short basal and long               8 coils         Vivarès & Sprague (1979)
                                                                                                terminal portion
                             1.2 × 1.0 (electron microscopy)              Villous projections               8−9 coils       Stentiford et al. (2013b)
A. atlanticum      2.0 × 1.5 (electron microscopy)                 Long, bipartite                11−12 coils    Vivarès & Azevedo (1988)
A. metacarcini     1.8 × 1.4 (electron microscopy)    Long bristle-like appendages     9−12 coils     Present study

Table 2. Comparison of spore characteristics for different species of Ameson described from decapods
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Due to gear selectivity that limited retention of
crabs smaller than ~120 mm CW, the prevalence in
juvenile Dungeness crabs is unknown, yet pathogens
are often most prevalent in and damaging to early
juvenile stages in crustacean populations (Bateman
et al. 2011, Shields 2012). Likewise, the prevalence of
A. metacarcini in crabs that do not display pathogno-
monic signs of infection is unknown. Discoloration of
host carapace, arthroidal membranes, and hemolymph
and tissues are macroscopic signs of late-stage/patent
infections in many crustaceans (e.g. Field et al. 1992,
Shields & Behringer 2004, Stentiford et al. 2010), and
use of gross visual assessment methods may signifi-
cantly underestimate the actual prevalence of A.
metacarcini in trapped Dungeness crabs, as has been
observed in snow crabs macroscopically diagnosed
with Hematodinium infections (Pestal et al. 2003). In
addition, it is somewhat surprising that crabs pos-
sessing advanced infections were able to enter traps
as parasite loads in muscle tissues were considerable,
and in some cases heavy infections essentially re -
placed infected muscle tissues. We speculate there
may be additional infected individuals too weak to
enter baited traps. Future assessments using trawl-
platforms that provide non-selective sampling may
provide a more realistic approach to estimating the
prevalence of A. metacarcini in Dungeness crab
 populations.

In contrast to Childers et al. (1996) who found that
N. canceri was 3 times more likely to infect male
Dungeness crabs compared to females, we only
observed gross signs of microsporidian infection
(orange-colored joints) in female crabs from spring
and fall assessments during the period from 2011 to
2013 and in the single sample from 2003. Prior to
the current study, gross signs of infection were ob -
served in 5 male crabs captured in 1998; however,
the presence of microsporidia was not confirmed
microscopically. Few studies have considered sex-
ual differences in the prevalence levels in micro -
sporidian infections in decapod hosts. Of the limited
number that have, prevalence levels were reported
as approximately equal between host sexes (Par-
sons & Khan 1986, Herbert 1988, Skurdal et al.
1990, Ryazanova & Eliseikina 2010). However, sex-
ual differences are known from microsporidian in -
fections in amphipod hosts where the parasites are
known to be transmitted vertically (e.g. Buln heim &
Vávra 1968, Terry et al. 2004, Haine et al. 2007). In
crabs, potential factors for sexual differences may
include behavioural differences, stresses imposed
by reproduction, or hormonal differences between
sexes.
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