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Development/Plasticity/Repair

Developmental Origin of PreBötzinger Complex Respiratory
Neurons

Paul A. Gray,1 John A. Hayes,2,3 Guang Y. Ling,1 Isabel Llona,4 Srinivasan Tupal,1 Maria Cristina D. Picardo,3

Sarah E. Ross,5 Tsutomu Hirata,6 Joshua G. Corbin,6 Jaime Eugenín,4 and Christopher A. Del Negro3

1Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, Departments of 2Biology and 3Applied
Science, College of William and Mary, Williamsburg, Virginia 23187, 4Laboratorio de Sistemas Neurales, Departamento Biología, Facultad de Química y
Biología, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile, 5Department of Neurobiology, Harvard Medical School, Boston,
Massachusetts 02139, and 6Center for Neuroscience Research, Children’s National Medical Center, Washington, DC 20010

A subset of preBötzinger Complex (preBötC) neurokinin 1 receptor (NK1R) and somatostatin peptide (SST)-expressing neurons are
necessary for breathing in adult rats, in vivo. Their developmental origins and relationship to other preBötC glutamatergic neurons are
unknown. Here we show, in mice, that the “core” of preBötC SST �/NK1R �/SST 2a receptor � (SST2aR) neurons, are derived from
Dbx1-expressing progenitors. We also show that Dbx1-derived neurons heterogeneously coexpress NK1R and SST2aR within and beyond
the borders of preBötC. More striking, we find that nearly all non-catecholaminergic glutamatergic neurons of the ventrolateral medulla
(VLM) are also Dbx1 derived. PreBötC SST � neurons are born between E9.5 and E11.5 in the same proportion as non-SST-expressing
neurons. Additionally, preBötC Dbx1 neurons are respiratory modulated and show an early inspiratory phase of firing in rhythmically active
slice preparations. Loss of Dbx1 eliminates all glutamatergic neurons from the respiratory VLM including preBötC NK1R�/SST� neurons.
Dbx1 mutant mice do not express any spontaneous respiratory behaviors in vivo. Moreover, they do not generate rhythmic inspiratory activity
in isolated en bloc preparations even after acidic or serotonergic stimulation. These data indicate that preBötC core neurons represent a subset of
a larger, more heterogeneous population of VLM Dbx1-derived neurons. These data indicate that Dbx1-derived neurons are essential for the
expression and, we hypothesize, are responsible for the generation of respiratory behavior both in vitro and in vivo.

Introduction
The necessity for the brainstem in the generation of breathing has
been known for over a millennium, and the search for the regions
most important for this behavior has been ongoing for nearly 200

years (Legallois, 1813; Feldman and Del Negro, 2006). A small
region of the ventrolateral medulla (VLM), the preBötC, is hy-
pothesized to be the site for respiratory rhythm generation
(Smith et al., 1991). In the adult rat, a subset of glutamatergic
neurons within this region coexpress the neurokinin 1 receptor
(NK1R) and somatostatin (SST) peptide (Gray et al., 1999; Stor-
netta et al., 2003; Llona and Eugenín, 2005). The near-complete,
targeted ablation of preBötC NK1R neurons over several days
produces ataxic breathing during wakefulness, while the partial
elimination of this population produces sleep-disordered breath-
ing (Gray et al., 2001; McKay et al., 2005). The genetic silencing of
preBötC neurons by expression of a Drosophila peptide receptor
under the control of a fragment of the SST promoter induces
persistent apnea (Tan et al., 2008). Together these data indicate
an important role for a subset of preBötC neurons in breathing.
What role glutamatergic neurons lacking SST or NK1R expres-
sion within the preBötC, as well as within the adjacent Bötzinger
Complex (BötC) and rostral ventral respiratory group (rVRG),
have in the generation of respiratory behavior is unknown (Feldman
and Del Negro, 2006).

Transcription factor mutations that affect rhombomeric pat-
terning and interneuron specification lead to respiratory instabil-
ity and death, suggesting a strong genetic component to the
formation of the respiratory central pattern generator (Blanchi et
al., 2003; Rhee et al., 2004; Gray, 2008; Pagliardini et al., 2008;
Rose et al., 2009; Thoby-Brisson et al., 2009; Caubit et al., 2010).
No direct relationship, however, has been identified for any specific
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transcription factor and the formation of preBötC glutamatergic
neurons. In contrast, within the VLM, discrete transcription factors
give rise to respiratory glycinergic neurons (Lbx1), as well as retro-
trapezoid nucleus and parafacial respiratory group (RTN/pFRG)
glutamatergic neurons (Atoh1, Lbx1, Phox2b) (Pagliardini et al.,
2008; Rose et al., 2009; Thoby-Brisson et al., 2009). Here we
examined the role of the transcription factor Dbx1 in the genetic
organization of the mammalian respiratory oscillator including
preBötC neurons. Understanding the developmental and genetic
organization of the neurons necessary for breathing may provide
insight into the general principles of neural circuit formation as
well as human breathing disorders.

Materials and Methods
Transgenic mice. We used Dbx1 LacZ (Pierani et al., 2001), Dbx1 CreERT2

(Hirata et al., 2009), Gad1 GFP transgenic (Chattopadhyaya et al., 2004),
Lmx1b LacZ (Pressman et al., 2000), Rosa26-EYFP (Srinivas et al., 2001),
Slc6a5 BAC transgenic (Gong et al., 2003), or wild-type mice. All mice
were bred onto a mixed CD1/C56B6 or CF1 background. Experiments
were done in accordance with the Institute for Laboratory Animal Re-
search Guide for the Care and Use of Laboratory Animals. All experi-
ments were approved by the Animal Studies Committee at Washington
University School of Medicine, the Institutional Animal Care and Use
Committee at the College of William and Mary, or the Bioethics Com-
mittee of the Universidad de Santiago de Chile.

Immunohistochemistry. Tissue sections were washed in PBS with 0.2%
Triton X-100, blocked in 10% heat-inactivated normal horse sera, incu-
bated in antibody overnight at 4°C, incubated in secondary antibody, and
coverslipped in Vectashield.

Antibodies. Rat anti-bHLHb5 (1:1000, M. E. Greenberg, Harvard
Medical School, Boston, MA), chicken anti-�-galactosidase (�-gal) (1:
4000, Abcam), rabbit anti-�-gal (1:1000, Covance), goat anti-FoxP2 (1:
2000, Abcam), chicken anti-green fluorescent protein (GFP) (1:1000,
Aves Labs), rabbit anti-GFP (1:2000, Invitrogen), goat anti-Lhx9
[1:1000, Santa Cruz Biotechnology (SCBT)], guinea pig anti-Lmx1b (1:
500, T. Jessell, Howard Hughes Medical Institute, Columbia University,
New York, NY), rabbit anti-NK1R (1:2000, Advanced Targeting Systems
and Millipore), rabbit anti-Pax2 (1:250, Invitrogen), goat anti-Pax2/5/8
(1:100, SCBT), goat anti-Phox2b (1:500, SCBT), rabbit anti-Phox2b (1:
20,000, C. Gordis, École Normale Supérieure, Paris, France), goat anti-
SST (1:600, SCBT), rabbit anti-SST (1:500, SCBT), guinea pig anti-
somatostatin 2a receptor (SST2aR) (1:8000, Gramsch Labs), sheep
anti-tyrosine hydroxylase/tryptophan hydroxylase (1:1000, Millipore).
Secondary antibodies were species specific and conjugated to AMCA,
FITC, Alexa 488, DyLight 488, Cy3, C5, or DyLight 649 (Invitrogen or
Jackson ImmunoResearch).

In situ hybridization. Slides were immersed in 4% PFA, permeabilized
with proteinase K, washed in 0.1 M triethanolamine-HCl with 0.25%
acetic anhydride, blocked in hybridization buffer at 65°C, then placed
into slide mailers containing hybridization buffer with DIG-labeled an-
tisense RNA at 1 �g/ml overnight at 65°C. Slides were washed in SSC
buffers at 62°C, then washed and incubated in alkaline phosphatase-
conjugated anti-DIG antibody in 10% NHS and incubated in NBT-BCIP
until cellular labeling is clear. For combined immunohistochemistry and
in situ hybridization (ISH), slides are stained for mRNA expression be-
fore immunohistochemical labeling.

Genotyping. Mice were genotyped by PCR using primers specific for
�-gal, GFP/YFP, Neomycin phosphotransferase, Cre recombinase,
Atoh1, Dbx1, and Lmx1b as described previously (Pressman et al., 2000;
Pierani et al., 2001; Rose et al., 2009), or by direct visualization of fluo-
rescent reporter, �-gal reaction product, or anatomical defect.

Tissue acquisition. Neonatal pups (P0 –P4) or embryos from timed
pregnant females (morning of plug � E0.5, E10.5–E18.5) were anesthe-
tized and either perfused (�E16.5) or immersion fixed in 4% parafor-
maldehyde in 0.1 M PBS, pH 7.4. Embryos or isolated brainstems were
postfixed in PFA overnight at 4°C, cryoprotected in 25% sucrose in
PBS, blocked, frozen in OCT, and stored at �75°C. Brainstems were
sectioned in sets of six on a Hacker cryostat at 20 �m, and sections

were thaw mounted onto Superfrost Plus slides and stored at �20°C
until use.

Immunohistochemical and in situ hybridization image acquisition. Fluores-
cent and bright-field images were acquired using a Nikon 90i microscope
(Nikon Instruments), Roper H2 cooled CCD camera (Photometrics), and
Optigrid Structured Illumination Confocal with a Prior (Rockland) mo-
torized translation stage. Pseudocolored images were acquired in Veloc-
ity (PerkinElmer), modified in Photoshop (Adobe) or ImageJ (National
Institutes of Health), and exported as 8 bit JPEG images. Images were
filtered and levels were modified for clarity.

Video recording. Video images were acquired using a Nikon D90 cam-
era with 105 mm Nikkor Macro lens (Nikon Instruments). Video was
processed in IMovie HD (Apple Computer) and individual frames were
exported to Photoshop for analysis.

BrdU and tamoxifen labeling. 5-Bromo-2-deoxyuridine (BrdU) (50 mg/
kg, Roche) was injected intraperitoneally into timed pregnant mice with
sterile saline (20 mg/ml) as previously described (Pagliardini et al., 2003).
Tamoxifen (1–2 mg, 10 mg/ml in vegetable oil) was given by oral gavage in
timed pregnant mice as previously described (Hirata et al., 2009).

Cell counting. Cells or nuclei larger than 5 �m in diameter were
counted from the caudal end of the VII motor nucleus (VIIn) to the
caudal pole of the lateral reticular nucleus (LRN) by visual inspection of
confocal images acquired at 10 –20� within either a 500 �m circle en-
compassing the majority of the VLM, or a 350 �m circle ventral to the
nucleus ambiguus. Levels of digital images were enhanced to maximize
low-level expression. The first section within a set containing the VIIn
was set as 0 �m. Colocalization of �-Gal and mRNA required at least half
of the nucleus to be surrounded.

En bloc recordings (quantal slowing). P0 to P2 CF1 mice were anesthe-
tized by cooling and ether (Merck) and immersed in cooled (4°C) artifi-
cial CSF (aCSF) containing the following (in mM): 125 NaCl, 5 KCl,
24 –28 NaHCO3, 1.25 KH2PO4, 30 D-glucose, 0.8 CaCl2, and 1.25 MgSO4

(Sigma). The medium was equilibrated with carbogen: 95% O2/5% CO2,
pH 7.40. The CNS was removed, decerebrated through a pontomesence-
phalic transection, and transferred to a 2 ml recording chamber. New-
born animals in each experimental group came from at least 3– 4 litters.
No pontobulbar transection was performed.

Spontaneous activity from C3–C5 ventral roots was recorded with
glass suction electrodes (24 –25°C). Electrical signals were amplified by a
low-noise differential amplifier (Grass Instruments), processed with a
full-wave rectifier and leaky integrator (time constant � 100 ms), dis-
played on a monitor, and recorded via Digidata 1320 AD acquisition
system (Molecular Devices). Analyses were performed in Axoscope soft-
ware (Molecular Devices).

Somatostatin was added to the aCSF for a final concentration between
10 �10 and 10 �14

M. In six preparations, SST doses were 10 �12
M with

slight visualization of quantal slowing. Quantal slowing was observed in
four of six preparations using SST doses between 10 �13

M and 10 �14
M.

En bloc recordings (Dbx1 mutant mice). E18.5 Dbx1 LacZ/� and
Dbx1 LacZ/LacZ were removed by cesarean section from anesthetized
timed-pregnant animals. Brainstem–spinal cord preparations extending
from the pontomedullary junction to sacral region of the spinal cord were
isolated by craniotomy and laminectomy from pups, deeply anesthetized by
cooling, and immersed in cold (4°C) aCSF, pH 7.4, containing the following
(in mM): 124.0 NaCl, 5.0 KCl, 2.4 CaCl2, 1.3 MgSO4, 26.0 NaHCO3, 1.2
KH2PO4, and 30 glucose equilibrated with 95% O2 and 5% CO2 to pH
7.4. These preparations were incubated at 25–26°C for up to 2–3 h under
constant aeration and transferred to a 6 ml recording chamber.

Simultaneous spontaneous activity from cervical C2–C5 ventral roots
was recorded with glass suction electrodes. Electrical signals were ampli-
fied by a low-noise differential amplifier (Grass Instruments). The signals
were digitally acquired using an analog-to-digital converter (ADInstru-
ments). LabChart 7 Pro (v7.1.2, ADInstruments) software was used for
signal processing.

Serotonin (5�M) and SST (10�13
M) were added to aCSF and bath applied

to the entire preparation. Low pH (7.0) aCSF contained the following (in
mM): 140.0 NaCl, 5.0 KCl, 2.4 CaCl2, 1.3 MgSO4, 10.0 NaHCO3, 1.2
KH2PO4, and 30 glucose equilibrated with 95% O2 and 5% CO2.
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Slice recordings. Transverse slices (550 �m thick) from neonatal (P0 –
P6) Dbx1 LacZ and Dbx1 CreERT2;R26R EYFP mice were dissected and pre-
pared for recordings as described previously (Hayes and Del Negro,
2007). On-cell and whole-cell patch recordings were obtained using
infrared-enhanced differential interference contrast (IR-DIC) videomi-
croscopy after fluorescent identification of Dbx1 � neurons in both
mouse models. Slices from Dbx1 LacZ/� mice were incubated with
fluorescein-di-�-D-galactopyranoside (FDG). Cleavage of this nonfluo-
rescent sugar moiety in �-gal-expressing cells releases fluorescein. Slices
from Dbx1 CreERT2;R26R EYFP showed robust reporter expression in the
preBötC when tamoxifen was administered on E10.5. aCSF contained
the following (in mM): 124 NaCl, 9 KCl, 0.5 NaH2PO4, 25 NaHCO3, 30
D-glucose, 1.5 CaCl2�2H2O, and 1 MgSO4. Slices were placed into a 0.5 ml
chamber within an upright fixed-stage microscope (Zeiss Microimag-
ing), and aCSF was perfused at �5 ml/min at 27–28°C.

Patch recordings used a HEKA EPC-10 patch-clamp amplifier and
Patchmaster software. Respiratory-related motor output was monitored
from XII nerves with extracellular suction electrodes and a high-gain
differential amplifier with bandpass filtering (0.3–1 kHz) (Dagan Instru-
ments), full-wave rectified, and smoothed for display. Data were ac-
quired using Chart 5 software and a Powerlab 4/30 (ADInstruments). An
8 mV liquid junction potential was corrected online in both current and
voltage clamp.

We used a patch solution containing the following (in mM): 140
K-gluconate, 5 NaCl, 0.1 EGTA, 10 HEPES, 2 Mg-ATP, and 0.3 Na3-GTP
(pH � 7.2 using KOH). We added 2– 4 �l/ml of Alexa Fluor 568 hydra-
zide (Na � salt, Invitrogen) to the patch solution for fluorescent visual-
ization of morphology.

Neurons were visually identified using both IR-DIC videomicroscopy
and epifluorescence illumination (X-Cite 120, EXFO) and a GFP filter to
identify fluorescein- and EYFP-labeled cells. Images were acquired of
recorded Dbx1 neurons. In most cases, a MaiTai Ti:sapphire ultra-fast
pulsed laser (Spectra Physics) tuned to 800 nm was used for two-photon
FDG imaging and transmitted light images (i.e., Fig. 5), and a 543 nm
HeNe laser was used for confocal imaging of Alexa 568. Images were
contrast enhanced and pseudocolored, and a 0.5-�m-radius Gaussian
blur was applied using ImageJ software.

Statistics. All the Dbx1-derived neuron recordings were used to com-
pute mean and SEM for burst amplitude, burst area, half-width (i.e.,
duration at 50% burst amplitude), and the preinspiratory burst latency.
The latency was determined from the point of first depolarization and/or
summating EPSPs above baseline to the maximum slope onset of the
drive output from XII, which marks the inspiratory burst per se. Data
from Dbx1 LacZ/� and Dbx1 CreERT2;R26R EYFP animals were similar, so
the samples (n � 8 and n � 5, respectively) were pooled. Cell counts were
compared using a two-tailed, unequal-samples Student’s t test in Num-
bers (Apple Computer).

Results
To identify transcription factors that might define subpopula-
tions of preBötC neurons, we analyzed the expression, by ISH, of
�75% (�1000) of all transcription factors (TFs) in E13.5 and P0
mouse brain (Gray et al., 2004). While no single TF was specific to
the preBötC, we identified three candidate TFs that were ex-
pressed by subsets of VLM neurons: Lhx9, Pax2, and Phox2b.
Using immunohistochemistry (IHC), we analyzed Lhx9, Pax2,
and Phox2b coexpression with NK1R or SST throughout the
VLM. In the neonate mouse, NK1R expression is continuous
from the caudal pole of the LRN extending beyond the VIIn,
including the neurons of the pFRG and the RTN (Gray et al.,
1999; Stornetta et al., 2006; Rose et al., 2009; Thoby-Brisson et al.,
2009). Thus NK1R expression alone does not identify the bound-
aries of the preBötC in neonatal mice. SST protein or preproso-
matostatin mRNA (data not shown) were limited to the preBötC,
similar to rat (Stornetta et al., 2003). SST largely colocalizes with
NK1R (87.3%, 144/165, n � 4), which suggests that it can serve as
an anatomical marker of the “core” of the preBötC in mice (Fig.

1B,C–E) (Stornetta et al., 2003; Tan et al., 2008). We found that
a subset of Pax2-expressing neurons coexpress SST within the
preBötC (Fig. 1A). Lhx9 and Phox2b were both expressed
throughout the VLM (Gray, 2008); however, they were coex-
pressed with NK1R only outside the preBötC (supplemental Fig. 1,
available at www.jneurosci.org as supplemental material), and nei-
ther was coexpressed with SST. Pax2 did not overlap with Phox2b or
Lhx9 anywhere in the medulla.

PreBötC neurons are derived from Dbx1-expressing progenitors
Adult rat preBötC SST� neurons are glutamatergic and commis-
sural (Guyenet and Wang, 2001; Stornetta et al., 2003). In the
spinal cord, only Dbx1-derived neurons express Pax2, are gluta-
matergic, and project across the midline (Lanuza et al., 2004).
This suggested that preBötC SST neurons might be derived from
Dbx1-expressing progenitors (Lanuza et al., 2004). Dbx1 is only
expressed in progenitor cells, whereas NK1R and SST expression
in preBötC does not commence until E14.5–E15.5, so we could
not directly analyze Dbx1 coexpression with these markers (Pa-
gliardini et al., 2003; Thoby-Brisson et al., 2005).

In heterozygous Dbx1-�-gal knock-in mice (Dbx1 LacZ/�)
(Pierani et al., 2001), in which the persistence of the �-Gal pro-
tein can be used to fate map neurons, we found that the preBötC
core population of NK1R�/SST� neurons are derived from a
subset of Dbx1-expressing progenitors (Fig. 1B–H). �-Gal was
absent, however, from VLM NK1R� motoneurons, below the
central ventrolateral medulla, and putative RTN/pFRG neurons
(supplemental Fig. 2, available at www.jneurosci.org as supple-
mental material) (Nattie and Li, 2002, 2006; Wang et al., 2003;
Takakura et al., 2008; Rose et al., 2009).

As NK1R expression is present on neurons from multiple de-
velopmental origins, we determined the extent to which VLM
SST neurons are Dbx1 derived. We counted �-Gal, SST, and
colocalized immunoreactive neurons in a 500-�m-diameter cir-
cle encompassing the VLM from the caudal pole of the VIIn to the
caudal pole of the LRN. While SST immunoreactivity likely un-
derestimates the number of neurons expressing SST mRNA
(Stornetta et al., 2003), it can serve as simple and reproducible
marker of neurons. Interestingly, the number of �-Gal� cells was
approximately constant throughout the VLM. SST expression, in
contrast, was limited rostrocaudally to an �250-�m-long region
(Fig. 1 I, J ). Of VLM SST neurons, 92.7% coexpressed �-Gal
(433/467, n � 16). Further, SST� neurons are concentrated in
the center of the Dbx1� population dorsoventrally, as 82.4%
(385/467, n � 16) of them are located within a 350-�m-diameter
circle centered on SST expression. This 250 �m by 350 �m col-
umn represents the anatomical extent of the preBötC core in the
perinatal mouse (Ruangkittisakul et al., 2006).

Differential peptide receptor expression has been proposed to
distinguish between subsets of respiratory neurons (Gray et al.,
1999; Doi and Ramirez, 2008, 2010; Ruangkittisakul et al., 2008;
Ballanyi et al., 2009). In rats, injection of somatostatin at high
doses into the preBötC inhibits respiration (Burke et al., 2010).
Because of the inhibitory effects of SST in vivo and in vitro, SST
coexpression in preBötC neurons, and previously published ex-
pression patterns, we also analyzed SST2aR expression within the
preBötC and ventral medulla (Schindler et al., 1998; Schulz et al.,
2000; Llona and Eugenín, 2005; Burke et al., 2010). SST2aR is
expressed throughout the VLM (Schindler et al., 1998). Within
the preBötC, SST2aR is coexpressed with SST peptide and NK1R
in Dbx1-derived neurons (Fig. 1B). Unlike NK1R, however,
SST2aR is also expressed on catecholaminergic neurons (data not
shown) but is not expressed on RTN/pFRG neurons (supple-
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mental Fig. 1C,D, available at www.
jneurosci.org as supplemental material).
These data suggest that SST2aR, similar to
�-opioid receptor, may serve to function-
ally and anatomically differentiate pre-
BötC from RTN/pFRG neurons (Takeda
et al., 2001; Mellen et al., 2003).

Within the preBötC core of Dbx1LacZ/�

mice, �-Gal, SST peptide, NK1R, and
SST2aR partially colocalize (Fig. 1B–H);
86.6% (129/149, n � 4) of �-Gal�SST�

neurons coexpress NK1R (Fig. 1C–E). Un-
like SST� neurons, Dbx1-derived NK1R or
SST2aR-expressing neurons are not lim-
ited to the preBötC core. Outside this re-
gion, there is extensive heterogeneity of
receptor expression in the Dbx1-derived
population (supplemental Fig. 2, available
at www.jneurosci.org as supplemental
material). For example, within the BötC,
there is little �-Gal/SST2aR coexpression,
but clear �-Gal/NK1R coexpression ex-
tending up to the VIIn boundary (Fig. 1H;
supplemental Fig. 2B,C, available at www.
jneurosci.org as supplemental material).
Even within the preBötC core, only 17.0%
(149/875, n � 4) of �-Gal� cells coex-
pressed SST, and 21.6% (474/2191, n � 8)
coexpressed NK1R. In the VLM as a
whole, SST represented only 4.9% of
�-Gal-labeled cells (433/8748, n � 16).
Moreover, at least 44.2% (3868/8748, n �
16) of VLM Dbx1-derived cells lie outside
the preBötC core. This demonstrates that
Dbx1-derived neurons comprise a larger
percentage of putative respiratory neu-
rons in the VLM, which includes, but is
not limited to, the preBötC.

VLM Dbx1 neurons are glutamatergic
In other regions of the CNS, Dbx1 prolif-
erative zones generate glutamatergic,
GABAergic, and cholinergic neurons, as
well as a subset of glia (Lanuza et al., 2004;
Bielle et al., 2005; Fogarty et al., 2005;
Zagoraiou et al., 2009). We used ISH and
IHC to determine the cellular and trans-
mitter identity of Dbx1 �-Gal� cells in the
VLM. At least 44.7% (1630/3645, n � 9)
of VLM Dbx1 �-Gal� cells coexpressed
mRNA for VGlut2, a marker of glutama-
tergic neural identity (Fig. 2A), and 20.7%
(533/2577, n � 5) of �-Gal� cells coex-
pressed S100� protein, a marker of glial
lineage (Fig. 2E). In contrast, very few
VLM Dbx1 �-Gal cells were inhibitory,
with only 2.8% (16/562, n � 3) coex-
pressing glutamic acid decarboxylase 1
mRNA (GAD1), a marker of GABAergic
neurons (Fig. 2 B), 4.8% (54/1118, n � 7) of �-Gal cells coex-
pressing vesicular glycine transporter (Slc6a5) mRNA, a
marker of glycinergic neurons (Fig. 3C), and 2.4% (53/2146,
n � 5) of �-Gal cells coexpressing choline acetyltransferase

(ChAT) protein, a marker of cholinergic neurons (Fig. 2 D). In
general, the inhibitory Dbx1 �-Gal neurons were dorsomedial
to the VLM (Fig. 2 B, C). Adjacent to the XII motor nucleus,
there was extensive overlap of �-Gal with GAD1 or VGlut2

Figure 1. Mouse preBötzinger Complex neurons are Dbx1 derived. A, Confocal pseudocolor images of SST (green) and Pax2
(magenta) coexpression within the mouse preBötC. Arrows indicate coexpression. White arrowheads indicate absence of two-
gene coexpression. B, Coexpression of NK1R (magenta), SST2aR (green), SST (cyan), and �-Gal (yellow) in Dbx1 LacZ/� preBötC.
Lateral images correspond to single-channel images. Colored arrowheads indicate single gene expression. C–H, Partially conver-
gent peptidergic signaling in the mouse preBötC. Confocal pseudocolor images showing the heterogeneity of NK1R (red, C–H ), SST
(green, C–E), SST2aR (green, F–H ), and Dbx1 �-Gal (blue, C–H ) coexpression within the perinatal mouse preBötC between
�600 and �360 �m caudal to the VIIn in the neonatal mouse. Lower images correspond to single-channel images (C–H ). Large
insets correspond to area in small squares. Colored arrows indicate partial coexpression. White arrows indicate complete coexpres-
sion. A–H are from P0 mice. I, Diagram representing sagittal view through the respiratory column (rostral right) of the neonatal
mouse brainstem and relative location of respiratory populations and locations of staining in C–H. J, Graph showing number of
�-Gal (magenta, left) or SST (green, right) cells per hemisection within a 500 �m circle encompassing the VLM by distance caudal
to the VIIn. Cyan box (I, J ) corresponds to the “preBötC core region.” Scale bar, 200 �m. D, Dorsal; L, lateral; A5, A5 region; XIIr, level
of exit of XII motor root from the ventral hindbrain.
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mRNA, consistent with spinal cord expression (Lanuza et al.,
2004). The remaining �25% of �-Gal cells likely include
S100�-negative oligodendrocytes (Fogarty et al., 2005) and
neurons with levels of transmitter marker mRNA below
threshold for detection.

As combined ISH and IHC protocols limit sensitivity, we also
analyzed the coexpression of Dbx1 �-gal in double transgenic
mice in which GFP was driven with either a Slc6a5 or GAD1
promoter (Gong et al., 2003; Chattopadhyaya et al., 2004; Winter
et al., 2007; Morgado-Valle et al., 2010; Winter et al., 2010). The
expression patterns of GFP in both lines were consistent with
both ISH and TF expression in the developing and perinatal
mouse brainstem. Consistent with our ISH analysis, we found
little overlap of �-gal with GFP in Dbx1 LacZ/�;Slc6a5 GFP mice
(supplemental Fig. 3B, available at www.jneurosci.org as supple-
mental material), and overlap of �-gal with Dbx1 LacZ/�;Gad1 GFP

near the midline (supplemental Fig. 3A, available at www.
jneurosci.org as supplemental material). In the VLM, however,
we found no overlap of �-gal, NK1R, or SST2aR with GFP in
either transgenic line (Fig. 2B,C).

Glutamatergic neurotransmission is essential for respiratory
rhythm generation both in vivo and in vitro (Wallén-Mackenzie
et al., 2006). Many current models of the respiratory network
hypothesize the preBötC contains two distinct subpopulations of
glutamatergic neurons. A subset of specialized neurons that gen-
erate the rhythm, and a second population of “follower” neurons
thought to play a role in shaping the pattern of motor output
(Feldman and Smith, 1989; Feldman et al., 1990; Butera et al.,
1999; Koshiya and Smith, 1999; Del Negro et al., 2001; Ramirez
and Garcia, 2007; Smith et al., 2007). Dbx1-derived neurons,
however, only account for a subset of VLM glutamatergic neu-

rons (Fig. 2A). This suggests that non-Dbx1-derived neurons
might play an important role in breathing. Previous work has
shown that nonrespiratory VLM catecholaminergic neurons re-
lease glutamate, express VGlut2, and are derived from Lmx1b-
expressing progenitors and would account for some of the
remaining glutamatergic neurons (Qian et al., 2002; Stornetta et
al., 2002; Gray, 2008). Similar to Dbx1 neurons, we analyzed the
coexpression of VGlut2 in the VLM of Lmx1b LacZ/� mutant mice
(Pressman et al., 2000). The bulk of Lmx1b-derived cat-
echolaminergic, glutamatergic neurons were concentrated ven-
tral to the Dbx1-derived population, but like Dbx1 were found
throughout the VLM (Fig. 2G). To better estimate the extent to
which VLM glutamatergic neurons were derived from Dbx1 and
Lmx1b precursors, we generated Dbx1 LacZ/�;Lmx1b LacZ/� dou-
ble heterozygous mutant mice. We found that these two develop-
mentally defined populations account for nearly all VLM
glutamatergic neurons within the preBötC and adjacent cat-
echolaminergic population (Fig. 2H) (n � 2). This suggests that
the majority of VLM glutamatergic neurons concerned with
breathing are derived from the single Dbx1 progenitor domain.

Developmental origin of VLM Dbx1 neurons
As only a spatially clustered subset of Dbx1-derived neurons co-
express SST, we wondered whether they represented a develop-
mentally unique subpopulation. To test whether preBötC SST
neurons were born at a different time than surrounding SST�

neurons, we injected pregnant Dbx1 LacZ/� mice with a single
dose of BrdU on E9.5, E10.5, or E11.5, to label dividing cells, and
counted the number of �-Gal-, BrdU-, and SST-labeled cells in
P0 animals (Fig. 3A–C,E). With injection at E9.5, 21% (474/2252,
n � 4) of VLM �-Gal neurons coexpress BrdU, while 21.4%

Figure 2. Ventral medullary respiratory glutamatergic neurons are Dbx1 derived. A–E, G, H, Pseudocolor mosaic images of �-Gal (magenta) IHC from Dbx1 LacZ/� (A–E), Lmx1b LacZ/� (G), or
Dbx1 LacZ/�;Lmx1b LacZ/� double heterozygous (H ) mutant mice with bright-field ISH (green) for VGlut2 (A, G, H ), GAD1 (B), Slc6a5 (GlyT2) or (C), or IHC (green) for ChAT (D) or S100 (E) within the
preBötC (A–C, E) or adjacent to the cNA (D). Lateral images correspond to single-channel images. F, Percentage of �-Gal cells in the VLM that coexpress specific genes. Arrows point out coexpression.
Arrowheads indicate absence of coexpression. Scale bar, 200 �m. D, Dorsal; L, lateral; cNA, compact formation of nucleus ambiguus.
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(40/187, n � 4) of VLM SST neurons co-
expressed BrdU. With E10.5 injection,
�-Gal/BrdU coexpression was 33% (1213/
3678, n � 5) and SST/BrdU coexpression
was 28.7% (47/164, n � 6). With E11.5 in-
jection, �-Gal/BrdU coexpression was
17.4% (500/2878, n � 4) and SST/BrdU
coexpression was 9% (33/367, n � 6).
This latter difference is likely due to the
onset of gliogenesis by E11.5 (Fogarty et
al., 2005). These data suggest that preBötC
SST-expressing neurons are born in the
same proportion as non-SST-expressing
neurons.

As the Dbx1LacZ mouse is a heterozygous
mutation, it is possible that the timing of
neural specification might be affected. To
test this, we examined the coexpression of
SST and NK1R in a Dbx1CreERT2 knock-in
mouse with no loss of Dbx1 gene function
(Hirata et al., 2009). Crossing this mouse
with a Rosa26-EYFP (R26R YFP) (Srinivas
et al., 2001) line, we find that application
of tamoxifen at E9.5 labels the majority of
preBötC NK1R�/SST� neurons, which is
consistent with our previous results (Fig.
3D) (n � 5). Together these data suggest
that SST expression with the subset of
Dbx1 neurons is not a consequence of
time of birth.

While the basic dorsoventral develop-
ment of the hindbrain resembles that in
spinal cord (Gray, 2008), we sought to de-
termine whether hindbrain Dbx1 neurons
were derived from the V0 progenitor do-
main (Pierani et al., 2001; Lanuza et al.,
2004). As expected, Dbx1-derived cells of
the caudal hindbrain were limited to the
V0 progenitor domain, as �-gal cells are
bounded by bHLHb5 expression in the
DB4 and V1 progenitor domains (Fig.
3F,G) (Liu et al., 2007; Gray, 2008). Con-
sistent with previous reports, NK1R ex-
pression in the preBötC was first evident
in a small population of cells near the nu-
cleus ambiguus (NA) at E14.5 (Fig. 3H),
and SST protein expression is first evident
at E15.5 (data not shown) (Pagliardini et
al., 2003; Thoby-Brisson et al., 2005). In
the spinal cord, Evx1 defines a specific subpopulation of V0 in-
terneurons. After E13.5 in the hindbrain, however, Evx1 mRNA
and protein are no longer specific to the V0 lineage (data not
shown), preventing our ability to determine V0 subtype-specific
origin of preBötC neurons (Lanuza et al., 2004).

Somatostatin induces “quantal slowing” in en bloc preparations
Although the relationship between Dbx1-derived neurons of the
VLM and respiratory behavior is unclear, the coexpression of SST
and SST2aR within preBötC Dbx1-derived neurons, but not
more rostral RTN/pFRG populations, suggests that SST might
selectively modulate preBötC neurons in a manner similar to
opioids in the rat brain (Gray et al., 1999; Mellen et al., 2003).
Although other subclasses of SST receptors besides SST2aR have

been identified in the brainstem, we predicted that if Dbx1-
derived neurons are an essential part of the respiratory network,
their partial inhibition by SST should produce “quantal slowing”
of the in vitro respiratory period of isolated mouse en bloc prep-
arations (Mellen et al., 2003; Janczewski and Feldman, 2006a,b).

When extremely low concentrations of SST were used (Buscail
et al., 1994), the periods of fictive respiratory output clustered
near integer multiples of the period before drug application.
These data were similar to the effects of low concentrations of
opioids in rat (Mellen et al., 2003). Figure 4 shows the effects of
10�13

M SST on fictive inspiratory motor output en bloc from a P0
mouse displayed as raw traces (A) and plotted on a cycle-to-cycle
basis (B). A histogram of normalized periods from four different
en bloc preparations (10�13 to 10�14

M SST) demonstrates the

Figure 3. PreBötC core neurons are not organized by temporal birth. A–C, Pseudocolor mosaic images in the P0 preBötC
showing coexpression of BrdU, SST, and Dbx1 �-Gal (red, green, blue) after injection at E9.5–E11.5. Lower images correspond to
single-channel images. D, Coexpression of NK1R (red) and SST (blue) in P0 Dbx1 CreERT2/R26R EYFP in sagittal section through the
preBötC after E9.5 tamoxifen application. Note the rostrocaudal extent of coexpression. Large insets (B, D) correspond to area in
small squares. White arrows indicate triple coexpression, and colored arrows indicate single or double expression. E, Graph show
the percentage of Dbx1 �-Gal (magenta) or Dbx1 �-Gal/SST double-labeled cells (cyan) that coexpress BrdU with injections
between E9.5–E11.5. F, G, Dbx1 �-Gal-expressing cells are derived from the V0 progenitor domain, as �-Gal (magenta) expres-
sion is bounded by DB4 and V1 populations labeled with bHLHb5 (green) at E11.5–E12.5. H, NK1R coexpression (green) begins at
E14.5 in mouse Dbx1 �-Gal cells. Insets show larger scale of boxed area. Scale bar, 200 �m. D, Dorsal; L, lateral; C, caudal.
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quantal nature of the SST modulation in four of six preparations
tested (Fig. 4C). These data suggest that mouse RTN/pFRG neu-
rons do not express functional SST receptors. They further sug-
gest that Dbx1 neurons are functional components of the
respiratory network and play a role in frequency modulation.

PreBötC Dbx1-derived neurons are respiratory
Dbx1 neurons in the preBötC are strong candidates for the neu-
rons generating the inspiratory rhythm because of their location,
expression of peptide receptors, and glutamatergic phenotype.
Therefore, we examined the firing patterns of Dbx1-derived neu-
rons in rhythmic brainstem slice preparations that spontaneously
generate inspiratory motor output in vitro. Fluorescent Dbx1-
derived neurons were selected for patch-clamp recording in
Dbx1 LacZ/� (n � 8) and Dbx1 CreERT2;R26R EYFP (n � 8) mouse
slices (Fig. 5A; supplemental Fig. 4A, available at www.jneurosci.
org as supplemental material). Eighteen of the twenty neurons
sampled showed rhythmic inspiratory burst activity in phase with
the XII output (Fig. 5B; supplemental Fig. 4B–D, available at
www.jneurosci.org as supplemental material). In addition, Dbx1
neurons were active in the preinspiratory phase 0.3–1 s before the
XII burst (Fig. 5C). A preinspiratory active phase of duration
400 � 100 ms has been proposed as a feature of putative respira-
tory rhythmogenic neurons (Rekling et al., 1996a; Thoby-Brisson
and Ramirez, 2001). All 18 Dbx1� neurons exhibited low-rate
(2–10 Hz) spiking in current clamp (e.g., Fig. 5B; supplemental
Fig. 4B,C, available at www.jneurosci.org as supplemental mate-
rial). This preinspiratory activity was associated with the tempo-

ral summation of EPSCs in voltage clamp
(supplemental Fig. 4D, available at www.
jneurosci.org as supplemental material).
The duration of the preinspiratory active
phase in Dbx1 neurons measured 377 �
114 ms (mean � SEM) with a range of
129 –1269 ms (193 total cycles of respira-
tory activity recorded in 15 cells). Inspira-
tory bursts were robust in Dbx1 preBötC
neurons, with a mean amplitude of 15.2 �
4.2 mV (range 5–36 mV) and a duration
of 358 � 99 ms (range 29 –1050 ms). In
addition, 8 of the 15 inspiratory Dbx1�

preBötC neurons exhibited characteristic
inspiratory drive potentials with voltage-
dependent spike inactivation (i.e., depo-
larization block) during the bursts (Fig.
5C), consistent with recruitment of the
calcium-activated nonspecific cation cur-
rent hypothesized to generate inspiratory
bursts in preBötC neurons (Del Negro et
al., 2005; Ramirez and Viemari, 2005; Ru-
bin et al., 2009). These data show that pre-
BötC Dbx1-derived glutamatergic
neurons have a behavioral signature of fir-
ing before the onset of motor output
(early I), which has been proposed as a
hallmark signature of rhythmogenic func-
tion (Richter, 1982; Smith et al., 1990; Re-
kling et al., 1996a,b; Hayes and Del Negro,
2007). These data further suggest that
Dbx1-derived neurons meet all the crite-
ria for generating the in vitro inspiratory
rhythm (Feldman and Del Negro, 2006).

Dbx1 is necessary for the formation of preBötC neurons
Dbx1 loss leads to the loss of a number of neural populations
from the basal ganglia to the spinal cord (Pierani et al., 2001;
Lanuza et al., 2004; Hirata et al., 2009). To determine the effects of
the loss of Dbx1 function on VLM populations, we analyzed the
VLM of Dbx1 homozygous null mice (E16.5–E18.5, n � 9). Figure 6
shows the expression of NK1R and SST in the preBötC (panels A
and B) and RTN/pFRG (panel D) in an E18.5 Dbx1 LacZ/LacZ

mouse. �-gal was still present in cells of the VLM. However,
NK1R- and SST-expressing neurons were completely absent
from the area of the preBötC. NK1R was not coexpressed with
�-gal outside of this region. NK1R expression appeared normal
in the NA and RTN/pFRG (Fig. 6A,D). Additionally, SST-
positive processes and puncta were still present within the VLM,
indicating that the preBötC was not the sole source of SST in this
region, consistent with SST receptor expression on nonrespira-
tory populations (Fig. 6B). Together these data suggest that the
development and expression of NK1R and other genes within the
preBötC and pFRG are independently regulated.

The loss of Dbx1 gene function eliminated preBötC NK1R
and SST expression, but did not completely eliminate �-gal ex-
pression from the VLM. The overall number of remaining �-gal-
expressing cells in the VLM decreased by 39% [67.2 � 2.3 cells
per hemisection (Dbx1 LacZ/�), n � 14 vs 41.5 � 1.9 cells per
hemisection (Dbx1 LacZ/LacZ), n � 5, p � 0.001, Student’s t test,
SEM]. In contrast, �-Gal/S100 coexpression increased by nearly
50% (283/943, n � 2). Additionally, we found no overlap of �-gal
with FoxP2 or bHLHb5, markers of V1- and DB4-derived popula-

Figure 4. Low dose SST produces “quantal slowing” of fictive inspiration. A, Integrated fictive inspiratory output of C4 before
(control) and after bath application of 10 �13

M somatostatin. B, Instantaneous inspiratory period before and during SST applica-
tion in same preparation as A. Note the clustering of periods at near-integer multiples of the control baseline period. C, Period
histograms of four different preparations in the presence of 10 �13

M SST showing “quantal” slowing. Tn, Duration of a cycle; Tref,
duration of a control cycle.
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tions (Gray et al., 2004; Liu et al., 2007), in
the VLM of either genotype, and no obvious
increase in either population (data not
shown). These data suggest that �-Gal ex-
pression in Dbx1LacZ/LacZ remains an accu-
rate representation of the Dbx1 promoter
activity during development.

Because the majority of VLM Dbx1-
derived neurons do not express SST, it was
possible that the absence of peptide mark-
ers did not indicate a general loss of VLM
neurons in null mice. To test this, we an-
alyzed the expression of neurotransmitter
markers in Dbx1 LacZ/LacZ mice. Consis-
tent with the elimination of Dbx1-derived
neurons, we observed a near-complete
loss of VGlut2 in the respiratory regions of
the VLM as well as adjacent to the XIIn in
Dbx1 LacZ/LacZ mice (Fig. 6C). VGlut2-
expressing cells are still present in Lmx1b-
derived catecholaminergic neurons. In
these animals, only 3.9% (13/336, n � 3)
of the remaining �-gal-expressing cells co-
expressed VGlut2, while 17.9% (71/397,
n � 3, not shown) expressed GAD1. To
address the possibility that Dbx1 elimina-
tion decreases �-gal expression, but does
not affect other properties of neurons
such as Pax2 expression, we also counted the number of VLM
VGlut2 neurons that coexpress Pax2 but not �-gal. In Dbx1 LacZ/�

animals, 82% (253/307, n � 2) of Pax2-expressing glutamatergic
neurons coexpressed �-gal. The remaining Pax2�/VGlut2�/�-
gal� neurons were distributed throughout the VLM in small
numbers with 1.9 � 0.4 cells per hemisection. In homozygous
mutants, however, the number of Pax2�/VGlut2�/�-gal� neu-
rons per hemisection was statistically unchanged (1.2 � 0.3 cells
per hemisection, n � 2, p � 0.07, Student’s t test), indicating that
the loss of VGlut2 expression corresponds to the loss of Dbx1-
derived neurons. Together, these data suggest a large change in
the cellular composition of the VLM in Dbx1 mutant mice, which
also includes an increase in the ratio of �-Gal-expressing glia and
GABAergic neurons. These data further suggest that Dbx1 gene
function is necessary for the specification of the glutamatergic
neurons of the respiratory column, including the preBötC.

Dbx1 is necessary for inspiration in vivo and in vitro
E18.5 wild-type (13/13) and Dbx1 LacZ/� (14/16) mice show one
or two distinct rhythmic respiratory-like behaviors within 20 min
of cesarean delivery. The first is a classic rhythmic inspiratory
activity involving activation of jaw and diaphragm muscles, ex-
pansion of the rib cage, and compression of the abdominal re-
gion, leading to inspiratory airflow (Fig. 7A; supplemental Video
1, available at www.jneurosci.org as supplemental material). The
second is a transient rhythmic activity of abdominal muscles
without jaw movements, and with a slight compression of ribcage
corresponding to active expiration (Fig. 7B; supplemental Video
2, available at www.jneurosci.org as supplemental material).
Some animals show only inspiratory activity, while others show
both, but there was no difference in either behavior between
wild-type or Dbx1 LacZ/� mice. All animals exhibiting respiratory
behaviors had inflated lungs upon dissection (Fig. 7C).

Dbx1 LacZ/LacZ mice, in sharp contrast, do not make any in-
spiratory, expiratory, or jaw movements, even with extensive tac-

tile stimulation (11 of 11) (supplemental Video 3, available at
www.jneurosci.org as supplemental material). Dbx1 mutant
mice do, however, make locomotor movements, respond to stim-
uli, and show rhythmic heart activity. Furthermore, Dbx1 mu-
tant mice have completely collapsed lungs, indicating the absence
of any inspiratory efforts. Dbx1 mutant lung and diaphragm ap-
pear otherwise normal (Fig. 7D).

As Dbx1-derived neurons are present throughout the brain,
the absence of in vivo behavior may be the consequence of a role
for Dbx1 outside the VLM. To address this, we tested whether
Dbx1 was necessary for inspiratory rhythm in isolated brain-
stem–spinal cord preparations under conditions known to en-
hance respiratory activity. In wild-type or Dbx1 LacZ/� E18.5-P0
mice, large-amplitude inspiratory activity was present in all ani-
mals tested (n � 9) (Fig. 7E). In Dbx1 LacZ/LacZ mice, however, no
inspiratory activity was present from cervical roots (n � 10).

While consistent with the large loss of glutamatergic neurons in
the VLM, the absence of rhythmic activity does not necessarily indi-
cate the inability to generate rhythms. We tested whether we could
rescue respiratory rhythms in Dbx1LacZ/LacZ mice by stimulating the
remaining network with well established respiratory stimulants:
5-HT and acidosis (Perségol and Viala, 1994; Onimaru et al., 1998;
Iizuka, 1999; Peña and Ramirez, 2002; Bodineau et al., 2004;
Iizuka, 2004; Kawai et al., 2006; Ptak et al., 2009). Mutant hind-
brain preparations exhibited no inspiratory-like output in con-
trol aCSF at pH 7.4, nor when exposed to 5 �M 5-HT (although
tonic cervical nerve discharge increased, as expected (5/5). De-
creasing aCSF pH from 7.4 to 7.0 stimulates inspiratory fre-
quency in wild-type animals, but did not induce respiratory-like
activity in Dbx1 mutant preparations (Fig. 7E). As one further
measure, we tested whether a low concentration of SST (10�13

M)
in pH 7.0 aCSF might disinhibit rhythmic cranial root activity as
seen with opioids and rhythmic VII nerve activity in rats (Oni-
maru et al., 2006). However, this combination was without effect
in Dbx1 LacZ/LacZ mutants (Fig. 7E). These data indicate that Dbx1

Figure 5. PreBötC Dbx1-derived neurons are respiratory. A, EYFP-labeled neurons within the preBötC area of Dbx1 CreERT2;
R26 EYFP slice preparation. The recorded neuron was filled with Alexa 568 through whole-cell patch dialysis. The merged fluores-
cence and transmitted light IR-DIC images of the recorded neuron are also shown. B, Current-clamp recording of the neuron with
�100 pA current bias to achieve a baseline membrane potential of �60 mV. The corresponding network activity was measured
as 	XII. Scale bar, 25 �m. C, In another Dbx1 � neuron from the same slice preparation, the sweep speed is increased to illustrate
the preinspiratory active phase and depolarization block of intraburst spiking activity, which are hallmark features of putatively
rhythmogenic preBötC neurons. Baseline membrane potential was �60 mV in C too. Voltage calibration in B applies to B and C.
Separate time calibrations are shown for B and C.
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loss eliminates the ability to express inspiratory behavior both in
vivo and in vitro.

Discussion
Discovering the origin and identity of the neurons constituting a
neural network is key for understanding the neural development
and genetic control of behavior (Garcia-Campmany et al., 2010).
Here we show that NK1R�/SST� neurons of the preBötC repre-
sent a subset of Dbx1-derived neurons. Moreover, Dbx1 specifics
nearly all the glutamatergic neurons of the respiratory VLM.
Dbx1-derived preBötC neurons are respiratory and Dbx1 gene
function is necessary for the formation of respiratory VLM and
for the expression of breathing in vivo as well as in vitro. These
data suggest that Dbx1 is an essential component of the genetic
cascade necessary for inspiration, which has important implica-
tions for understanding the network underlying breathing. While
this paper was in review, a conceptually similar paper also found
an essential role for Dbx1 in the formation of the preBötC and for
breathing both in vivo and in vitro (Bouvier et al., 2010).

Similar to our results, Bouvier et al. (2010) found that the over-
whelming majority of Dbx1 �-Gal-expressing neurons were gluta-
matergic and that they made up approximately half of VLM
glutamatergic neurons. They did not, however, identify the origin or

role of the remaining glutamatergic neurons. We showed, in con-
trast, that the non-Dbx1-derived glutamatergic neurons within the
preBötC region are Lmx1b-derived catecholaminergic neurons
important for modulating blood pressure and cardiovascular
function and likely not directly involved in breathing. This indi-
cates that all preBötC glutamatergic neurons are Dbx1 derived.
Our results are consistent with the finding that the elimination of
Robo3 from Dbx1-derived neurons is sufficient to eliminate bi-
lateral synchronization of respiratory outputs, as few non-Dbx1-
derived Robo3-expressing glutamatergic neurons are present
(Yuan et al., 2002; Bouvier et al., 2010; Renier et al., 2010).

Within the preBötC, a variety of intracellular criteria, includ-
ing intrinsic bursting properties and/or ionic conductances, have
been used to differentiate putative rhythmogenic from follower
neurons. The spectrum of hypotheses regarding the cellular bases
for rhythmogenesis has generated vigorous debate (Del Negro et
al., 2002; Peña et al., 2004; Ramirez and Garcia, 2007). Our study
strongly suggests that all excitatory preBötC respiratory neurons
represent variations of a single progenitor population and not
distinct developmental populations. This is in sharp contrast to
the hypothesized organization of locomotor oscillators where
multiple developmentally defined populations play roles in

Figure 6. Loss of Dbx1 gene function eliminates preBötC and respiratory glutamatergic neurons. A–C, Confocal images showing lack of coexpression of �-gal (magenta) with NK1R (A, green),
SST (B, green), or VGlut2 (C, green, bright-field) in E18.5 Dbx1 LacZ/LacZ preBötC. D, NK1R expression in the pFRG is normal. Note the absence of SST, NK1, and glutamatergic neurons within the preBötC
region. Square indicates enlarged images shown to the right. Arrowheads indicate absence of coexpression. Scale bar, 200 �m. D, Dorsal; M, medial.
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rhythm and pattern generation (Kozlov et al., 2009; Garcia-
Campmany et al., 2010).

Phase of firing during the respiratory cycle has also been pro-
posed to identify distinct functional subclasses of preBötC neu-
rons (Smith et al., 1990; Rekling et al., 1996a; Koshiya and Smith,
1999; Thoby-Brisson et al., 2000; Thoby-Brisson and Ramirez,
2001; Peña et al., 2004; Ramirez and Viemari, 2005; Koizumi et
al., 2008; Rubin et al., 2009). In E15.5 rhythmically active slices,
Bouvier et al. (2010) found that nearly 85% of Dbx1-derived
neurons were rhythmically active and in phase with inspiratory
output as measured by calcium imaging, and that 70% were
rhythmically active and received phasic inspiratory depolariza-
tion with whole-cell recordings. We extend these results and find
that an early-I firing phenotype in postnatal rhythmic slices is a
characteristic property of nearly 95% of postnatal Dbx1-derived
glutamatergic neurons. This is in contrast to the firing pattern of
genetically identified inspiratory glycinergic neurons within the
preBötC, which begin their inspiratory-related firing nearly in
sync with motor output (Morgado-Valle et al., 2010). What role
intrinsic conductances and/or network synaptic process play in
the early-I phenotype is still incompletely understood (Rubin et
al., 2009). Nevertheless, these data suggest that in the absence of
recordings from genetically labeled preBötC glutamatergic neu-
rons, an early-I firing pattern represents a reasonable approxima-
tion for identifying excitatory neurons. Further, they suggest that
transmitter identity can be inferred from the rhythmic inspira-
tory firing patterns of neurons in the literature (Thoby-Brisson
and Ramirez, 2001).

The respiratory portion of the VLM contains anatomically
and functionally distinct subdivisions that contain both excita-

tory and inhibitory interneurons in addition to the preBötC
(Schreihofer et al., 1999; Alheid and McCrimmon, 2008). Bou-
vier et al. (2010) focused exclusively on the development of
Dbx1-derived neurons of the preBötC. Our finding that Dbx1-
derived neurons extend throughout the VLM and represent
nearly all VLM non-catecholaminergic, glutamatergic neurons
suggests that excitatory neurons outside the preBötC play a role
in shaping respiratory output. This is further reinforced by the
heterogeneous pattern of NK1R and SST2aR expression within
the VLM that may explain the ability of Substance P to promote
sigh activity in vitro by acting on rostral brainstem regions (Lieske
et al., 2000; Doi and Ramirez, 2008; Ruangkittisakul et al., 2008).
The recent finding that the introduction of a fragment of the SST
promoter into preBötC neurons in adult rat drives expression of
GFP in a larger percentage of preBötC neurons than normally
express SST is consistent with a developmentally shared origin of
all preBötC excitatory neurons (Tan et al., 2010). We also find
that the VLM contains a subset of Dbx1-derived glia, whose spe-
cific role in respiratory modulation is still incompletely under-
stood (Gourine et al., 2010).

Whether the specific peptide or peptide receptor expression
within individual VLM neurons identifies unique functional
populations or merely components of a larger distributed net-
work is unknown. We hypothesize that preBötC core neurons
represent a highly connected, and thus specialized, subset for
communicating respiratory oscillations to the larger Dbx1-
derived respiratory population and that their elimination affects
breathing by disrupting the propagation of excitatory neuro-
transmission in the respiratory network (Del Negro et al., 2002;
Rubin et al., 2009). The extent to which Dbx1-derived or other

Figure 7. Dbx1 gene function is necessary for breathing in vivo and in vitro. Perinatal mice show two distinct respiratory patterns. Cropped video frames showing the same E18.5 wild-type mouse
at rest (left), during an active respiratory movement (middle; A, inspiration from supplemental Video 1; B, expiration from supplemental Video 2; both videos available at www.jneurosci.org as
supplemental material), and a pseudocolor negative image difference overlay (right). Frames are separated by 0.13 s. Arrows (A, B) indicate the region of largest movement. Magenta regions
(arrowheads) indicate compression during movement. Green regions indicate expansion during movement. C, Wild-type mice with a respiratory pattern have inflated lungs both in situ and when
isolated. D, Dbx1 LacZ/LacZ mice have collapsed but normal lungs in situ and when isolated. Scale bar, 1 cm. E, Integrated (upper) and raw fictive inspiratory output of C1 from E18.5 WT (left) and
Dbx1 LacZ/LacZ mice. Wild-type mice show rhythmic respiratory activity and increased response to acidosis (left two traces). Dbx1 LacZ/LacZ show no respiratory activity in response to 5 �M 5-HT,
acidosis, or acidosis and SST (10 �13

M). Note increases in baseline motor activity after 5-HT. Calibration: 10 s.
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glutamatergic neurons outside the preBötC core can show plas-
ticity after preBötC lesion remains to be determined (Gray et al.,
2001; McKay et al., 2005; McKay and Feldman, 2008). The find-
ing that Dbx1-derived, glutamatergic neurons extend through-
out the VLM, however, suggests that Dbx1-derived neurons
outside the preBötC may be capable of aspects of respiratory
rhythm generation given the maintenance of sufficient connec-
tivity (Forster et al., 2010; Neumueller et al., 2010).

Dbx1 mutant mice do not generate either inspiratory or expi-
ratory output in vivo, nor do they generate inspiratory output in
vitro. The data suggest that the loss of inspiratory activity in Dbx1
mutants is a direct consequence of the loss of VLM glutamatergic
neurons and that remaining brainstem populations are insuffi-
cient to recover respiratory output. We further hypothesize the
inspiratory rhythm is generated by VLM Dbx1-derived neurons,
including the preBötC, as Dbx1-derived neurons meet many of
the criteria for respiratory rhythm generation (Feldman and Del
Negro, 2006). It should be pointed out, however, that Dbx1-
derived neurons in the spinal cord have been shown to directly
drive motoneurons (Lanuza et al., 2004). It is possible that the
absence of respiratory behavior may be at least in part the conse-
quence of the inability of non-Dbx1-derived neurons outside the
VLM to propagate their signal to motoneurons (Koizumi et al.,
2008). While the loss of inspiratory activity might be expected by
the absence of VLM glutamatergic neurons, expiratory activity
has been proposed to be generated by Atoh1- and/or Phox2b-
expressing populations. It remains to be determined whether
Dbx1-derived populations within the VLM or elsewhere in the
CNS are necessary for the expression of independent expiratory
activity in vivo or in vitro.

In summary, we provide a genetic description for a population
of neurons necessary for a fundamental homeostatic behavior,
breathing. These data suggest that the network underlying the
breathing rhythm is genetically encoded and may represent an
ideal model system for examining the functional, developmental,
and evolutionary origins of behavior. We propose that breathing
behavior is generated by a genetically definable population and
that all the properties that comprise this quintessential mamma-
lian CPG, including the rhythmogenic, synaptic, and intrinsic
membrane properties of the constituent neurons, can be gener-
ated from a single developmental precursor population. These
data may provide a genetic framework for addressing the evolu-
tion of neural circuits as well as for understanding disorders of
breathing with a central etiology, such as apnea of prematurity,
sudden infant death syndrome, central sleep apnea, and respira-
tory failure in neurodegenerative disorders such as multiple sys-
tem atrophy or Perry syndrome (Feldman and Del Negro, 2006).
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14894 • J. Neurosci., November 3, 2010 • 30(44):14883–14895 Gray et al. • Origin of PreBötzinger Complex Neurons
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