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Oscillation Regularity in Noise-Driven Excitable Systems with Multi-Time-Scale Adaptation
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We investigate oscillation regularity of a noise-driven system modeled with a slow after-

hyperpolarizing adaptation current (AHP) composed of multiple-exponential relaxation time scales.

Sufficiently separated slow and fast AHP time scales (biphasic decay) cause a peak in oscillation

irregularity for intermediate input currents I, with relatively regular oscillations for small and large

currents. An analytic formulation of the system as a stochastic escape problem establishes that the

phenomena is distinct from standard forms of coherence resonance. Our results explain data on the

oscillation regularity of the pre-Bötzinger complex, a neural oscillator responsible for inspiratory

breathing rhythm generation in mammals.

DOI: 10.1103/PhysRevLett.101.088101 PACS numbers: 87.19.lc, 87.19.ln

The oscillation period of a neural dynamical system
typically depends on the relaxation time scales of one or
more adaptation processes that terminate the duty cycle.
The particular duty cycle of the neural system could be a
spike or burst of spikes in a single neuron, or an oscillation
in the average firing of a population of neurons. It is
common that the relaxation of these adaptation mecha-
nisms is modeled in terms of an outward after-
hyperpolarization (AHP) current with a single exponential
decay to a reexcitation threshold. An important observation
of single-time-scale noise-driven systems is that the oscil-
lation regularity, as measured by the coefficient of varia-
tion (CV) of the periods (standard deviation over the
average of the period), can exhibit nonmonotonic behavior
as a function of noise strength (e.g., coherence resonance
[1]), but exhibit monotonic increase in regularity (decrease
of CV) as a function of excitability [2]. However, it is
common that neural systems possess more than one adap-
tation mechanism spanning a range of time scales [3]. An
important issue that follows from this is how the regularity
of oscillations in noise-driven systems are affected by
multi-time-scale adaptation.

In this Letter we investigate what impact the interaction
of white noise inputs and multi-time-scale adaptation pro-
cesses have on the regularity of oscillations in neural
systems, and then apply these results to the neural oscil-
lator involved in generating the mammalian breathing
rhythm. In contrast to single exponential time-scale sys-
tems, we find that if the multiple AHP relaxation time
scales are sufficiently separated so as to exhibit a biphasic
decay composed of a relatively fast decay followed by a
relatively slow decay, then the system will exhibit a non-
monotonic peak in the CV for intermediate excitability, set
by an input current. We show that this phenomenon holds
for a wide range of noise strengths, and is distinct from
standard forms of coherence and anticoherence resonance
[1,2]. In addition, we show how the phenomenon can be

understood in terms of a simple stochastic escape problem
from a slowly varying potential well governing noise-
driven motion to a threshold. Finally, our results provide
a novel explanation for experimental data regarding oscil-
lation regularity in the pre-Bötzinger complex (pre-BötC)
isolated in a rhythmically active mammalian in vitro slice.
The pre-BötC is the kernel for the mammalian inspiratory
breathing rhythm [4], with periods from 2–3 min to 2 sec,
suggesting that a wide range of adaptation time scales may
be involved. These oscillations have recently been mod-
eled as a noise-driven recurrent excitatory neural network
whose dynamics can be captured by a low-dimensional
mean-field model similar to that studied below [5].
Consider a simple cubic FitzHugh-Nagumo-like model

for the activity z of an oscillatory system:

_z ¼ �zðzþ 1Þðz� 1Þ �H þ I þ ��ðtÞ; (1)

where �ðtÞ is an uncorrelated Gaussian process: h�ðtÞi ¼ 0,
h�ðtÞ�ðt0Þi ¼ �t;t0 , I is the input current, and � is the noise

strength. The variable H ¼ P
M
j¼1 hj is the sum of AHP

currents hj, each governed by the equation

�jðzÞ _hj ¼ �hj þ ajgðzÞ; j ¼ 1 . . .M; (2)

where �jðzÞ ¼ �j þ ð�up � �jÞgðzÞ, and �j are the relaxa-

tion time constants, gðzÞ ¼ 1=ðexp½�80ðz� 0:5Þ� þ 1Þ 2
ð0; 1Þ is a sigmoidal activation curve with threshold 0.5 and
gain 80 (which approximates a Heaviside function), and
�up ¼ 2 msec is the activation time constant for each AHP

current: when the system is in the active phase (z > 0:5),
each of the AHP currents activates toward their respective
aj activation strengths at the same rate 1=�up, but after

activity termination (z < 0:5), each AHP relaxes back
toward zero with time constants �j, respectively. Our

AHP model is simple but the underlying mechanisms can
be diverse [3], from fast voltage-gating (millisecond time
scales), slower second-messenger activation (subsecond
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time scales), to much slower regulatory phosphorylation
and ion channel insertion (second and multisecond time
scales). The cubic function in (1) has been employed to
model spike activity as in the FitzHugh-Nagumo model [1]
as well as approximate mean-field models of population-
level activity [5]. With zero noise, z and H settle to a low
activity steady state for I < 0:4. At I � 0:4 the steady state
disappears and forms an oscillation through a saddle node
on an invariant cycle (SNIC) bifurcation. The oscillations
also terminate for I above a ceiling threshold; however we
do not investigate oscillations near this upper threshold.

First, keeping noise strength constant (� ¼ 0:1), we
perform Monte Carlo simulations to compute the CV and
the period as a function of the input I and the AHP time-
scale composition. Figure 1 left column [panels (a)–(c)]
shows the mean frequency 1=hTi, standard deviation of the
periods �T , and the CV, respectively, comparing a single-
time-scale AHP system �1 ¼ 10 msec (a1 ¼ 2, solid black
dots), with four two-time-scale systems possessing both
the short time-scale �1 at a1 ¼ 1:5 strength with a2 ¼ 0:5
strength (note a1 þ a2 ¼ 2) of varying longer time-scale
separations �2 ¼ 100, 500, 1000, and 5000 msec, indicated
by ball-line, dashed, dotted, dot-dashed, and solid lines,
respectively. Each graphed point represents 400 oscilla-
tions. The right column of Fig. 1 shows the same results
computed via the analytic stochastic escape formulation
which is derived later. Decreasing the excitability below
the deterministic threshold for oscillations (I � 0:4), indi-
cated by the vertical dashed line, reduces the frequency to
near zero (a) while the �T (b) diverges, and the CV

(c) approaches unity at varying rates for each model.
This below-threshold behavior is standard for all noise-
driven systems regardless of AHP dynamics. However,
increasing excitability above threshold reveals heteroge-
neous behavior: The single-time-scale system exhibits a
monotonically decreasing then flat I-CV relationship while
the two-time-scale models produce large nonmonotonic,
peaked I-CV relationships, where the peak amplitude in-
creases with the time-scale separation. The CV peak local-
izes at the points of maximal positive acceleration in the
I-firing rate curve (a).
To understand the Monte Carlo data [Figs. 1(a)–1(c)],

we note that the duty cycle shapes are uniform over I so
HðtÞ is reset to a similar value every cycle. Hence, there is
little correlation between subsequent periods and there are
no mixed-mode oscillations. Suppose the duty cycle ter-
minates at time t ¼ 0 and the AHP components are reset to

their maximal values, and therefore decay as HðtÞ ¼
P

jaje
�t=�j . Since the HðtÞ dynamics is slow relative to

(1), we can formulate the dynamical system as a stochastic
escape from a slowly varying potential well Uðx; tÞ, where
x represents the excitability state of the system. We derive
Uðx; tÞ for the model (1) and (2) by approximating the
dynamics by the normal form of the SNIC bifurcation

_x ¼ x2 �HðtÞ þ Iþ ��ðtÞ; (3)

where Uðx; tÞ ¼ �x3=3þ ðI �HðtÞÞx. For each time t
such that HðtÞ � I ¼ �ðtÞ> 0, where the system is below
threshold for automatic firing, we calculate the mean first
passage time [6] Tð�ðtÞÞ from the bottom of the well at the

stable fixed point x�ðtÞ ¼ � ffiffiffiffiffiffiffiffiffi
�ðtÞp

of (3) to a point x0ðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðtÞ þ 1

p
that is beyond the noise dominated bottleneck in

the vicinity of the unstable fixed point xþ ¼ ffiffiffiffiffiffiffiffiffi
�ðtÞp

of (3).
Note that to compute Tð�ðtÞÞ, the reflecting boundary at

x ¼ �1 is replaced by x ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðtÞ þ 2

p
[7]. Following

previous studies of molecular bond breaking [8], we as-
sume adiabatic changes in Uðx; tÞ and approximate the
probability of escape from the well during the inter-
val ½t; tþ dtÞ by �ð�ðtÞÞPðtÞdt, where �ð�ðtÞÞ ¼
Tð�ðtÞÞ�1, and PðtÞ is the proportion not escaped by time

t. It follows that _PðtÞ ¼ ��ð�ðtÞÞPðtÞ, so that PðtÞ ¼
e�

R
t

0
�ð�ðsÞÞds�ð�ðtÞÞ, and the waiting time density is

pðtÞ ¼ � _PðtÞ ¼ �ð�ðtÞÞe�
R

t

0
�ð�ðsÞÞds. Thus, CV ¼

�T=hTi with �2
T ¼ hT2i � hTi2, hTi ¼ R1

0 PðtÞdt, and

hT2i ¼ R1
0 t2pðtÞdt, generating the results in Figs. 1(d)–1

(f), establishing that the stochastic escape formulation is
qualitatively similar to the full system (1) and (2). We find
that the adiabatic formulation is valid provided the AHP
time scales are at least an order of magnitude larger than
the time scale of (3).
The peaked I-CV relationship is robust to noise varia-

tion. Using the stochastic escape formulation, Fig. 2 shows
I vs mean frequency (a), and I vs CV (b), over a range of
noise values for the widely separated time-scale model
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FIG. 1. Five AHP currents for Monte Carlo simulations (a)–(c)
and the stochastic escape formulation (d)–(f). The mean firing
rate 1=hTi, SD of the period �T , and CV, are shown for range of
inputs I. The vertical dashed line indicates deterministic thresh-
old of oscillation. The single-time-scale model (�1 ¼ 10 msec)
is compared with four two-time-scale models [panel (b) legend]:
the wider the two-timecale separation, the greater the peak in the
CV.

PRL 101, 088101 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

22 AUGUST 2008

088101-2



shown in Fig. 1 (�2 ¼ 5000, solid line). The thicker gray
line represents the noise level used in Fig. 1 (� ¼ 0:1). The
CV preserves the large peak over a wide range of noise
levels but shifts to lower inputs and becomes broader. At
high noise levels the peak ‘‘washes out’’ to a monotonic
decreasing I-CV relationship. The noise level that achieves
this is very large (� ¼ 0:6), producing fluctuations nearly
as large as the duty cycles in the full oscillator model (1)
and (2). The inset in Fig. 2(a) shows �ð�Þ over the range of
noise values, with the largest amplitude curve for the
largest noise value � ¼ 0:6, and smaller curves for the
respective smaller noise values. Essentially, the broader
tuning of �ð�Þ for large noise is less sensitive to the slow
dynamics of �ðtÞ and results in a ‘‘washout’’ of the CV
peak. We note also that noise-dependent anticoherence
resonance is observed in Fig. 2 for fixed I, similar to that
found in [2].

The I-CV phenomena in Figs. 1 and 2 are not unique to
the oscillator model in (1) and (2). We have found similar
peaked I-CV relationships for multi-time-scale adaptation
in an integrate-and-fire model, a Wilson-Cowan-type
(SNIC) nonlinear oscillator, and a Hopf-type oscillator
for both Monte Carlo and escape formulations (data not
shown). All of these models can be described in terms of a
stochastic escape problem involving an escape rate �ð�Þ,
and a slow, monotonically decaying function �ðtÞ ¼
HðtÞ � I. The phenomenon is relatively insensitive to a
particular model choice because �ð�Þ for many standard
models including (3) can be approximated well by a
Kramer’s rate [6] �ð�Þ � ��2 expð���=�2Þ, where �,
�> 0 are parameters, with� relating� to the height of the
potential well and � accounting for the spike latency. The
inset in Fig. 2(a) establishes this for the FitzHugh-
Nagumo-like model (3).

The CV peak for the two time-scale models in Figs. 1

and 2 is understood by noting that the shape of the HðtÞ ¼
1:5e�t=�1 þ 0:5e�t=�2 is highly biphasic when �2 � �1,
possessing first a fast decaying phase followed by a slowly
decaying phase. The peak of the CV occurs where the
frequency-limiting component of the AHP mechanism
transitions from the slow to the fast phase [e.g., I� 0:45
in Fig. 1(f)]. We note that no single-time-scale exponential
has a sharp enough transition to produce a CV peak.
However, a CV peak is observed for any HðtÞ having a
sharp transition and is not a special consequence of
multiple-exponential decay. To show this we take a simple
continuous piecewise-linear decay model HðtÞ ¼
½ð1� t=�1Þ�ðtb � tÞ þ ðð1� tb=�1Þ � ðt� tbÞ=�2Þ�ðt�
tbÞ�þ, where tb is the transition time between phases, the
fast and slow phases are set by �1 and �2, respectively,� is
the Heaviside function, and ½x�þ ¼ x for x > 0 and 0 for
x � 0. Figures 3(a) and 3(b) show two such functions
(thick gray lines): a more biphasic, wider time-scale sepa-
ration in (a) (�1 ¼ 7, �2 ¼ 55, in seconds), and a narrower
time-scale separation in (b) (�1 ¼ 12, �2 ¼ 40). The wait-
ing time densities pðtÞ (thin solid lines, rescaled to have
unit height) computed with Kramer’s approximation, are
drawn on the same level as their associated I values (hori-
zontal dashed lines). The parameter choice for Kramer’s
rate (� ¼ 1, � ¼ 10, � ¼ 0:1) resembles �ð�Þ thick line
in Fig. 2(a) inset. We set tb so that I ¼ 0:25 ¼ HðtbÞ is the
slow to fast transition for both models. Below threshold
[I < 0, rightmost pðtÞ] the density climbs up then decays
exponentially at a single rate �ð�IÞ, revealing Poisson-like
escape after a delay. Above threshold (I > 0) all escape
events precede the point of intersection HðtÞ ¼ I for in-

0

0.5

1

1.5

 H
(t

),
 p

(t
)

 wider separation A

0 5 10 15 20

0

0.5

1

1.5

 H
(t

),
 p

(t
)

 t (sec)

 narrower separation B

0

5

10

15

20

25

 〈T
〉

 

 

 C  wider separation
 narrower separation

0

0.5

1

 σ
T

 D

0 0.2 0.4 0.6
0

0.05

0.1

 C
V

 E

 I

FIG. 3. Piecewise-linear AHP model. (a),(b) HðtÞ (thick gray
line) and pðtÞ (thin solid lines) for wider time-scale separation
and narrower time-scale separation, respectively. pðtÞ is drawn
on the level with its associated input: I ¼ �0:05, 0.01, 0.08,
0.15, 0.2, 0.33, 0.46, 0.6 (horizontal dashed lines). (c)–(e) period,
SD, and CV, respectively, for both HðtÞs.

0

10

20

30

40
 1

/〈T
〉 (

1/
se

c)
 high noise
(σ = 0.6)

 low noise
 (σ = 0.035)

 A

 0.6  0.4  0.2 0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

 C
V

 I

 B

 low noise (σ = 0.035)

 high noise
(σ = 0.6)

0 0.2 0.4 0.6
0

0.2

0.4

 λ
 (

∆)

 ∆

 high noise
(σ = 0.6)

FIG. 2. Varying noise strength from � ¼ 0:035 to 0.6 for the
escape model with �2 ¼ 5000. The thicker gray line represents
� ¼ 0:1, the same as in Fig. 1(f). (a) Rate 1=hTi and �ð�Þ
(inset), and (b) the CV.

PRL 101, 088101 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

22 AUGUST 2008

088101-3



stantaneous firing. For inputs intersecting sufficiently be-
low the transition point I ¼ 0:25, the associated densities
have a similar shape, but are translated on the t axis
proportional to I, producing a linear decline in average
periods (c), but constant �T (d). Here, �T is constant
because the rate of approach to threshold [�ðtÞ ! 0] is
the same for a range of Is intersecting HðtÞ on the slow
phase. This produces an increasing CV (e). When I � 0:25,
where the system transitions from the slow to the fast
phase, the periods decrease at a lower linear rate and �T

drops dramatically to a lower but constant value, reflecting
a different rate of approach to threshold for�ðtÞ on the fast
phase of HðtÞ. This transition through I � 0:25 produces
the peak in the CV as �T drops. For the wider separated
time-scale model [solid line in (c)–(e)] this transition is
more substantial than the less separated time-scale model
[dashed line in (c)–(e)], producing a larger CV peak.
Beyond I ¼ 0:25 the CV starts to increase again, due to
constant �T and decreasing hTi.

The peaked CV of a noise-driven system with biphasic
adaptation provides an explanation for input-controlled
oscillation regularity in a slice preparation containing the
pre-BötC. The in vitro oscillation periods can range from
2–3 min down to 2 sec in neonatal mice, controlled by
excitability set by bath concentration of potassium ½Kþ�0.
Figure 4 shows the frequency (a) and CV (b) of oscilla-
tions, measured from XII cranial nerve, over a range of
½Kþ�0 for n ¼ 13 slices. For each slice the frequency was
first measured at 9 mM control (frequency: 0:20� 0:02 Hz
and period: 5:7� 0:51 s) then washed successively from
3 mM producing very slow rhythms (frequency: 0:008�
0002 Hz and period: 143:2� 3:9 s), up to 12 mM produc-
ing the peak frequency at 11 or 12 mM: 0:29� 0:02 Hz
(period: 3:5� 0:2 s) and normalized to the control fre-
quency. After 12 mM, each slice was brought back to

9 mM for consistency. The peaked CV for intermediate
½Kþ�0 levels located at the point of maximal acceleration in
the rate curve is evident. According to our theory, the wide
range of periods and the peaked CV is due to a widely
separated multi-time-scale adaptation. Since little is known
about the particular adaptation mechanisms in the pre-
BötC slice [9], this provides an important experimental
prediction.
In conclusion, our work demonstrates that noise-driven

oscillatory systems with highly separated multiple time-
scale adaptation, exhibiting biphasic fast-then-slow decay
can produce nonmonotonic relationships between oscilla-
tion regularity (CV) and excitability, exhibiting a peak of
maximal oscillation incoherence for intermediate inputs.
Such a process may account for experimental observations
regarding oscillation regularity in breathinglike rhythms of
the pre-BötC. We note similar phenomena exist with more
than two time scales provided the time-scale components
cluster in two separated aggregates. Furthermore, double-
peaked input-CV profiles can be observed with separated
three-time-scale aggregates (data not shown). The mecha-
nism underlying such input-dependent oscillation regular-
ity is distinct from noise-dependent coherence and
anticoherence resonance found in single-time-scale adap-
tation systems, which only exhibit monotonic decreasing
I-CV relationships [2]. Moreover, the formulation of the
phenomenon as a stochastic escape problem shows it to be
generally applicable to any noisy oscillator for which
threshold crossing can be described in terms of escape
from a potential well whose height decreases slowly and
biphasically. Analogous results may also apply to molecu-
lar bond breaking for appropriately chosen time-dependent
forcing.
WHN is supported by RTG 0354259, and NSF

DGE0217424; CADN by NSF IOB 0616099; and PCB
by NSF DMS0515725.
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