Visual acuity in pelagic fishes and mollusks

YL Gagnon
TT Sutton
S Johnsen

Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles

Part of the Aquaculture and Fisheries Commons

Recommended Citation
Gagnon, YL; Sutton, TT; and Johnsen, S, "Visual acuity in pelagic fishes and mollusks" (2013). VIMS Articles. 885.
https://scholarworks.wm.edu/vimsarticles/885

This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
Visual acuity in pelagic fishes and mollusks

Yakir L. Gagnon, Tracey T. Sutton, Sönke Johnsen

Department of Biology, Duke University, Durham, NC 27708, USA
College of William & Mary, Virginia Institute of Marine Science, Gloucester Point, VA, USA

A R T I C L E I N F O

Article history:
Received 26 June 2013
Received in revised form 13 August 2013
Available online 30 August 2013

Keywords:
Eye
Lens
Optics
Point spread function
Contrast
Deep-sea

A B S T R A C T

In the sea, visual scenes change dramatically with depth. At shallow and moderate depths (<1000 m), there is enough light for animals to see the surfaces and shapes of prey, predators, and conspecifics. This changes below 1000 m, where no downwelling daylight remains and the only source of light is bioluminescence. These different visual scenes require different visual adaptations and eye morphologies. In this study we investigate how the optical characteristics of animal lenses correlate with depth and ecology. We measured the radius, focal length, and optical quality of the lenses of pelagic fishes, cephalopods, and a gastropod using a custom-built apparatus. The hatchefishes (Argyrops cleopus culeatus and Sternopytix diaphana) and the barrel-eye (Opisthoproctus soleatus) were found to have the best lenses, which may allow them to break the counterillumination camouflage of their prey. The heteropod lens had unidirectional aberrations that matched its ribbon-shaped retina. We also found that lens angular resolution increased with depth. Due to a similar trend in the angular separation between adjacent ganglion cells in the retinas of fishes, the perceived visual contrast at the retinal cutoff frequency was constant with depth. The increase in acuity with depth allows the predators to focus all the available light bioluminescent prey animals emit and detect their next meal.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The ocean is a challenging environment for visual animals. Downwelling light gets quickly absorbed and scattered by the water and illumination decreases exponentially with depth becoming almost completely blue after ~50 m (Lythgoe, 1979). At epipelagic depths (0–200 m), the monochromatic downwelling light illuminates objects creating extended scenes – targets with a visible surface area. Many complex adaptations have evolved to detect prey, predators, and conspecifics in this relatively illuminated zone. These include polarization vision (Waterman, 1981), ultraviolet vision (Bowmaker & Kunz, 1987; Browman, Novales Flamarique, & Hawryshyn, 1994), colored ocular filters (Muntz, 1976), and offset visual pigments (Loew et al., 1993; Lythgoe, 1984). At mesopelagic depths (200–1000 m) some predators hunt by searching for prey silhouetted against the dim downwelling light using their large upward-facing eyes (Muntz, 1990; Warrant, Collin, & Locket, 2003). Below 1000 m, downwelling light is too dim for vision. At these bathypelagic depths (>1000 m), bioluminescence is the only source of light and the visual scene is dominated by point sources with no visible surface area (although some medusae, ctenophores, and siphonophores may be considered as extended bioluminescence sources). Not much is known about the visual adaptations in this depth zone. However, recent studies have shown that bathypelagic fishes have surprisingly high anatomical acuity in their specialized foveae (the region where ganglion cell density is the highest in the retina) (Wagner et al., 1998; Warrant, 2000). The importance of vision to bathypelagic fishes is emphasized by the energetic cost required to maintain high visual acuity (Laughlin, de Ruyter van Steveninck, & Anderson, 1998), despite the scarcity of available nutrients. However, the amount of information that reaches their retina is initially limited by the optical quality of their lenses.

In aquatic vertebrates, the cornea is surrounded by water on the outside and watery aqueous humor on the inside, both of which have similar refractive indices. In contrast to terrestrial corneas which are surrounded by air on the outside, the refractive power of most aquatic corneas is therefore negligible (Mandelman & Sivak, 1983; Matthiessen, 1886). Numerous cephalopods have circumvented the cornea altogether: their lenses are in direct contact with the surrounding water. In both cases, the task of focusing light on the retina is thus left to the lens alone. In order to maximize refractive power, aquatic lenses are typically spherical in shape (Pumphrey, 1961; Sivak & Luer, 1991; Walls, 1942). In addition, spherical lenses need to be gradient-index lenses (i.e. have a radially symmetrical refractive index gradient) to minimize longitudinal spherical aberrations (Maxwell, 1854). A lens' aberration and its optical quality can be quantified by measuring the lens' Point Spread Function (PSF).
Spread Function (PSF) – which can be represented by imaging a point source after it has been focused by the lens. An ideal lens would focus the rays emitted from the point source to an identical point on the other side of the lens. The size of the focused point depends on the aperture due to diffraction but also on the optical quality of the lens. The distribution of light intensities at the focused point characterizes the lens’ aberrations.

Many animals integrate the signals from multiple adjacent retinal ganglion cells to increase their eyes' sensitivity in dim environments. This is known as spatial summation (Land & Nilsson, 2002; Warrant & Locket, 2004). However, in an environment where most of the visual cues are point sources (i.e. not extended scenes), spatial summation will not increase sensitivity because the light falls on one photoreceptor (Warrant, 1999). It is therefore believed that the image of a point source focused by a lens of a deep-sea animal should not be larger than the receptive field of its retinal ganglion cells (Warrant, 2000). Because bathypelagic fishes are known to have smaller angular separation between adjacent ganglion cells in their retina (and therefore higher anatomical acuity) than shallow dwelling fishes (Wagner et al., 1998; Warrant, 2000), it follows that fishes living in deeper waters should have lenses that are capable of resolving finer (angular) details than fishes living in shallower waters.

The effect of lens quality on the visual acuity of pelagic animals is unknown. We therefore measured the lens PSF, radius, and focal length of 24 fish species, five cephalopods, and one heteropod using a custom-built apparatus. These species inhabit a wide range of depths, from bright shallow epipelagic waters down to dark bathypelagic depths. By quantifying the optical quality of each species’ lens we hoped to understand how each lens is adapted to its respective visual tasks.

2. Materials and methods

2.1. Sample collection

Pelagic fishes and mollusks were collected using an opening/closing Tucker trawl with a 10-m² mouth and thermally protecting cod end (Childress et al., 1978) on two separate research cruises on the research vessel Endeavor off the coast of Rhode Island (RI), USA (mainly in two locations 37°08′N, 71°11′41″W and 38°34′56″N, 67°57′53″W – also known as “Oceanographer Canyon” on September 19th–30th, 2011) and on the research vessel Kilo Moana outside Hawaii (HI) (21°30′36″N, 157°30′6″W on May 30th–June 9th, 2011). Lenses were dissected out of the eyes and analyzed immediately after euthanasia of the animal by rapid decapitation and pithing.

2.2. Point spread function measurements

Each animal lens’ point spread function (PSF) was created and characterized by shining monochromatic collimated light through the excised lens and imaging it on a Charge-Coupled Device, CCD (Fig. 1). A tungsten-halogen light source (LS-1, Ocean Optics Inc., Dunedin, FL, USA, 360–2500 nm) was directed through a 100 μm diameter optical fiber and collimated by an achromatic collimating lens (74-ACR, Ocean Optics). The beam of light passed through a 550 nm bandpass interference filter with a Full Width at Half Maximum (FWHM) of 10 nm (all optical components were from Edmund Optics, Barrington, NJ, USA). Collimated light entered a plastic chamber (29 × 29 × 20 mm) filled with phosphate buffered saline (PBS) through a calcium fluoride window, refracted through the animal lens, and exited the chamber through a thin transparent PVC film (~10 μm). The film was adjacent to and in contact with the CCD of an AVT Guppy Pro F-503 monochrome camera. The distance between the collimating lens and camera CCD was 80 cm and the divergence angle of the beam was 10 mrad. The setup was mounted on a bench plate placed on a rubber sheet and double-cam leveling feet to minimize vibrations due to the ship’s movements and engine.

The animal lens was held in place by gluing (Super Glue) its suspensory ligaments and retractor lentis muscle to a metal pin connected to a translation stage. This stage moved the lens along the optical axis of the system to increase or decrease the lens’ paraxial distance to the CCD while the camera recorded the PSFs (the camera’s response was linear). All the positions of the stage were recorded and used to measure the distances between the CCD and lens center – image distances. This resulted in a sequence of 100–400 monochrome images (640 × 480 pixels in uint16 class, i.e. 65536 gray levels) and image distances per lens.

2.3. Parameterization

The resulting images depict the three-dimensional PSF of the lenses (see Fig. 2 for an illustration of the following procedure). While this is practical for image analysis, it is too complex for comparisons of lens quality between species. A more effective approach is to calculate the PSF’s full width at the mid point between its smallest and largest values – this value is known as the Full Width at Half Maximum (FWHM) and is useful as an estimate for the function’s spread (Fig. 2). Lenses with a small FWHM produce sharp images while large FWHM result in blurry images. The effect a lens has on a point source can be approximated with a three-dimensional Gaussian function that is symmetrical about its optical axis. Therefore, the diameter of the circle surrounding the PSF at mid height is the PSF’s FWHM. To calculate the FWHM in this study, we subtracted the mode (the most frequent value in a dataset) of each PSF image from the image to remove any electric noise the CCD might have had and background illumination that would have contaminated the image (all image and data analysis were done in Matlab R2011b, Mathworks Inc., Natick, MA). Next, the number of pixels that had intensities greater than half the maximum value in each image was calculated – this value equaled the area of the circular cross section of the three-dimensional PSF at half its height. Lastly, the diameter of this circle was calculated to determine the PSF’s FWHM and was equal to twice the square root of the area divided by \(\pi \).

In addition to measuring the FWHM in μm, the angular FWHM (\(\angle \)FWHM) was also calculated. Angular distance can be defined as the angle between the optical axis and the line between the system’s nodal point (the lens center) and the point where the light hit the CCD. We therefore calculated the \(\angle \)FWHM as double the arctan of the FWHM divided by the focal length. The \(\angle \)FWHM is useful because it can be used to describe resolution in both the image plane (i.e. the angular size of the focused point of light) as well as the object plane (i.e. scene blur and target distinction). The apparent size of objects depends on their actual size and distance from the viewer, such that two objects, one distant large object and one nearby small object, may occupy the same visual angle and therefore require the same angular resolution (or \(\angle \)FWHM) to resolve. Finally, the lenses’ f-number, \(f/# \), which is the ratio between the lens’ focal length and diameter, was calculated.

Since the suspensory ligaments and retractor lens muscle shift the fish lens when accommodating in the living fish eye (Khorrampashali, Schartau, & Krüger, 2008), it is difficult to assess the fish’s accommodative state. It is however safe to assume that the retina is located at the focal-plane (i.e. where the ‘most focused’ image is formed). We defined the focal-plane as the PSF with the smallest FWHM. The distance of the image with the smallest FWHM was therefore chosen as the lens’ focal length for both fishes and mollusks.
The variation of the PSF's FWHM within a given species in this study is affected by a number of factors. There are, however, more factors increasing the FWHM than there are decreasing it. An increase in FWHM is caused by unavoidable lens deterioration during collection. Some of the possible effects increasing FWHM are trawling in high temperature waters, dissection time, the physiological changes associated with the specimen's death, mechanical stress, and pH and osmolarity differences in the fiber optic computer ccd cling-film lens chamber micro-manipulator light source collimating lens Fig. 1. An illustration of the optical setup used to measure the point spread function (PSF) of marine animal lenses. While the cling-film protected CCD registers focused images of the point source, the computer controls the axial distance of the biological lens submerged in the chamber. By scanning the focal point the optimal focal distance was estimated. All the dimensions of this setup are mentioned in the text.

![PSF Image](image1.png)

![3D PSF](image2.png)

![2D PSF](image3.png)

![MTF](image4.png)

Fig. 2. An illustration of the various steps in calculating visual acuity in this study. (a) An example image of the Point Spread Function (PSF) of Melanolagus bericoides. x and y-axes are in pixels (each pixel is 2.2 \times 2.2 μm). The area that contained pixels larger than half the maximum intensity (i.e. 65536/2) is highlighted in green. (b) The three dimensional representation of the PSF image. The x and y-axes are in μm and denote the distance from the lens optical axis while the z-axis is image intensity. The highlighted disk has the same area as the one in the PSF image and is at the mid point between the PSF’s smallest and largest values (i.e. 32767.5). The disk’s diameter (green line) equals the Full Width at Half Maximum (FWHM) of the PSF. (c) A two dimensional PSF with an αFWHM (green line) equivalent to the FWHM as before (equal to the arcsin of the FWHM divided with the focal length of M. bericoiidees). The x-axis is deviation from the optical axis in degrees and the y-axis is relative intensity. (d) The Modulation Transfer Function (MTF) of M. bericoides’s lens. The x-axis is spatial frequency in cycles per degree in log-scale and the y-axis is perceived image contrast. The MTF was calculated by applying a Fourier Transform on the PSF. As an example, a hypothetical cutoff frequency of 0.252 cycles/deg is marked and shows that the contrast at that maximal retinal resolution is 60%. For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
apparatus’ chamber. Also, while the lens orientation was controlled by hanging the lens from the suspensory ligament when possible, deviations from that led to off-axis aberrations that would create a broader PSF and thus a larger FWHM. The only reason FWHM would be lower than the population’s mean FWHM was not the methods used in this study but the unlikely possibility that we sampled an outlier specimen with unnaturally ‘sharp’ lenses. Since the risk of underestimating FWHM is smaller than the risk of overestimating it, the lens with the smallest FWHM was chosen as the most representative one for each species.

The PSF of a lens describes its optical quality in the spatial domain. It is however possible to consider the amount of ‘blur’ a lens introduces in the frequency domain (Fig. 2). This is useful because the contrast of a signal can be described as specific spatial frequencies (e.g. number of black and white line pairs per cm). The magnitude (absolute value) of the Fourier Transform of an image of a distant point source taken through a lens results in an image of the lens’ Modulation Transfer Function (MTF). This image describes the amount of signal contrast that remained after passing through the lens at different spatial frequencies (denoted by the distance of each pixel from the image-center, where the image center relates to low frequencies and the image periphery relates to high frequencies) and orientations (denoted by the polar coordinates of each pixel). The MTF of each species’ lens was calculated and used for assessing the amount of astigmatism (i.e. unequal focus between perpendicular signals) in the lens.

2.4. The effect of depth on lens optical quality

The regression of the lens radius, focal length, f/#, FWHM and σFWHM against the animals’ mean daytime depth was investigated. Some of the fish data were taken from FishBase (2012) through the R package (R version 2.15.2) fishbase (Boettiger, Lang, & Wainwright, 2012) while the depth data for all other animals were obtained from various sources (see Table 1 for details). Linear regression models were fitted to the data (all statistic analysis was done in R). Since the light environment below 1000 m depth is relatively homogeneous (Jerlov, 1976), we assumed that the lens optics of animals living at depths greater than 1000 m should have very little variation and therefore set all mean depths larger than 1000 m to 1000 m in the linear regression. Another factor affecting the optical properties of pelagic animals’ visual systems is the extent of the animal’s depth range. While animals with a narrow depth range might be suited to their mean depth, animals with a similar mean depth but broader depth range may exhibit properties found in both shallower as well as deeper dwelling animals. In order to accommodate for this discrepancy, the mean depth regressor was weighted by the inverse of the width of the animals’ depth range (depth ranges were first categorized into five size categories).

2.5. Contrast

The contrast of maximally resolved signals (i.e. the finest details a system can resolve) in camera-type eyes can be calculated using two ocular characteristics: (1) the lens’ MTF and (2) the retina’s cutoff frequency, which is the maximal spatial frequency the retina can resolve (i.e. its resolution). Assuming the lens PSF is a Gaussian function with a standard deviation of σ, the contrast of signals at the retina cutoff frequency, v_0, is equal to:

$$C_0 = \exp \left(-\frac{1}{2} \left(\frac{v_0}{\sigma} \right)^2 \right).$$

(1)

This equation depends on two variables: the standard deviation of the (Gaussian) PSF, σ, and the retina cutoff frequency, v_0. The PSF standard deviation is equal to the σFWHM divided by $2\sqrt{2\log 2}$, and the cutoff frequency of the retina is equal to half the inverse of the angular separation between adjacent ganglion cells in the retina (Land & Nilsson, 2002). In order to predict how the contrast of a viewer changes with depth, σ was calculated from the σFWHM regression. The same linear regression analysis as described before was used on the interganglion angles from Wagner et al. (1998) (slightly amended on five accounts with original author’s approval). Wagner et al. (1998) measured the interganglion angles of 21 mesopelagic and bathypelagic fish species. The linear models for σFWHM and interganglion separation angles were used in Eq. (1) to predict how the contrast of maximally resolved signals changes with depth. In order to calculate the 95% confidence intervals of the prediction, the variance–covariance matrix of the two linear models were used.

3. Results

The number of replicates (animals and lenses), mean and standard deviation of the lens radius, focal length, and f/#, as well as the narrowest FWHM, smallest σFWHM, and depth range are summarized in Table 1. In bony fishes (24 species), the smallest lenses belonged to the bathypelagic gulper (Saccopharynx sp.), and the largest to the epipelagic flying fish (Cheilopogon sp.). The snipe-fish, Avocettina infans, had the shortest focal length (the gulper’s focal length was not measured successfully) and the barrel-eye Opisthoproctus soleatus the longest (note that the flying fish’s focal length would most probably have been longer, but due to the experimental chamber’s size it was not measured). The ratio between the focal length and lens diameter (f/#) varied between 0.78 (Coccorella atlantica) and 1.6 (Regalecus glesne). The oarfish’s (R. glesne) exceptionally large f/# might have to do with the fact it was a juvenile (the specimen body length was relatively short, ~9 cm). Teleost f/# is known to be inversely proportional to age (Shand, Døving, & Collin, 1999) (the three next largest f/# belonged to Anoplogaster cornuta, 1.3, and Argyropelecus aculeatus and O. soleatus, 1.2). The narrowest PSF had a FWHM of 4.3 μm and was found in Avocettina infans, Benthosema suborbitale, Gonostoma elongatum, and Sternopyx diaphana. The gulper had the widest FWHM (74 μm). The smallfin lanternfish (B. suborbitale) had the narrowest σFWHM, 0.16° while Caranx bartholomaei had the broadest, 0.75°. Of all the cephalopods (five species), Pterygioteuthis micrallampus had the smallest lens, focal length, f/#, and FWHM. Sthenoteuthis oualanienisi had the largest lenses, focal length, and f/# as well as the smallest σFWHM. Chiroteuthis sp. had the largest FWHM and Illex sp. the largest σFWHM. The heteropod mollusk Pterotrachea coronata had one of the narrowest FWHM (3.5 μm) from all the studied species in this study. The Chordate lenses were not significantly different from the Molluscan ones in any of the lens parameters measured in this study (two-sample t-test $P > 0.50$).

The PSFs for a selection of species are shown in Fig. 3. While most PSFs are approximately rotationally symmetrical (e.g. Diplopsis multitubr Applied in Fig. 3), some lenses displayed aberrations such as coma and astigmatism (e.g. Idiacanthus antrostomus in Fig. 3). These aberrations are expressed as an ellipsoid distribution of intensities in the MTFs (Fig. 4). While some of the aberrations were small and resulted in circularly shaped MTFs – Malacocephalus niger and Astronesthes lucifer’s MTF in Fig. 4 – the heteropod Pterotrachea coronata had one of the most elliptically shaped MTFs.

The linear regression was significant for σFWHM (the slope was -0.29×10^{-3}, $P = 0.017$ for 25 species) and lens radius ($a = -2.5 \times 10^{-3}$, $P = 0.015$, $n = 30$) as a function of mean daytime depth (Fig. 5). However, the flying fish’ shallow depth and large lens affected the lens radius regression heavily and the significance disappeared after its removal ($P = 0.47$). The linear regression was not significant for focal length ($P = 0.76$, $n = 25$), f/# ($P = 0.85$, $n = 25$).
The optical qualities of lenses in this study were well adapted to the species’ lifestyle. Fishes with large upward-facing eyes are believed to hunt for prey by detecting silhouettes against the dim downwelling light (Muntz, 1990; Warrant, Collin, & Locket, 2003). Many of their prey use counterillumination to hide their own shadows. The discrete bioluminescence-emitting photophores are usually unevenly spaced on the ventral side of the camouflaged animal and could potentially be detected by viewers that have sufficient visual acuity (Johnsen, Widder, & Mobley, 2004). The hatchetfish A. aculeatus and S. diaphana as well as the barrel-eye O. soleatus have pronounced upward-facing eyes. Stomach contents show that the hatchetfishes have a varied diet that includes copepods (e.g. Pleuromamma, and Oncaea), ostracods, small fish, and molluscs (Hopkins & Baird, 1985). The bioluminescence of many of these prey items is chromatically similar to the downwelling light (Latz, Frank, & Case, 1988; Herring et al., 1993; Haddock & Case, 1999). The barrel-eye primarily preys on bioluminescent siphonophores (Cohen, 1964; Haedrich & Case, 1999). The barrel-eye primarily preys on bioluminescent Cephalopoda (Haddock & Case, 1999).
Partridge, 1997) may allow these upward viewing predators to break counterillumination camouflage and detect small irregularities in the countershading bioluminescence (Johnsen, Widder, & Mobley, 2004). The exceptionally narrow FWHM and FWHM of Avocettina infans, Benthosema suborbitale, Gonostoma elongatum, and Scopelosaurus hoedti suggest that acute vision is important to these species as well and that they too may use their excellent lenses to break camouflage strategies that are susceptible to sharp vision. For example, ctenophores often include small opaque organs (e.g. retinas and guts) in an otherwise transparent body (Johnsen, 2001; Mayer, 1912; Harbison, Madin, & Swanberg, 1978), and these patches of pigmented or reflective tissue could potentially be visible to viewers with acute vision.

The optical quality of the lenses in this study appeared to be influenced by the mechanical, chemical, and temperature stresses these lenses were exposed to during collection. The distribution of FWHM values for one of the most frequently sampled species (S. diaphana) was highly skewed toward lower values with many narrow FWHM and a few wide FWHM ‘outliers’. The FWHMs of the holo-bathypelagic fish Saccopharynx sp. and the fragile squid Chiroteuthis sp. are exceptionally wide (47 and 83 μm respectively) and are probably due to light scattering caused by denaturation of the crystalline proteins in the lens (on the specimen’s journey in the trawl-net) rather than naturally low lens resolution. This indicates that even the lowest observed PSF FWHMs might still underestimate the true optical quality of the species in this study. For comparison, the lens of a rainbow trout (Oncorhynchus mykiss) has a PSF FWHM of 2.86 μm and a lens focal length of 6 mm, resulting in an FWHM of 0.06° (Jagger, 1996). While the trout in Jagger’s study did not suffer from the same artefacts mentioned before,
the main factor contributing to its high resolution is its exceptionally long focal length.

While some of the aberrations visible in the PSFs and MTFs in Figs. 3 and 4 may have been caused by these artifacts, most of the optical properties we quantified likely represent the natural state of these lenses. One example of a lens that had an astigmatism aberration that was not caused by methodology was that of the heteropod. The directionally dependent contrast transmittance the heteropod *P. coronata*’s MTF exhibited was apparent in most specimens and fits its morphology exceptionally well. Heteropods have ribbon-shaped retinas which are a few photoreceptors wide and several hundred photoreceptors long (Land, 1982), requiring high quality optics in only one dimension. Heteropods use these ‘one-dimensional’ eyes to scan the environment one stripe at a time (Land, 1982). Land (1982) found that the photoreceptor width was 3.9 μm in another species of heteropod (*Oxygyrus keraudrenii*) – remarkably close to the FWHM of the lens’ PSF (3.5 μm). The directionally dependent optical quality of the heteropod’s lens fits those requirements assuming that in the intact heteropod eye the lens’ rotational orientation correlates well with that of the retina. It is remarkable that such a seemingly ‘simple’ gelatinous animal has such a well tuned visual system.

Matthiessen found that the ratio between lens focal length and radius was roughly 2.5 and constant across many different fish species (Matthiessen, 1982). Our results indicate that deep-sea fish do not follow that rule of thumb. With a mean f/# (equal to half the Matthiessen ratio) of 1.05, the f/# were significantly lower than Matthiessen’s ratio (one-tailed t-test, \(P = 10^{-15} \)). The f/# in this study were not constant either (standard deviation of 0.19). This difference can be explained by the fact that light gathering ability is proportional to the inverse square of the system’s f/# (Land & Nilsson, 2002). Therefore, animals that live in deeper waters and darker environments benefit from lenses with a smaller f/#. The relatively high variation in f/# may be caused by the large depth range these fish were retrieved from.

4.2. The effect of depth on acuity

Visual animals have different contrast requirements when viewing extended scenes in shallow depths than when viewing point sources in deeper waters. An extended scene requires higher contrast than a point source since the number of intensity levels the system needs to differentiate is larger than in a point source scenario: a bright point source on a dark background has just two brightness levels, the source’s radiance and zero (for which the inherent contrast is infinite), while the surface of a target may contain any number of brightness levels and may be viewed under any number of physiologically relevant illumination levels. Animals need high contrast images of their environment at shallow depths, but due to the binary nature of the visual scene...
at bathypelagic depths, a relatively low contrast at the retina cutoff frequency should suffice. Surprisingly, contrast did not decrease with depth – the reason might depend on sensitivity. Since spatial summation does not increase sensitivity at those depths, one of the mechanisms with which these animals can detect small bioluminescent points of light in their environment is aberration-free optics and therefore high contrast. While it is probable that some pelagic species with different acuity and/or sensitivity requirements had either a lower or higher contrast at their retina cutoff frequency than 60%, the general trend seems to show that contrast is not affected by depth. The ability to resolve finer signals is what increases the eye's resolving power with depth pushing both the retina's and the lens' resolution higher.

In this study, we have shown that pelagic animals have lenses that suit their specific visual tasks. The eyes of hatchetfishes and barrel-eyes had relatively aberrations-free lenses that were suited to hunting for counterilluminated silhouettes, while the scanning eyes of the heteropod had lenses that matched its one-dimensional retina well. Each lens' resolving power was matched to the resolution of the animal's retina, resulting in a constant contrast throughout all depths.

Acknowledgments

This research was funded by MURI (grant number N00014-09-1-1053) from the Office of Naval Research. We thank Dr. Jules Jaffe for helpful discussions, Trisha Towanda for supplying the Heteropodes, and Dr. Brad Seibel, Dr. Stephanie Bush, and Dr. Sarah Zylinski for general help.

References

