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Flavored axion-monodromy inflation

Christopher D. Carone,∗ Raymundo Ramos,† and Zhen Wang‡

High Energy Theory Group, Department of Physics,

College of William and Mary, Williamsburg, VA 23187-8795

(Dated: September 26, 2015)

Abstract

The hierarchy of fermion masses in the standard model may arise via the breaking of discrete

gauge symmetries. The renormalizable interactions of the flavor-symmetry-breaking potential can

have accidental global symmetries that are spontaneously broken, leading to pseudo-goldstone

bosons that may drive inflation. We consider two-field, axion-monodromy inflation models in

which the inflaton is identified with a linear combination of pseudo-goldstone bosons of the flavor

sector. We show that the resulting models are nontrivially constrained by current cosmological

data as well as the requirements of viable flavor model building.
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†raramos@email.wm.edu
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I. INTRODUCTION

The prevailing approach to solving the horizon and flatness problems of conventional

Big Bang cosmology is inflation, a period in which the universe underwent exponential

expansion due to the effects of the nearly constant energy density provided by a scalar

field [1]. Models of inflation are often studied in terms of the properties of the inflaton

potential, with somewhat less focus on other roles the inflaton might play in extensions of

the standard model. If the inflaton has no purpose other than to provide the source of the

energy density that drives inflation, then model building becomes isomorphic to studying

ways of generating different functional forms for the inflaton potential. These possibilities,

now cataloged (see for example [2]), differ in their detailed predictions for the spectrum of

fluctuations in the microwave background that are observed in experiments like Planck [3]

and BICEP2 [4].

In this paper, we consider a scenario in which the inflaton is an integral component of

an extension of the standard model that aims to address one of its substantial mysteries:

the hierarchy of elementary fermion masses. Models of flavor based on horizontal discrete

symmetries postulate that these symmetries are broken via a set of fields, called flavons,

that couple to standard model fermions through higher-dimension operators. Discrete flavor

symmetries can often lead to accidental continuous global symmetries among the renormal-

izable terms of the flavon potential. In the present work, we consider the possibility that the

inflaton may be identified as a linear combination of the approximate goldstone bosons that

arise when these accidental symmetries are spontaneously broken. We will ultimately be

interested in two-field models of inflation, for reasons described below, which distinguishes

the present work from the relatively sparse literature that explores the use of flavon fields

for a similar purpose [5].

Consider the simplest possibility, a ZN flavor symmetry under which a single flavon field

Φ transforms as Φ→ ωΦ, where ω = exp(2πi/N). If the fermions of the standard model are

charged under the discrete group, then a tree-level Yukawa coupling that would otherwise be

forbidden can arise via a higher-dimension operator. For example, for a down-type quark,

one might have
1

Mp
F

Q̄LHφ
pDR + h.c. , (1.1)

where H is the standard model Higgs doublet, MF is the flavor scale, and p is an integer. The

2



Yukawa coupling is associated with the ratio (〈φ〉/MF )p which can be much less than one;

operators with different values of p can easily provide a hierarchical pattern of entries in the

associated Yukawa matrix. If less than the Planck scale, the scale MF is identified with that

of new heavy states that account for the origin of the higher-dimension operators. However,

a simpler assumption, that we adopt henceforth, is that the scale MF is the reduced Planck

scale M∗; the desired operators appear as part of the most general set that are allowed

by the local symmetries of the theory, as one expects based on our current understanding

of quantum gravity [6]. An immediate implication of our assumptions is that the vacuum

expectation value (vev) 〈Φ〉 < M∗, which will provide an important constraint in our attempt

to identify the inflaton with a part of the field Φ.

To obtain an inflaton potential that is sufficiently flat, we require that the goldstone

boson degree-of-freedom receives no contributions to its potential from renormalizable terms

involving Φ. Let us therefore assume that N ≥ 5. The renormalizable terms in the potential

are simply

V (Φ) = −m2
ΦΦ†Φ +

λΦ

2
(Φ†Φ)2 . (1.2)

Terms such as (Φ4 + h.c.) are forbidden by the ZN symmetry. Using the nonlinear decom-

position

Φ =
φ+ f√

2
exp(iθ/f) , (1.3)

where f/
√

2 ≡ 〈Φ〉, one sees immediately that V (Φ) is independent of θ, i.e., the potential

V (θ) is exactly flat. The potential in Eq. (1.2) has an accidental global U(1) symmetry

and the field θ is the goldstone boson that results from its spontaneous breaking. Global

symmetries are not respected by quantum gravitational corrections, so it is no surprise that

there are Planck suppressed corrections,

L ⊃ c0

2

1

MN−4
∗

ΦN + h.c. , (1.4)

that generate a potential for θ, where c0 is an unknown order-one coefficient. Planck-

suppressed operators that directly break the discrete flavor symmetry are not present since

we assume in this example (and will require in all our models henceforth) that we work with

discrete gauge symmetries, which satisfy appropriate anomaly cancellation conditions and

are immune to quantum gravitational corrections. For the reader who is unfamiliar with

discrete gauge symmetries, we review the basic issues relevant to our model building in the

appendix.
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The operator in Eq. (1.4) leads to the θ potential

V (θ) = c0M
4
∗

(
〈Φ〉
M∗

)N
[1− cos (Nθ/f)] , (1.5)

where we have added a constant so that V (0) = 0. This is nothing more than the potential of

“Natural Inflation” scenarios [7]. However, this potential is not adequate for our purposes.

It is well known that if one requires that Natural Inflation provides ∼ 50 − 60 e-folds of

inflation and predicts a spectral index ns within the range allowed by current Planck data,

then f must be well above the Planck scale [8]. For our present application, this would imply

that 〈φ〉/M∗ is not a small flavor-symmetry-breaking parameter and we lose the ability to

predict standard model Yukawa couplings in a controlled approximation.

We therefore must consider other ways of generating potentials for the pseudo-goldstone

inflaton that allow a sub-Planckian decay content f . The options assuming a single field

inflation model are limited. For example, models of “multi-natural” inflation [9], in which one

arranges for additional sinusoidal terms in the potential, can accommodate a sub-Planckian

flavon vev, but tend to predict ns = 0.95 in this limit [9], at the very edge of the 95%

exclusion region following from Planck data. A different class of models that can more

easily provide cosmological predictions consistent with Planck data are two-field models of

the axion monodromy type [10–17]. We will show that these can be adapted for the present

purpose.

The two pseudo-goldstone fields can have their origin if there are two flavon fields, Φ and

χ, that transform under the discrete group ZΦ
p × Zχ

r . We assume that each field transforms

only under one of the ZN factors,

Φ→ ωΦΦ and χ→ ωχχ , (1.6)

where ωΦ = exp(2πi/p) and ωχ = exp(2πi/r), where p and r are integers. For p ≥ 5 and

r ≥ 5, the renormalizable terms in the potential are

V (Φ, χ) = −m2
ΦΦ†Φ +

λΦ

2
(Φ†Φ)2 −m2

χχ
†χ+

λχ
2

(χ†χ)2 + λpΦ
†Φχ†χ , (1.7)

where λp is a portal-type coupling. There is no difficulty in choosing parameters such that

each field develops a vev. This potential has an accidental U(1)×U(1) global symmetry that

is spontaneously broken. Extending our previous parameterization, we write

Φ =
φ0 + fθ√

2
exp(iθ/fθ) and χ =

χ0 + fρ√
2

exp(iρ/fρ) . (1.8)
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Spontaneous symmetry breaking renders the fields φ0 and χ0 massive so that they are

decoupled from the inflation dynamics. The potential for the goldstone bosons V (ρ, θ) that

follows from Eq. (1.7) is exactly flat.

We will discuss later how to generate a potential for ρ and θ of the following axion-

monodromy form

V (ρ, θ) = Λ4
1

[
1 + cos

(
ρ

fρ

)]
+ Λ4

2

[
1− cos

(
n ρ

fρ
− θ

fθ

)]
, (1.9)

where n is an integer. The first few terms in the expansion of the first cosine factor have

the same form as −m2
rr

2/2 + λrr
4/4!, the shift-symmetry-breaking potential W (r) assumed

in the Dante’s Waterfall scenario discussed in Ref. [12]. In that work, W (r) was assumed

to be generated by non-perturbative effects associated with moduli stabilization in string

theory, as for example in Ref. [11]. In this paper, we only consider field theoretic origins

of the potential, where the emergence of the functional form given in Eq. (1.9) is readily

obtained. For the purposes of graphical display, if one plots the potential as if ρ and θ were

polar coordinates, one would find a “hill” generated by the first cosine factor, circumscribed

by a descending spiral “trench” generated by the second. Inflationary trajectories track the

minimum of the trench. As θ advances by 2πfθ along the trench, the ρ coordinate does not

return to the same value; this monodromy allows for large numbers of e-folds to be achieved

within a bounded, sub-Planckian region of field space. We assume that the decay constant

fθ satisfies
fθ√

2
= λM∗ ≈ 0.22M∗ , (1.10)

where λ is a flavor-symmetry-breaking parameter of the same size as the Cabibbo angle.

This will allow us to identify the field Φ (and perhaps in some models both Φ and χ) as

flavons that can be used in flavor model building. We will see that the discrete symmetry

ZΦ
p × Zχ

r serves four purposes: (i) it assures that there are goldstone bosons that have no

potential generated by renormalizable couplings, (ii) it will serve as a flavor symmetry to

create a hierarchy of standard model fermion Yukawa couplings, (iii) it will lead to the

correct pattern of couplings in a new gauge sector that provides for the desired form of the

inflaton potential, Eq. (1.9), and (iv) it will keep quantum gravitational corrections to the

potential highly suppressed.

Our paper is organized as follows. In the next section, we discuss the inflationary dy-

namics that follows from the potential given in Eq. (1.9). We identify solutions in which
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inflation ends when single-field slow-roll conditions are violated and other solutions where

the termination of inflation is analogous to a hybrid model [18]. In Sec. III, we consider

model building issues, in particular, how the discrete symmetries of the theory play an im-

portant role in assuring that we obtain the proper potential, and how the same symmetries

can be used to produce a plausible model of standard model fermion masses. In the final

section, we summarize our conclusions. A brief appendix is provided to review relevant facts

about discrete gauge symmetries.

II. INFLATIONARY TRAJECTORIES

In this section, we consider inflationary trajectories in the two-field potential given by

Eq. (1.9), that are compatible with flavor model-building requirement Eq. (1.10). We give

two example solutions that differ qualitatively in how inflation ends. Note that a more

general potential that subsumes Eq. (1.9) was studied in a different context in Ref. [19]; the

types of trajectories described therein are consistent qualitatively with those presented here.

A. Termination without a waterfall.

For our first solution, we make the parameter choice fρ = fθ ≡ f1 and also define

f1/n ≡ f2. We assume f1 � f2, which is equivalent to n� 1. The potential Eq. (1.9) then

takes the form

V (ρ, θ) = Λ4
1

[
1 + cos

(
ρ

f1

)]
+ Λ4

2

[
1− cos

(
ρ

f2

− θ

f1

)]
. (2.1)

The second cosine term creates a series of trenches on the surface of the potential defined

by the first cosine term. If the field θ is plotted as a polar coordinate, the trenches form

spirals originating at ρ = 0. As in Ref. [12], it is convenient to work in the rotated field

basis ρ = c ρ̃+ s θ̃ and θ = c θ̃ − s ρ̃ with

c =
f1√

f 2
1 + f 2

2

and s =
f2√

f 2
1 + f 2

2

. (2.2)

This allows us to rewrite the potential as

V (ρ̃, θ̃) = Λ4
1

[
1 + cos

(
cρ̃+ sθ̃

f1

)]
+ Λ4

2

[
1− cos

(
ρ̃

f

)]
, (2.3)
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where f = f1f2/
√
f 2

1 + f 2
2 . The modulations in the potential due to the cos(ρ̃/f) term

create the trench, whose location is given by ∂V/∂ρ̃ = 0, or

sin

(
ρ̃

f

)
− s c Λ4

1

Λ4
2

sin

(
cρ̃+ sθ̃

f1

)
= 0 . (2.4)

The inflaton is the linear combination of the fields that slowly rolls along the trench; in-

flation terminates when the slow-roll conditions are violated. With the assumptions made

throughout this paper, the inflaton will be well approximated by the linear combination

θ̃ = s ρ+ c θ , (2.5)

where c and s are given in Eq. (2.2). For the solutions considered in this subsection, the

stability condition ∂2V/∂ρ̃2 > 0 will hold throughout this trajectory.

To study inflationary observables, we first consider a good approximation to the single-

field inflaton potential, which holds for our choice of parameters and can be studied analyt-

ically, and then discuss an exact numerical approach that we use to confirm the validity of

our results. Let us define κ ≡ s c (Λ4
1/Λ

4
2) and consider parameter choices where κ � 1. It

follows from Eq. (2.4) that to good approximation

ρ̃/f ≈ 2πj , (2.6)

where j is an integer. Given our assumption that f1 � f2, it follows from Eqs. (2.3)-(2.6)

that ∂2V (ρ̃, θ̃)/∂ρ̃2 > 0, confirming that the trench is stable. Substituting Eq. (2.6) into our

original potential yields

V (θ̃) = Λ4
1

[
1 + cos

(
δ + θ̃/f0

)]
, (2.7)

where δ = 2πscj and f0 = f1/s. Setting j = 0 is equivalent to redefining the origin of

field space, so we will ignore δ henceforth. We note that the present approximation scheme

differs from the one used in Ref. [12], in which one would expand the sinusoidal functions

in Eq. (2.4) to linear order in their arguments, but is nonetheless accurate as we confirm

numerically later. We note that s � 1 in the limit n � 1, so that the derived quantity f0

can be super-Planckian even when the decay constants f1 and f2 are not.

We compare the predictions of the model to the latest results from the Planck Collabo-

ration [3]. The slow roll parameters are defined by

ε =
1

2

(
V ′

V

)2

, η =
V ′′

V
and γ =

V ′V ′′′

V 2
, (2.8)
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where the primes refer to derivatives with respect to the inflaton field and we work in units

where the reduced Planck mass M∗ ≡MP/
√

8π = 1. In the present case, these are given by

ε =
1

2f 2
0

tan2[θ̃/(2f0)] , (2.9)

η = − 1

f 2
0

cos(θ̃/f0)

1 + cos(θ̃/f0)
, (2.10)

γ = − 1

f 4
0

tan2[θ̃/(2f0)] . (2.11)

Inflation ends when ε(θ̃f ) = 1. The initial value of the inflaton, θ̃i is determined by the

requirement that we achieve a desired number of e-folds of inflation, given in general by

N =

∫ θ̃f

θ̃i

1√
2ε
dθ̃ = 2f 2

0 ln

[
sin[θ̃f/(2f0)]

sin[θ̃i/(2f0)]

]
. (2.12)

We set N = 60 in the numerical results that follow. We evaluate the slow-roll parameters

and the potential V (θ̃) at θ̃i in determining the spectral index ns = 1− 6ε+ 2η, the ratio of

tensor-to-scalar amplitudes r = 16ε, the running of the spectral index nr = 16εη− 24ε2− 2γ

and the scalar amplitude ∆2
R = V/(24π2ε). From Eqs. (2.9)-(2.11), it follows that

ns = 1 +
1

f 2
0

(
1− 2 sec2[θ̃i/(2f0)]

)
, (2.13)

r =
8

f 2
0

tan2[θ̃i/(2f0)] , (2.14)

nr = − 2

f 4
0

tan2[θ̃i/(2f0)] sec2[θ̃i/(2f0)] , (2.15)

∆2
R =

1

12π2
Λ4

1f
2
0

(
1 + cos[θ̃i/f0]

)3

csc2[θ̃i/f0] . (2.16)

To illustrate a viable solution, consider the parameter choice (again, in units where M∗ = 1)

f1 = 0.22
√

2 , (2.17)

f2 = f1/21 , (2.18)

Λ1 = Λ2 = 0.006 , (2.19)

which corresponds to n = 21 and κ ≈ 1/21. We find that the initial and final fields for the

inflaton trajectory are given by

(ρ̃, θ̃)i = (6.04× 10−4, 6.74) and (ρ̃, θ̃)f = (1.50× 10−4, 19.14) , (2.20)
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FIG. 1: Path followed by the inflaton during 60 e-folds of inflation corresponding to the solution of

Sec. II A, in units where M∗ = 1. The background is a density plot where darker zones have lower

values of the potential than lighter ones.

respectively. Using this value for θ̃i, we find the following set of cosmological parameters:

ns = 0.96, (2.21)

r = 0.060, (2.22)

nr = −0.00046, (2.23)

∆2
R = 2.2× 10−9 . (2.24)

Fig. 1 displays the path followed by the inflaton during the 60 e-folds of inflation for this

particular solution. The predictions in Eq. (2.24) are consistent with the results from the

Planck experiment [3]: ns = 0.968 ± 0.006, r < 0.12 (95% C.L.), nr = −0.003 ± 0.007 and

∆2
R = 2.19± 0.08× 10−9. (The value of ∆2

R, also called As, was taken from the first column

of Table 3 in Ref. [3].)

We may check the validity of the results in this section by numerically evaluating the

slow-roll parameters in the two-field problem. Let a represent the linear combination of the

fields that evolves along the minimum of the trench. Given that da =

√
dρ̃2 + dθ̃2 along the

9



trench, it follows that we can write the nth derivative of the potential with respect to a as

dnV

dan
=

[(
1 +

dρ̃

dθ̃

)−1/2

tr

d

dθ̃

]n
V
(
θ̃, ρ̃(θ̃)tr

)
, (2.25)

where the subscript “tr” indicates quantities evaluated along ρ̃(θ̃)tr, the solution to Eq. (2.4).

Note that as the quantity da is defined above, the kinetic terms for a are canonically nor-

malized. The slow roll parameters can be evaluated numerically according to Eq. (2.25).

We find in this case that ns = 0.96, r = 0.060, nr = −0.00046 and ∆2
R = 2.2 × 10−9, in

agreement with the results in Eq. (2.24).

B. Termination with a waterfall.

For different choices of the model parameters, inflation will end before ε = 1 is reached, at

a point where there is no longer a solution to Eq. (2.4). At this point, the stability condition

∂2V/∂ρ̃2 > 0 is also not satisfied, and the fields evolve rapidly in a direction orthogonal

to the original trajectory [12]. If one visualizes the motion by plotting the fields as polar

coordinates, the evolution corresponds to a transition from spiraling to rapid motion in the

radial direction, eventually ending at a global minimum. In Ref. [12] this was called the

waterfall, in analogy to the behavior of hybrid inflation models [18], where stability in one

field direction can be a function of the value of a second field.

Given an input of model parameters, we determine the final inflaton field value af by

solving
∂2V

∂ρ̃2

∣∣∣∣
tr

= 0 , (2.26)

and then the initial value ai from

N =

∫ af

ai

∣∣∣∣ VV ′
∣∣∣∣ da . (2.27)

where the primes refer to derivatives evaluated numerically according to Eq. (2.25), and a

(≈ θ̃) is the canonically normalized inflaton field. Again, we set N = 60. To illustrate a
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solution that ends with the waterfall behavior, consider the parameter choices

f1 = 0.22
√

2 , (2.28)

f2 = f1/17 , (2.29)

Λ1 = 3.38× 10−3 , (2.30)

Λ2 = 1.61× 10−3 . (2.31)

which corresponds to n = 17 and κ = 1.13. We find that the initial and final fields for the

inflaton trajectory are given by

(ρ̃, θ̃)i = (6.83× 10−3, 1.63) and (ρ̃, θ̃)f = (0.0281, 5.2970) , (2.32)

respectively. Using this value for θ̃i, we find the following set of cosmological parameters:

ns = 0.96, (2.33)

r = 0.0078, (2.34)

nr = −7.2× 10−5, (2.35)

∆2
R = 2.2× 10−9 . (2.36)

These are consistent with the ranges allowed by Planck, as quoted in the previous subsection.

That Eq. (2.34) is much smaller than Eq. (2.22) is consistent with the observation of Ref. [19]

that trajectories terminating at a saddle point of the potential can have significantly smaller

r than those terminating near minima. Note that our solutions here and in the previous

subsection do not involve fine-tuning; for example, we have checked in the present case that

varying the initial value of θ̃ at the 1% level only results in a change at the 2% level in

the observables described above. The complete inflaton trajectory, extending beyond the

point where Eq. (2.4) is no longer satisfied, can be found by solving the coupled equations

of motion

ρ̈+ 3Hρ̇+
∂V

∂ρ
= 0 ,

θ̈ + 3Hθ̇ +
∂V

∂θ
= 0 , (2.37)

where H is the Hubble parameter. The result is shown in Fig. 2, assuming the initial

field values ρ(0) = 0.103 and θ(0) = 1.63 (equivalent to Eq. (2.32)) and ρ̇(0) = θ̇(0) = 0.

The qualitative form of the solution does not depend strongly on the choice of the initial
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first time derivative, provided that the slow-roll conditions are satisfied. One can see from

the plot that the bottom of the trench given by Eq. (2.4), denoted by the thick red line,

approximates the actual trajectory, given by the thin green line, very well. The inflaton

eventually oscillates about and then settles at the global minimum of the potential.

FIG. 2: Inflaton trajectory, in ρ-θ space, overlaid on a contour plot of the potential, in units where

M∗ = 1. The bottom of the trench is indicated by the thick red line while the inflation trajectory

is denoted by the thin green line.

III. MODELS

A. Origin of the potential

The successful inflation potentials presented in the previous section correspond to a po-

tential of the form given in Eq. (1.9). Here we consider the possibility that this potential

arises via the effects of anomalies associated with new gauge groups.

Hence, we extend the standard model gauge group by the additional factors

SU(N1)×SU(N2), and introduce the fermions AL ∼ AR ∼ (N1,1) and B
(i)
L ∼ B

(i)
R ∼ CL ∼

CR ∼ (1,N2). We would like the Lagrangian to contain the following interactions

L ⊃ h1ĀRALχ+
n∑
i=1

h
(i)
2 B̄

(i)
R B

(i)
L χ+ h3C̄RCLΦ∗ + h.c. . (3.1)
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Here, the hj’s are Yukawa couplings and the terms shown generate heavy fermion masses

when the Φ and χ fields develop vevs. The accidental global U(1) symmetries are each

chiral when appropriate charges are assigned to the A, B and C fermions. However, these

symmetries are anomalous with respect to the new gauge groups. Triangle diagrams lead to

the interactions [13]

g2
1

32π2

(
ρ

fρ

)
F1F̃1 +

g2
2

32π2

(
nρ

fρ
− θ

fθ

)
F2F̃2 . (3.2)

Note that the interactions in Eq. (3.1) are of exactly the same form as Eq. (2.1) of Ref. [13],

so that the FF̃ interactions that are relevant in our case can be obtained by adjusting for

the multiplicity of the given fermion field (either 1 or n), and taking into account that χ

contains exp(iρ/fρ) while Φ∗ contains exp(−iθ/fθ). With the FF̃ interactions included in

the action, the potential is generated nonperturbatively by integrating over instanton gauge

field configurations [20]. This leads to the form [13]

V (ρ, θ) = Λ4
1

[
1− cos

(
ρ

fρ

)]
+ Λ4

2

[
1− cos

(
nρ

fρ
− θ

fθ

)]
, (3.3)

with the scales Λ1 and Λ2 identified with the scale of strong dynamics for each SU(N) factor.

(We assume N1 and N2 are chosen so that each group is asymptotically free, and that the

gauge couplings in the ultraviolet are chosen so that any desired values of Λ1 and Λ2 can be

achieved.) Redefining the origin of field space via

ρ→ ρ+ πfρ and θ → θ + nπfθ (3.4)

puts the potential in the form that we previously assumed in Eq. (1.9). Note that the new

gauge groups may be spontaneously broken at a scale well below Λ1 and Λ2 without affecting

our conclusions.

The interactions given in Eq. (3.1) are clearly not generic. In the absence of our discrete

charge assignments for Φ and χ, there would be no reason for the Φ field to avoid coupling to

the A and B-type fermions directly, nor would there be any prohibition of explicit fermion

mass terms. Hence, this sector is suggestive of additional symmetries even had we not

put them forward immediately as a starting assumption in our model building. Given the

transformation properties of Φ and χ fields under the ZΦ
p ×Zχ

r symmetry, Eq. (1.6), we can

account for the desired pattern on couplings in Eq. (3.1) by choosing

AR → ωχAR , B
(i)
R → ωχB

(i)
R , CL → ωΦCL , (3.5)
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with the remaining heavy fermions taken as singlets under the discrete group. However, we

must now enlarge the fermion content to assure that discrete gauge anomalies are cancelled

(see the appendix), and do so in a way that assures that the additional fermions can become

massive. To demonstrate that this can be accomplished, let us consider an example suggested

by one of our previous cosmological solutions, discussed in Sec. II A, corresponding to the

potential in Eq. (1.9) with n = 21. Let us choose p = r = 21. First, we note that there are

21 B-type fermions transforming each with Zχ
21 charge +1, where we specify the charge Q by

defining the group element to be exp(2iπQ/21). This implies that the Zχ
21-SU(N2)2 discrete

anomaly cancellation condition would be satisfied by the B particle content alone. The A

and C fermions, on the other hand, lead to anomalies, so we include additional fermions

with matching gauge quantum numbers and the discrete transformation rules

A
(i)
R → ω10

χ A
(i)
R , A

(i)
L → A

(i)
L (i = 1 . . . 2)

C
(i)
L → ω10

Φ C
(i)
L , C

(i)
R → C

(i)
R (i = 1 . . . 2) (3.6)

which allow the anomaly cancellation conditions to be satisfied. Finally, we note that

these fields will develop masses as a result of Planck-suppressed operators, for exam-

ple, Ā
(i)
R χ

10A
(i)
L /M

9
∗ + h.c. and C̄

(i)
L Φ10C

(i)
R /M

9
∗ + h.c. , which lead to masses of order

λ10M∗ ∼ 1011 GeV.

The discrete symmetry that we have assumed to assure the form of couplings in Eq. (3.1)

also leads to a suppression of direct Planck suppressed corrections to the potential. Since

quantum gravitational effects must respect the discrete gauge symmetry, the lowest order

operators that will correct the potential have the form Φ21/M17
∗ or χ21/M17

∗ ; the scale of

these corrections are of order λ21M4
∗ ∼ 10−14M4

∗ , negligible compared to the values of Λ1

and Λ2 that we found previously to be of order 10−3M∗.

B. Standard Model Flavor

The fields Φ and χ can now be utilized in constructing models of standard model fermion

masses. These fields will appear in higher-dimension operators that generate the small entries

of the standard model Yukawa matrices. Given our choice 〈Φ〉/M∗ = 〈χ〉/M∗ = λ, the size

of these entries will be determined by powers of the Cabibbo angle λ. In this subsection, we

present one example in which the desired set of higher-dimension operators is obtained via
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Q1L Q2L Q3L ucR ccR tcR dcR scR bcR

6 5 3 2 -1 -3 -1 -2 -2

L1L L2L L3L ecR µcR τ cR νc1R νc2R νc3R

0 0 0 5 3 1 −3 −3 −3

TABLE I: ZΦ
21 charge assignments q, where the group transformation is defined by exp(2iπq/21).

The Higgs doublet is a singlet under the flavor symmetry.

the same discrete symmetries that were used to obtain the inflaton potential. We focus on

the n = p = r = 21 model just discussed, in which the Φ and χ fields each transform under

a separate Z21 symmetry. Of course, other choices of the symmetry group are possible, and

the present choice does not suggest a unique set of fermion charge assignments (since there

are many possible Yukawa textures that are viable). The example we give here will suffice

by serving as a proof of principle1.

The simplest incorporation of the n = 21 model in a flavor sector is via the identification

of ZΦ
21 as the flavor symmetry and Φ as the sole flavon field. The charge assignments of the

standard model fermions and a set of right-handed neutrinos are given in Table I. Entries

of the Yukawa matrices arise from ZΦ
21-invariant higher dimension operators. For example,

the 1-1 entry in the up-sector Yukawa matrix involves the fields Q1LHuR, which has flavor

charge −8. This arises at lowest order via

1

M8
∗
Q1LHΦ8uR + h.c. , (3.7)

and hence the corresponding Yukawa matrix entry is of order λ8. Since ω8 and ω−13 are

identical, there is another possible operator, Q1LHΦ∗13uR/M
13
∗ + h.c., but it is of higher

order and can be neglected. We may populate the remaining entries of the quark and charged

1 It should also be clear that one could alternatively construct a model starting with the n = 17 potential

that we discussed earlier, but there are no new qualitative insights gained by presenting two very similar

examples.
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lepton Yukawa matrices in a similar manner. We find

Yu =


λ8 λ5 λ3

λ7 λ4 λ2

λ5 λ2 1

 , Yd =


λ5 λ4 λ4

λ4 λ3 λ3

λ2 λ λ

 , Ye =


λ5 λ3 λ

λ5 λ3 λ

λ5 λ3 λ

 , (3.8)

where order one coefficients in each entry have been suppressed. These achieve the desired

ratios mu/mt ∼ λ8, mc/mt ∼ λ4, md/mb ∼ λ4, and ms/mb ∼ λ2, with the charged lepton

Yukawa mass eigenvalues comparable in size to those of the down quark sector. It is not

hard to verify that the choice of right-handed neutrino charge assignments leads via the

see-saw mechanism to a neutrino mass matrix of the form [〈H〉2/ΛR]Yν , where ΛR is the

right-handed neutrino mass scale, 〈H〉 is the standard model Higgs vev, and Yν is a matrix in

which each entry is of order λ0 times a function of (typically many) undetermined order one

coefficients. These can be chosen to obtain the desired phenomenology without unnaturally

large or small values of the individual coefficients2.

Finally, we must check that the standard model fermion charge assignments in this model

satisfy the linear Ibáñez-Ross anomaly cancellation conditions for the non-Abelian gauge

groups and gravity. Summing the ZΦ
21 charges times the appropriate multiplicity factors for

the color SU(3), weak SU(2), and gravitational anomalies gives 21, 42 and 63, respectively.

These results mod 21 are zero, indicating that the discrete gauge anomaly cancellation

conditions discussed in Appendix A remain satisfied.

IV. CONCLUSIONS

Models of standard model flavor that are based on discrete gauge symmetries can have

accidental continuous global symmetries that are spontaneously broken. We have argued

that a linear combination of the approximate goldstone bosons that may arise in these

models can serve plausibly as the inflaton in two-field models of inflation based on the

2 It is not necessarily the case that an alternative model that predicts the neutrino mass hierarchy via

powers of λ is more desirable than this example. The reason is that the predictions for neutrino mass

matrix entries in such a model also come multiplied by functions of products of a number of the order

one operator coefficients. This can spoil the naive λ power counting without any individual operator

coefficient being unnaturally small or large. This is a problem that is unique to the neutrino sector in

such models when the mass matrix arises via the seesaw mechanism.
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axion monodromy idea. These models can accommodate the current Planck data on the

microwave background [3] while allowing the flavor-symmetry-breaking vacuum expectation

values (vevs) to remain sub-Planckian. This is important in the present work since the ra-

tios of the flavon vevs to the reduced Planck scale serve as small flavor-symmetry-breaking

parameters in our models, which allows one to predict the standard model Yukawa coupling

entries in a controlled approximation. In addition to making correct Yukawa coupling pre-

dictions possible, the discrete symmetries of the theory also maintain the correct pattern of

the interactions in a new gauge sector, leading to the desired form of the inflaton potential;

they also keep the quantum gravitational corrections to the potential well under control.

The literature on models of standard model fermion masses is vast and it is imaginable that

more economical and compelling examples of flavor-sector inflation models are yet to be

found. The present work suggests that exploring the full landscape of such models may be

a fertile direction for future investigation.
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Appendix A: Discrete Gauge Symmetries, Briefly

It is well known that continuous gauge symmetries are not violated by quantum gravita-

tional effects. Under what circumstances is the same true for discrete symmetries? It was

noted long ago by Ibáñez and Ross (IR) [21] that a discrete group that arises as a subgroup

of a continuous gauge symmetry inherits this protection. While the full theory must satisfy

the anomaly cancellation conditions relevant for the continuous gauge groups, IR determined

the conditions that are relevant in the low-energy theory, below the scale at which the con-

tinuous gauge symmetries are broken. Since some of the fermions in the complete theory

may become massive and decoupled when symmetry breaking occurs, the low-energy theory

includes only part of the fermion content that contributes to anomaly cancellation in the

full theory. The low-energy constraints should refer only to the light fermion content, which

in the present context corresponds to models defined below the reduced Planck scale M∗.
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If the appropriate consistency conditions are satisfied, the discrete gauge symmetry can be

treated as fundamental, without reference to specific high-energy embeddings.

The constraints that we apply in our model building are the linear IR conditions in-

volving non-Abelian gauge group factors; these follow from triangle diagrams involving two

non-Abelian gauge group factors and one factor of the continuous gauge group in which

the discrete symmetry is embedded. For example, the ZN -SU(M)2 anomaly cancellation

condition is [21] ∑
i

Ci qi =
1

2
r N . (A1)

Here r is an integer, qi is the ZN charge of the ith fermion (which transforms under ZN by

exp[i2πqi/N ]) and Ci is the Casimir invariant given by Tr(T aT b) = Ciδ
ab, where the T a are

SU(M) generators in the representation of the ith fermion. Since all the fermions in the

model presented in Sec. III are in the fundamental representations of the relevant SU(M)

gauge groups, Ci = 1/2; the linear IR conditions simply requires that the ZN charges of

the fermions that transform under a specified SU(M) factor sum to an integer multiple of

N . According to IR, when N is odd (relevant to the model of Sec. III) the gravitational

anomalies linear in ZN are cancelled when the sum of all the ZN charges are also an integer

multiple of N . It is straightforward to verify that these conditions are satisfied by the charge

assignments displayed in Table I.

What about the other possible anomaly cancellation conditions? First, IR note that the

linear conditions involving the Abelian gauge groups do not lead to any useful constraints on

the low-energy theory [21]. Banks and Dine (BD) [22] later showed that the IR conditions

non-linear in the discrete group make a tacit assumption about the high-energy embedding

of the theory, through the requirement that both the light and the heavy fermions have

integer U(1) charges. BD show that there are consistent, non-anomalous theories (ones in

which the effective discrete symmetry at low energies is smaller than that of the full theory)

in which the low-energy spectrum does not satisfy the non-linear IR constraints; their failure

only implies the existence of heavy fermions with fractional charges. Thus, the non-linear

IR conditions are not required for the consistency of the low-energy effective theory. BD

note that the surviving discrete anomaly cancellation conditions are physically sensible: for

example, the condition for the cancellation of the ZN -SU(M)2 anomaly also guarantees that

there are no t’Hooft interactions generated by SU(M) instantons that would explicitly break

18



the ZN symmetry. This physical constraint [23] is completely independent of the high-energy

embedding.
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