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First results from the longitudinally polarized frozen-spin target (FROST) program are reported. The 
double-polarization observable E , for the reaction �γ �p → π+n, has been measured using a circularly 
polarized tagged-photon beam, with energies from 0.35 to 2.37 GeV. The final-state pions were 
detected with the CEBAF Large Acceptance Spectrometer in Hall B at the Thomas Jefferson National 
Accelerator Facility. These polarization data agree fairly well with previous partial-wave analyses at low 
photon energies. Over much of the covered energy range, however, significant deviations are observed, 
particularly in the high-energy region where high-L multipoles contribute. The data have been included 
in new multipole analyses resulting in updated nucleon resonance parameters. We report updated fits 
from the Bonn–Gatchina, Jülich–Bonn, and SAID groups.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

The spectrum of baryon resonances strongly depends on the 
internal dynamics of its underlying constituents. Recent lattice cal-
culations and quark models reveal a rich spectrum, in contrast to 
phenomenological analyses of experiments, which have found a 
smaller number of states [1,2]. The so-called missing resonances 
have stimulated alternative interpretations of the resonance spec-
trum. These include the formation of quasi-stable diquarks [3], 
string models running under the acronym AdS/QCD [4], models as-
suming some baryon resonances are dynamically generated from 
the unitarized interaction among ground-state baryons and mesons 
[5], and the speculation that a phase transition may occur in high-
mass excitations [6]. The photoproduction of mesons off nucleons 
provides an opportunity to distinguish among these alternatives.

Four complex amplitudes govern the photoproduction of sin-
gle pions, and a complete experiment requires the measurement 
of at least eight well-chosen observables at each energy and pro-
duction angle for both isospin-related reactions γ p → π0 p and 
γ p → π+n [7]. However, the current database for pion photo-
production is populated mainly by unpolarized cross sections and 
single-spin observables, which do not form a complete experiment. 
This is particularly true for π+n photoproduction at photon ener-
gies above 1.8 GeV. This incompleteness of the database leads to 
ambiguities in the multipole solutions.

In this Letter we present a measurement of the double-
polarization observable E in the �γ �p → π+n reaction of circularly 
polarized photons with longitudinally polarized protons. The po-
larized cross section is in this case given by [8]

http://creativecommons.org/licenses/by/4.0/
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(
dσ

d�

)
=

(
dσ

d�

)
0
(1 − P z P�E) , (1)

where (dσ/d�)0 is the unpolarized cross section; P z and P� are 
the target and beam polarizations, respectively. The observable E
is the helicity asymmetry of the cross section,

E = dσ1/2 − dσ3/2

dσ1/2 + dσ3/2
(2)

for aligned, total helicity h = 3/2, and anti-aligned, h = 1/2, pho-
ton and proton spins. These data are fitted using three very dif-
ferent PWA models — BnGa, JüBo, and SAID — from the Bonn–
Gatchina [9], Jülich–Bonn [10], and GWU [11] groups, respectively. 
The resulting consistency of helicity amplitudes for the domi-
nant resonances demonstrates that the PWA results are largely 
driven by the data alone; the modest differences gauge the model-
dependence. This consistency provides an excellent starting point 
to search for new resonances.

Earlier measurements have been reported for the polarization 
observable E in the π0 p channel [12] and some cross-section 
helicity-asymmetry data exists for both the π0 p and π+n chan-
nels [13–15]. Here we report E measurements of unprecedented 
precision covering, for the first time, nearly the entire resonance 
region.

The experiment was performed at the Thomas Jefferson Na-
tional Accelerator Facility (JLab). Longitudinally polarized electrons 
from the CEBAF accelerator with energies of Ee = 1.645 GeV and 
2.478 GeV were incident on the thin radiator of the Hall-B Pho-
ton Tagger [16] and produced circularly polarized tagged photons 
in the energy range between Eγ = 0.35 GeV and 2.37 GeV.

The degree of circular polarization of the photon beam, P� , 
depends on the ratio x = Eγ /Ee and increases from zero to the 
degree of incident electron-beam polarization, Pe , monotonically 
with photon energy [17]

P� = Pe · 4x − x2

4 − 4x + 3x2
. (3)

Measurements of the electron-beam polarization were made rou-
tinely with the Hall-B Møller polarimeter. The average value of the 
electron-beam polarization was found to be Pe = 0.84 ± 0.04. The 
electron-beam helicity was pseudo-randomly flipped between +1
and −1 with a 30 Hz flip rate.

The collimated photon beam irradiated a frozen-spin target 
(FROST) [18] at the center of the CEBAF Large Acceptance Spec-
trometer (CLAS) [19]. Frozen beads of butanol (C4H9OH) inside a 
50 mm long target cup were used as target material. The pro-
tons of the hydrogen atoms in this material were dynamically 
polarized along the photon-beam direction. The degree of polar-
ization was on average P z = 0.82 ± 0.05. The proton polarization 
was routinely changed from being aligned along the beam axis to 
being anti-aligned. Quasi-free photoproduction off the unpolarized, 
bound protons in the butanol target constituted a background. Data 
were taken simultaneously from an additional carbon target down-
stream of the butanol target to allow for the determination of this 
bound-nucleon background. A small unpolarized hydrogen contam-
ination of the carbon target has been corrected for in the analysis.

Final-state π+ mesons were detected in CLAS. The particle 
detectors used in this experiment were a set of plastic scintil-
lation counters close to the target to measure event start times 
(start counter) [20], drift chambers [21] to determine charged-
particle trajectories in the magnetic field within CLAS, and scin-
tillation counters for flight-time measurements [22]. Coincident 
signals from the photon tagger, start-, and time-of-flight coun-
ters constituted the event trigger. Data from this experiment were 
taken in seven groups of runs with various electron-beam energies 

Fig. 1. Example of a reconstructed distribution of the reaction vertex along the beam 
line for events at W ≈ 1.30 GeV and θ lab ≈ 88.5◦ originating in the butanol and 
carbon targets. The shaded areas indicate the z-vertex ranges used in the analysis.

and beam/target polarization orientations. Events with one and 
only one positively charged particle and zero negatively charged 
particles detected in CLAS were considered. The π+ mesons were 
identified by their charge (from the curvature of the particle track) 
and by using the time-of-flight technique. Photoproduced lepton-
pair production in the nuclear targets was a forward peaked back-
ground. This background was strongly suppressed with a fiducial 
cut on the polar angle of the pion, θ lab

π > 14◦ .
The observable E was determined in 900 kinematic bins of W

and cos θ cm
π , where W is the center-of-mass energy and θ cm

π is the 
pion center-of-mass angle with respect to the incident photon mo-
mentum direction. For each bin three missing-mass distributions in 
the γ p → π+ X reaction were accumulated: for events originating 
in the butanol-target with a total helicity of photons and polarized 
protons of h = 3/2, for butanol events with h = 1/2, and for events 
originating in the carbon-target. The production target was identi-
fied by the reconstructed position of the reaction vertex; see Fig. 1. 
The range for butanol-target events, −3 cm to +2 cm, was se-
lected to maximize their yield while minimizing potential contri-
butions from unpolarized events. To determine the bound-nucleon 
background in the butanol data, the carbon-data distribution was 
scaled by a factor α to fit the butanol missing-mass distribution 
up to 1.05 GeV/c2, together with a Gaussian peak. Over all kine-
matic bins, the average value of α is 5. Examples of two angular 
bins at W ≈ 1.63 GeV are shown in Fig. 2. The number of events, 
N B

3/2, N B
1/2, and NC , for a given kinematic bin were then selected 

by the condition |mX − m0| < 2σH , where m0 and σH are the peak 
position and peak width of the neutron in the missing mass distri-
bution taken from the fit. The selection is indicated by the hatched 
region in Fig. 2.

The observable E was finally extracted from the polarized 
yields, N p

3/2 and N p
1/2, of �γ �p → π+n events for total helicities 

h = 3/2 and 1/2, respectively, and the average beam and target 
polarizations,

E = 1

P z P�

(
N p

1/2 − N p
3/2

N p
1/2 + N p

3/2

)
. (4)

As the bound nucleons in the butanol target are unpolarized, the 
helicity difference in the event numbers is due only to the po-
larized hydrogen, N p

1/2 − N p
3/2 = N B

1/2 − N B
3/2. The total yield from 

polarized hydrogen was determined from the butanol and carbon 
yields, N p

1/2 + N p
3/2 = (N B

1/2 + N B
3/2 − αNC )κ , where κ = 1.3 is an 

experimentally well determined correction factor. The correction is 
needed as NC not only counts bound-nucleon events but also un-
polarized free-proton events due to the hydrogen contamination of 
the carbon target. This is the largest contribution to κ and it is en-
ergy and scattering-angle independent. A minor contribution to κ
arises as N B and NC contain also carbon-target and butanol-target 
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events, respectively, due to the limited resolution in the target re-
construction at very forward pion angles. The experimental value 
for E is then given by

E = 1

P z P�κ

[
N B

1/2 − N B
3/2

N B
1/2 + N B

3/2 − αNC

]
. (5)

Fig. 2. (Color online.) Examples of butanol missing-mass distributions, γ p → π+ X , 
overlaid with scaled distributions from the carbon-target. The hatched region selects 
the butanol- and carbon-target events which were used in the subsequent analysis. 
The butanol yield at larger missing masses contains multi-pion final-state events off 
the free proton and exceed the carbon yield.

The statistical uncertainty of E is determined from the counting 
statistics of the event yields and from the statistical uncertainty of 
the scale factor α. The relative systematic uncertainty is dominated 
by the uncertainty in the product of the beam and target polariza-
tions, about ±7.5%. The hydrogen contamination contributes with 
±1.5%. Point-to-point uncertainties are due to the background sub-
traction, ±0.03, and, only at the most forward pion angles, due to 
the limited vertex resolution, an additional contribution < 0.015.

The angular distributions, plotted in Fig. 3 as functions of 
cos θ cm

π , display an approximate ‘U’-shaped distribution between 
the required maxima at cos θ cm

π = ±1 and dipping to about −0.5
for energies up to about W = 1.7 GeV. This differs from the E
measurements for π0 p photoproduction from CBELSA-TAPS [12]. 
There, in a broad energy bin covering 960–1100 MeV, one sees a 
zero crossing near 90 degrees. In general, for the π+n final state 
and W < 1.5 GeV, the data are well described [9–11], as Fig. 3
shows, because the analyses are constrained by older MAMI–B
data [15]. However, at most of the higher photon energies, where 
no similar constraints exist, the BnGa, JüBo, and SAID analyses 
show more pronounced angular variations than are seen in the 
data. These qualitative features exist in the MAID [23] results as 
well.

Given the relative lack of polarization data at the highest en-
ergies, it is not surprising that a much better fit to these new E
measurements is achieved once they are included in the database. 
These improved analyses maintain nevertheless good descriptions 
of the previous data. In principle, a fit may be achieved through 
small amplitude changes that produce large changes in the po-
larization observables, through a substantial modification of the 
assumed resonance and background contributions, or through the 
addition of new resonances. Having the BnGa, JüBo and SAID anal-
yses together we are able to compare results with a minimal set of 
resonances (SAID) to the larger sets required in the BnGa and JüBo 
analyses.

To show the impact of the new E data, Table 1 shows the he-
licity couplings of selected low-mass nucleon resonances before 
and after including the data in the three analyses. The baseline 
SAID and JüBo fits were done with the same updated database to 
have a common point of comparison. The SAID and BnGa analy-
ses compare changes in the Breit–Wigner resonance photo-decay 
parameters, while the JüBo results determine photo-couplings at 

Fig. 3. (Color online.) Double polarization observable E in the �γ �p → π+n reaction as a function of cos θcm
π for three selected bins of the center-of-mass energy W . Systematic 

uncertainties are indicated as shaded bands. The curves in the upper panels are predictions based on the SAID ST14 [11] and JüBo14 [10] analyses as well as predictions 
from BnGa11E [9]. The curves in the lower panels are results from updated analyses including the present E data.
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Table 1
Fits to the new CLAS data (labeled E) and previous results. Breit–Wigner helicity amplitudes for the SAID (ST14 based on CM12 [11]) and Bonn–Gatchina ([12]; † : entries 
from Ref. [9]) analyses. Values from Jülich–Bonn (JüBo14 based on Ref. [10]) are quoted at the T -matrix pole including the complex phase in parentheses. Helicity amplitudes 
A1/2 and A3/2 are given in units of (GeV)−1/2 × 10−3.

ST14 ST14E JüBo14 JüBo14E BnGa11E BnGa14E

N(1440)1/2+ A1/2 −65±5 −60± 5 −56(+5◦) −53(−6◦) −62±8 −60±8
N(1520)3/2− A1/2 −22±2 −24± 2 −25(−13◦) −22(−14◦) −20±3 −24±4

A3/2 142±5 138 ± 3 112(+28◦) 104(+22◦) 131 ±7 130 ±6
N(1535)1/2− A1/2 115±10 120 ± 10 52(−14◦) 51(−20◦) 105±9 100±12
N(1650)1/2− A1/2 55±30 60± 30 28(+7◦) 30(−21◦) 33±7 32±6
	(1620)1/2− A1/2 35±5 30± 5 23(+14◦) 25(+13◦) 52±5 59±8
	(1700)3/2− A1/2 128±20 150 ± 20 118(−6◦) 121(−14◦) 160 ±20† 165±20

A3/2 91±30 110 ± 30 106(+20◦) 116(+52◦) 165 ±25† 170 ±25
	(1905)5/2+ A1/2 30±6 30± 5 13(+17◦) −39(+26◦) 25±5† 30±8

A3/2 −70±10 −50± 10 −79(−59◦) −49(−67◦) −49±4† −50±5
	(1950)7/2+ A1/2 −70±5 −80± 5 −70(−15◦) −64(−16◦) −70±5 −68±5

A3/2 −90±5 −90± 5 −86(−8◦) −91(−7◦) −93±5 −94±4

the pole. While these quantities are different in principle, a recent 
study [24] has found qualitative agreement between the moduli of 
pole residues and real Breit–Wigner quantities. Comparisons be-
tween the two sets will be made at this qualitative level.

The SAID resonance couplings have changed only slightly for 
most states, usually within the estimated uncertainties of the ex-
traction. As no new states are explicitly added, the fit below the 
highest energies has been accomplished with only small changes 
to the existing states. For the highest energies, unambiguous reso-
nance extraction is complicated by a number of factors. Here, the 
non-resonant background is significant, as can be seen from the 
dominant forward peaking in the cross section [25]. In addition, 
one must deal with the interference of many amplitudes of a simi-
lar size, with resonances tending to be coupled only weakly to the 
π N channel.

The results given in Table 1 can be compared in detail with a 
similar table presented in the CBELSA-TAPS Collaboration analysis 
of E data for π0 p photoproduction [12]. Here the BnGa11E column 
gives the result of including these new π0 p E data in a fit. As the 
BnGa11E fit changed very little, these values (indicated with dag-
gers) have been taken from the BnGa2011 solution [9]. Comparison 
with the fit ST14E is interesting in that almost all helicity ampli-
tudes agree with those from BnGa11E, within quoted errors.

Including the new E(π0 p) data [12] in the JüBo14 analysis led 
to an improved description of the E(π+n) data at intermediate 
energies but still failed to describe the new data at high energies 
(cf. Fig. 3). The impact of the new E(π+n) data on some reso-
nance parameters is significant in the JüBo14E re-analysis. For the 
N(1650)1/2− the phase changes by 28◦ , but also the SAID anal-
ysis finds that this helicity coupling is not well determined. The 
N(1535)1/2− helicity coupling is small because that resonance is 
narrower than in other analyses [10]. For some prominent reso-
nances, such as the Roper, the N(1520)3/2− , the 	(1232)3/2+ , 
and the 	(1950)7/2+ , the E data change the modulus and com-
plex phase of the helicity couplings only moderately by around 
10%. In contrast, for less prominent and more inelastic resonances, 
changes can be much larger as in case of the 	(1905)5/2+ . In 
the JüBo14E solution, changes in very high-L multipoles are larger 
than for the SAID analysis. Through correlations, high multipoles 
induce changes in lower multipoles. This explains why the new 
data has a larger impact for the Jülich–Bonn analysis than for the 
SAID analysis.

One poorly known state, the 	(2200) 7
2

−
, emerges and plays an 

important role in improving the Bonn–Gatchina fit at the highest 
energies.4 This state also exists in the Jülich–Bonn analysis, but is 

4 Details of this coupled-channel analysis are presented in a follow up paper.

not included in the SAID analysis. If this state exists, it would be 
in plain conflict with the prediction of models assuming a phase 
transition in high-mass resonances.

In summary, we have presented measurements of the double-
polarization observable E in the �γ �p → π+n reaction up to 
W = 2.3 GeV over a large angular range. These results are the first 
of the FROST program at JLab. The fine binning and unprecedented 
quantity of the data impose tight constraints on partial-wave anal-
ysis, especially at high-L multipoles and at high center-of-mass 
energies where new resonances are expected to exist. These more 
tightly constrained amplitudes help to fix the π N components 
of larger multi-channel analyses as well. The SAID and Bonn–
Gatchina solutions found minor changes of helicity couplings for 
most resonances, while the new E data led to major changes for 
the Jülich–Bonn solution and indications for a new state in the 
BnGa re-analysis.
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