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a b s t r a c t

The response of Chesapeake Bay to forcing from two hurricanes is investigated using an unstructured-grid
three-dimensional hydrodynamic model SELFE. The model domain includes Chesapeake Bay, its tributar-
ies, and the extended continental shelf in the mid-Atlantic Bight. The hurricanes chosen for the study are
Hurricane Floyd (1999) and Hurricane Isabel (2003), both of which made landfall within 100 km of the
mouth of the Bay. The model results agree reasonably well with field observations of water level, velocity,
and salinity. From the Bay’s water level response to the hurricanes, it was found that the storm surge in
the Bay has two distinct stages: an initial stage set up by the remote winds and the second stage – a
primary surge induced by the local winds. For the initial stage, the rising of the coastal sea level was setup
by the remote wind of both hurricanes similarly, but for the second stage, the responses to the two
hurricanes’ local winds are significantly different. Hurricane Floyd was followed by down-Bay winds that
canceled the initial setup and caused a set-down from the upper Bay. Hurricane Isabel, on the other hand,
was followed by up-Bay winds, which reinforced the initial setup and continued to rise up against the
head of the Bay. From the perspective of volume and salt fluxes, it is evident that an oceanic saltwater
influx is pushed into the Bay from the continental shelf by the remote wind fields in the initial stages
of the storm surge for both Floyd and Isabel. In the second stage after the hurricane made landfall, the
Bay’s local wind plays a key role in modulating the salinity and velocity fields through vertical mixing
and longitudinal salt transport. Controlled numerical experiments are conducted in order to identify
and differentiate the roles played by the local wind in stratified and destratified conditions. Down-estuary
local wind stress (of Hurricane Floyd-type) tends to enhance stratification under moderate winds, but
exhibits an increasing-then-decreasing stage when the wind stress increases. The up-estuary local wind
stress (of Hurricane Isabel-type) tends to penetrate deeper into the water column, which reduces strati-
fication by reversing gravitational circulation. To characterize mixing conditions in the estuary, a modified
horizontal Richardson number that incorporates wind stress, wind direction, horizontal salinity gradient,
and vertical eddy viscosity is used for both hurricanes. Finally, the direct precipitation of rainfall into the
Bay during Hurricane Floyd appears to create not only a thin surface layer of low salinity but also a sea-
ward barotropic pressure gradient that affects the subsequent redistribution of salinity after the storm.

� 2012 Elsevier Ltd.

1. Introduction

The Chesapeake Bay (CB), located near the mid-Atlantic Bight
along the US East Coast, is a partially mixed estuary and the largest
in the United States. The Bay is approximately 320 km long from its
entrance to its head at the mouth of the Susquehanna River. Its
width varies from a few kilometers in the Northern Bay to 20 km
at the Bay mouth with its widest point, just south of the Potomac
River mouth, spanning 45 km (Fig. 1). CB is a complicated estuarine
system with shorelines exceeding 7000 km that is comprised of

many sub-estuaries and that allows discharge from approximately
fifty tributaries. The total freshwater inputs to the CB system are
on the averages of 2570 m3 s�1, derived predominantly from the
northern and western shores, with a small portion entering from
the eastern shore; the most notable of these are the Susquehanna,
Patuxent, Potomac, Rappahannock, York, James, and Choptank Riv-
ers. Nearly the same amount of seawater as freshwater outflow en-
ters the Bay through the entrance from the mid-Atlantic Bight shelf
waters (Boicourt, 1973; Wang and Elliott, 1978; Valle-Levinson,
1995). These exchange processes at the mouth of CB are influenced
by astronomical tides, atmospheric forcing, buoyancy forcing, and
bathymetric features (Valle-Levinson and Lwiza, 1997; Valle-
Levinson and Wilson, 1994; Valle-Levinson et al., 2001, 2002,
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2003). The mean rate of exchange between the ocean and the Bay
is approximately 8 � 103 m3 s�1 (Austin, 2002).

Within our recent history, CB was hit by two tropical cyclones,
Hurricane Floyd in 1999 and Hurricane Isabel in 2003, both of
which made landfall in North Carolina as Category 2 hurricanes
(Table 1). These two hurricanes had ambivalent tracks (Fig. 2):
Floyd’s track was nearly parallel to the coast, corresponding to an
eastern-type storm, whereas Isabel’s track was perpendicular to
the coast, corresponding to a western-type storm. Eastern-type
hurricanes that travel to the east of the Bay generate a maximum
surge in the southern portion of the Bay, whereas western-type
hurricanes that pass to the west of the Bay create the highest surge
in the northern part of the Bay (Pore, 1960, 1965; Wang et al.,
2005; Shen et al., 2005, 2006a,b). The response of the Bay to a

moving hurricane is characterized by volume and salt influxes
from the ocean initiated by remote winds, locally wind-induced
vertical mixing, buoyancy effects induced by heavy rains, and
freshwater inflows under gravitational circulation, and are accom-
panied by storm-induced barotropic/baroclinic flow motions
(Valle-Levinson et al., 1998, 2002). When winds are intensified,
the magnitude of wind-driven circulation frequently exceeds that
of the gravitational circulation (Goodrich et al., 1987). Goodrich
et al. (1987) observed that wind-induced destratification in CB fre-
quently occurred from early autumn through mid-spring. Recently,
Li et al. (2007) explored the hurricane-induced destratification and
post-storm restratification processes in CB during Hurricane Isabel.
They suggested that the combined remote and local wind forcing
can cause different effects on turbulent mixing and, after the

Fig. 1. A map of Chesapeake Bay observation station locations with bathymetric soundings (meters). Red circles represent water elevation data; green squares represent wind
data; triangles represent current data (red: Year 1999; blue: Year 2003); cyan diamonds represent salinity data; and red stars represent riverflow. Red and green dashed lines
represent the tracks of Hurricanes Floyd and Isabel, respectively.

Table 1
Some comparative aspects of Hurricanes Floyd and Isabel.

Name/Aspects Hurricane Floyd Hurricane Isabel

Date September 7–17, 1999 September 6–19, 2003
Landfalling location North Carolina North Carolina
Landfalling category (maximum) Category 2 (4) Category 2 (5)
Maximum wind speed and minimum pressure 154 mph, 921 mb 161 mph, 920 mb
Pore’s classification Eastern Western
Maximum storm surge in CB 1. 559 m (Money Point, VA) 2.487 m (Chesapeake City, MD)
Total rainfall onto CB (max) 10–15 inches 1–2 inches
Total river flows 291 billion gallons (September 16–22; USGS) 1190 billion gallons (September 19–25; USGS)
Damage Estimates $ 4.5 billion (particularly NC) $ 3.6 billion ($ 2.67 billion both VA and MD)
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hurricane passes, turbulent mixing due to tides or subsequent
winds works against the gravitational adjustment to produce a
quasi-steady salinity distribution in the Bay. Guo and Valle-Levin-
son (2008) found that the effect of remote winds was dominant
over that of local winds on volume transports at the Bay entrance.
Wind directions are thought to play a significant role, as illustrated
by Guo and Valle-Levinson (2008) and Chen and Sanford (2009)
(hereafter referred to as CS). Wind stress increases estuarine strat-
ification by reducing the longitudinal density gradient (Geyer,
1997; North et al., 2004; Scully et al., 2005). Geyer (1997) showed
that down-estuary winds enhanced surface outflow, significantly
reducing the along-estuary salinity gradient. North et al. (2004)
demonstrated that increased stratification was associated with
down-estuary wind events, but did not address the role that the in-
creased stratification may play in reducing vertical mixing and
enhancing the baroclinically driven estuarine circulation. In their
investigation of Virginia’s York River Estuary, Scully et al. (2005)
found that down-estuary winds enhance the tidally averaged ver-
tical shear, which interacts with the along-channel density gradi-
ent to increase vertical stratification, whereas up-estuary winds
tend to reduce, or even reverse, the vertical shear, reducing vertical
stratification, called wind-induced straining. Wind stress not only
plays a predominant role in mixing away estuarine stratification,
but also acts to strain the along-channel estuarine density gradient.
In a partially mixed estuary system, down-estuary winds tend to
enhance tidally averaged vertical shear, increasing vertical stratifi-
cation, whereas up-estuary winds tends to reduce or reverse verti-
cal shear, decreasing vertical stratification. During the passage
through CB of Hurricane Floyd (1999) and Hurricane Isabel
(2003) through CB, very different wind patterns are generated –
Hurricane Floyd was followed by northerly (down-estuary) winds

whereas Hurricane Isabel was followed by southerly (up-estuary)
winds. Despite the unsteadiness of the hurricane wind initially,
the post-storm winds were quite persistent based on the hurricane
track relative to the orientation of the Bay. This provides a natural
testbed for conducting twin experiments in investigating the ef-
fects of the wind – both its direction and speed – on the vertical
stratified-destratified dynamics of the Bay.

Furthermore, Valle-Levinson et al. (2002) documented the influ-
ence of intense rains from consecutive tropical storms, Dennis and
Floyd, and the wind forcing from Floyd on net transport at the Bay
entrance. They proposed that the barotropic pressure gradient
associated with the precipitation and the wind-induced sea level
slopes overwhelmed the baroclinic pressure gradient to produce
a bidirectional flow. From a numerical modeling context, it is
worthwhile here to test the hypothesis proposed and quantify
the effect of precipitation which falls directly onto the Bay during
the hurricane.

The purpose of this study, therefore, is to examine the response
of CB to hurricane events by comparing two ambivalent hurricanes,
Floyd and Isabel. The first goal is to estimate the amount of saltwa-
ter transport and its pattern in CB during the hurricanes, the sec-
ond goal is to obtain further insight into the physics of storm-
induced vertical mixing in the Bay, and the final goal is to verify
the influence of precipitation on transport at the Bay entrance pro-
posed by Valle-Levinson et al. (2002).

2. The observation data collected during Hurricanes Floyd and
Isabel

Making observations during hurricanes is technically difficult.
During two hurricane events in CB, five categories of data survived

Fig. 2. Tracks of Hurricanes Floyd (red) and Isabel (blue).
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and were assembled from various resources for analysis. They are:
(1) tidal records from 16 locations, (2) time series of water velocity
from two locations, (3) time series of surface and bottom salinity
data from two locations, (4) wind and atmospheric pressure data,
and (5) river stream flow data. The measurement locations are
shown in Fig. 1.

The water levels were measured at the National Oceanic Atmo-
spheric Administration (NOAA)/ National Water Level Observation
Network (NWLON) stations, which are detailed in Table 2. Each
station provides two types of water level data: observed water le-
vel and predicted water level (astronomical tide). The storm surge
is the difference between the two.

During Hurricane Floyd, the NOAA Current Observation Pro-
gram (COP) was operating two Acoustic Doppler Current Profiler
(ADCP) current meters in the lower James River estuary (Zervas
et al., 2000), the Chesapeake Bay Observing System (CBOS) was
measuring currents at 2.4 and 10.4 m depths at the mid-Bay buoy,
and a team from Old Dominion University (ODU) was collecting
water velocity data at the entrance to CB (Valle-Levinson et al.,
2002).

During Hurricane Isabel, two current meters were successfully
operated. One was the Aanderaa RCM-9 current meter in the
mid-Bay CBOS, deployed by a team from the University of Mary-
land (UM) at 2.4 and 10.4 m (Boicourt, 2005; Roman et al., 2005).
The other dataset was collected by the Virginia Institute of Marine
Science (VIMS) from York River using a 600 kHz ADCP. This pro-
vided high-quality data on waves, storm surge, currents, and

acoustic backscatter throughout the water column before, during,
and after the storm (Brasseur et al., 2005; Reay and Moore, 2005).

During Hurricane Floyd, salinity data were collected by ODU
from the mouth of CB at the same locations that the ADCPs and
S4 were deployed (Table 2). The salinity data from mid-water
and bottom depth at station M5 and the surface salinity at station
M3 were low-passed using the 34-h Lanczos filter to obtain the
sub-tidal record. As for other datasets, the Chesapeake Bay Na-
tional Estuarine Research Reserve (CBNERR) measured surface
salinity at two stations, Taskinas Creek and Clay Bank in the York
River (YR), VA. During Hurricane Isabel, salinity was measured by
YSI-6600 Sondes operated by CBNERR at fixed stations at Sweet
Hall, Taskinas Creek, Clay Bank, and Goodwin Islands in the YR.

Meteorological data were collected from a total of 13 stations
around CB operated by NOAA and the National Data Buoy Center
(NDBC). Typically, wind data were taken at a height of 10 m above
mean sea level (MSL) and atmospheric pressures were observed at
MSL. River stream flow data from CB tributaries were obtained from
the US Geological Survey (USGS) for both hurricanes (Table 3).

3. The model and external forcing

3.1. Hydrodynamic model

The baroclinic circulation in CB was performed using the semi-
implicit Eulerian–Lagrangian Finite Element (SELFE) model, a free

Table 2
Station information and availability of observations during Hurricanes Floyd and Isabel in MD, DC, VA, and NC.

Station ID Station Name Coordinates Observations*

Latitude (N) Longitude (W) WL WD WV S

NOAA
8570283 Ocean City Inlet, MD 38� 19.7’ 75� 05.5’ X
8571892 Cambridge, MD 38� 34.4’ 76� 04.1’ X X
8573364 Tolchester Beach, MD 39� 12.8’ 76� 14.7’ X X
8574680 Baltimore, MD 38� 16.0’ 76� 34.7’ X
8575512 Annapolis, MD 38� 59.0’ 76� 28.8’ X
8577330 Solomons Island, MD 38� 18.0’ 76� 27.1’ X
8594900 Washington, DC 38� 52.4’ 77� 01.3’ X
8632200 Kiptopeke Beach, VA 37� 10.0’ 75� 59.3’ X X
8635150 Colonial Beach, VA 38� 15.1’ 76� 57.6’ X
8635750 Lewisetta, VA 37� 59.2’ 76� 27.8’ X X
8636580 Windmill Point, VA 37� 36.9’ 76� 17.4’ X
8637624 Gloucester Point, VA 37� 14.8’ 76� 30.0’ X
8638610 Sewells Point, VA 36� 56.8’ 76� 19.8’ X X
8638863 Chesapeake Bay BT, VA 36� 58.0’ 76� 06.8’ X X
8639348 Money Point, VA 36� 46.7’ 76� 18.1’ X X
8651370 Duck Pier, NC 36� 11.0’ 75� 44.8’ X X
NDBC
41025 Diamond Shoals, NC 35� 00.4’ 75� 24.1’ X
44009 Delaware Bay 26 NM, NJ 38� 27.8’ 74� 42.1’ X
44014 Virginia Beach 64 NM, VA 36� 36.7’ 74� 50.2’ X
TPLM2 Thomas Point, MD 38� 53.9’ 76� 26.2’ X
CHLV2 Chesapeake Light, VA 36� 54.6’ 75� 42.6’ X
CBOS
mid-Bay Mid-Bay station, MD 38� 18.0’ 76� 12.0’ X(I) X(I)
VIMS
GP Gloucester Point, VA 37� 14.8’ 76� 30.0’ X(I)
ODU
M3 Chesapeake Bay mouth, VA 36� 57.7’ 75� 59.1’ X(F) X(F)
M5 Chesapeake Bay mouth, VA 37� 00.5’ 75� 58.2’ X(F) X(F)
CBNERR

Sweet Hall, VA 37� 34.0’ 76� 50.0’ X
Taskinas Creek, VA 37� 24.0’ 76� 42.0’ X
Claybank, VA 37� 18.0’ 76� 33.0’ X
Goodwin Islands, VA 37� 13.0’ 76� 23.0’ X

NOAA COP
Newport News, VA 36� 59.3’ 76� 26.4’ X(F)
Craney Island, VA 36� 53.3’ 76� 20.3’ X(F)

* WL: water level; WD: wind; WV: water velocity; S: salinity; (I): only for Isabel; (F): only for Floyd.
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surface hydrostatic, three-dimensional cross-scale circulation
model on unstructured grids (Zhang and Baptista, 2008; Liu
et al., 2008a,b; Burla et al., 2010). SELFE uses a semi-implicit Galer-
kin finite-element method for the pressure gradient and the verti-
cal viscosity terms, which are treated implicitly, and for other
terms treated explicitly. To solve the vertical velocity, a finite-vol-
ume method is applied to a typical prism, because it serves as a
diagnostic variable for local volume conservation when a steep
slope is present (Zhang et al., 2004). SELFE treats the advection
in the transport equations with the total variation diminishing
(TVD) scheme. A higher-order finite-volume TVD scheme is a pref-
erable option in SELFE. TVD is the technique of obtaining high-res-
olution, second-order, oscillation-free, explicit scalar difference
schemes by the addition of a limited anti-diffusive flux to a first-or-
der scheme (Sweby, 1984). Osher (1984) defined the flux differ-
ences for a general three-point E-scheme, which is a class of
semi-discrete schemes approximating the scalar conservation
law. These flux differences are used to define a series of local Cou-
rant–Friedrichs–Levy (CFL) numbers. Superbee (Roe, 1986) is used
as a flux limiting function. SELFE adapts the Generic Length Scale
(GLS) turbulence closure through the General Ocean Turbulence
Model (GOTM) suggested by Umlauf and Burchard (2003, 2005),
taking advantages from a number of level 2.5 closure schemes such
as k–e (Rodi, 1984), k–x (Wilcox, 1998); Mellor and Yamada
scheme (Mellor and Yamada, 1982). In this study, the k–e scheme
is used.

The horizontal grid used is shown in Fig. 3. This grid has 20,784
elements, 11,582 nodes, and 32,386 sides on the surface. At least
three horizontal grid cells resolve the channel of the main Bay.
The horizontal spacing of the grid inside the Bay is on average
0.5 km except for the ship channel and the upper part of the trib-
utaries, where the resolution is about 0.1–0.2 km. The triangular
unstructured grid with 0.1–0.2 km resolution can cover most of
the tidal portion of the major tributaries in the Bay. Transitioning
from the Bay to the continental shelf, the resolution became coar-
ser toward the open boundary where the resolution is about
10 km. Although a more refined grid would sufficiently reduce
numerical diffusion, computational efficiency should be consid-
ered as well, because the time step must be reduced as the grid
becomes more refined. In the vertical direction, SELFE uses
hybrid-vertical coordinates, which include both terrain-following
S-coordinates and Z-coordinates. The terrain-following S layers
are placed on top of a series of Z layers. The hybrid vertical coordi-
nate system has the benefits of both S- and Z-coordinates: the S
layers used in the shallow region resolve the bottom efficiently
and the Z layers, which are only used in the deep region, fend off
hydrostatic inconsistency (Zhang and Baptista, 2008). The vertical
grid used in the domain has 20 layers in S-coordinates and 10 lay-
ers in Z-coordinates. The 20 layers that use S-coordinates cover the
entire shallow region down to 43 m in depth, and the 10 layers that
use Z-coordinates cover the region from 43–200 m in depth.

3.2. External forcing

3.2.1. Atmospheric forcing
For the hurricane events, the wind and atmospheric pressure

fields were generated by the parametric wind model in SLOSH
(Jelesnianski et al., 1992). Based on the main hurricane parameters
(i.e., hurricane path, atmospheric pressure drop, and radius of max-
imum wind speed), the model calculates wind speed, wind direc-
tion, and air pressure in the pattern of a circularly symmetric,
stationary storm. Basically, tangential forces along a surface wind
trajectory are balanced by the forces normal to a surface wind tra-
jectory. The formation of wind speed for a stationary, circularly
symmetric storm is described as:

VðrÞ ¼ VM
2ðRMÞr
R2

M þ r2
ð1Þ

where VM is the maximum wind speed [m s�1], RM is the radius of
maximum wind speed [m], and r is the distance from the storm cen-
ter [m]. The moving speed of the storm is estimated by the hourly
hurricane track. Typically, the radius of maximum pressure gradient
(Rp) does not coincide with the radius of maximum wind speed
(Holland, 1980). The ratio is defined as follows:

Rp=RM ¼ ½B=ðBþ 1Þ�1=B ð2Þ

where B is the scaling parameter determining the shape of the wind
profile. Holland (1980) suggested that B lies between 1 and 2.5 for
hurricanes. Detailed applications of this method are found in Shen
et al. (2006b) and Wang et al. (2005).

The analytical wind model described above requires three
parameters: hurricane path, atmospheric pressure drop, and ra-
dius of maximum wind speed. This model is useful during hurri-
cane events, but is not applicable to normal weather conditions.
To generate atmospheric forcing with normal weather conditions,
an interpolation method is applied by using the data measured at
the stations depicted in Fig. 1. The inverse distance weighted
(IDW) interpolation method is used for non-hurricane periods.
The IDW interpolation is based on the assumption that the inter-
polating surface should be influenced more by nearby points
than by distant points. Shepard’s Method is the simplest form
of IDW interpolation (Shepard, 1968). The equation used is de-
scribed as:

Fðx; yÞ ¼
Pn
i¼1

wifi ð3Þ

where n is the number of scatter points in the dataset, fi are the pre-
scribed function values at the scatter points (e.g., the dataset
values), and wi are the weight functions assigned to each scatter
point. The weight function used in the method is described as fol-
lows (Franke and Nielson, 1980):

Table 3
Station Information of USGS daily streamflow data in eight tributaries of the Chesapeake Bay recording maximum values during Hurricanes Floyd (1999) and Isabel (2003).

Station ID River name Coordinates Maximum streamflow (CMS)

Latitude (N) Longitude (W) Floyd Isabel

01491000 Choptank River 38� 59’ 50’’ 75� 47’ 09’’ 158 36
01578310 Susquehanna River 39� 39’ 28’’ 76� 10’ 28’’ 1476 3380
01594440 Patuxent River 38� 57’ 21’’ 76� 41’ 37’’ 200 139
01646500 Potomac River 38� 56’ 59’’ 77� 07’ 40’’ 403 4225
01668000 Rappahannock River 38� 18’ 30’’ 77� 31’ 46’’ 49 924
01673000 Pamunkey River 37� 46’ 03’’ 77� 19’ 57’’ 168 315
01674500 Mattaponi River 37� 53’ 16’’ 77� 09’ 48’’ 69 104
02037500 James River 37� 33’ 47’’ 77� 32’ 50’’ 352 2324
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wi ¼
R�hi
Rhi

h i2

Pn
j¼1

R�hj

Rhj

h i2 ; ð4Þ

where hi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2 þ ðy� yiÞ

2
q

is the distance from the interpola-
tion point (x,y) to the scatter point (xi,yi), R is the distance from the
interpolation point to the most distant scatter point, and n is the to-
tal number of scatter points.

To correct the parametric wind, the nudging of the observations
from the gauge stations in the Bay area including wind speed,
direction, and barometric pressure, was used with a modified in-
verse distance method. Let F(x,y, t) be a variable computed from
the parametric wind model at node (x,y). The new variable after
correction is bFðx; y; tÞ which can be expressed as:

bF ðx; y; tÞ ¼PN
i¼1

Wiðx; yÞaiðx; y; tÞFðx; y; tÞ

where

aiðx; y; tÞ ¼
Fobsðxi;yi;tÞ

Fðxi;yi;tÞ

Wiðx; yÞ ¼
ðx�xiÞ2þðy�yiÞ2½ ��1P
j
ðx�xjÞ2þðy�yjÞ2½ ��1

Wiðx; yÞ ¼ 1; x ¼ xi; y ¼ yi

Wiðx; yÞ ¼ 0; x ¼ xj; y ¼ yj; where i – j

ai(x, y, t) is the correction factor for observed variables at the ith sta-
tion. Fobs are the observed variables at the ith station. N is the total
number of observation stations. Wi(x, y) is a weighted function

corresponding to the ith observation stations. Fig. 4a showed the
observed wind and pressure fields at the northern and southern
Bay during Hurricanes Floyd and Isabel. Examples of the modeled
versus observed wind fields during Hurricane Isabel were shown
in Fig. 4b for comparison. Given the relatively dense network of
the weather stations in the Chesapeake Bay area, the wind and pres-
sure fields results were successfully used in Shen et al. (2005,
2006a,b).

3.2.2. River inflows
Chesapeake Bay receives freshwater inflow from eight major

rivers and from more than 150 creeks (Krome and Corlett, 1990).
Since most of these creeks are ungauged and small, we can only ac-
count for freshwater measurements from the major rivers. These
are the Susquehanna River (at the head of the Bay), the Patuxent,
Potomac, Rappahannock, Mattaponi, Pamunkey, and James Rivers
on the Western Shore, and the Choptank River on the Eastern
Shore. Freshwater inflow records are provided by USGS (http://
www.waterdata.usgs.gov/nwis). Daily river inflows varying over
time are considered from these eight tributaries of CB, as described
in Table 3, with settings of 0 ppt salinity and 15 �C considered con-
stant in time.

3.3. Open boundary conditions

3.3.1. Water elevation
The study area is extended to the 200-m isobath on the conti-

nental shelf in the Atlantic Ocean as an alongshore boundary,

Fig. 3. A horizontal grid for the SELFE model (left) and transects (red lines) and along-channel points (black dots) for transport analysis (right). The grid has 20,784 elements,
11,582 nodes, and 32,386 sides at the surface.
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and Ocean City Inlet, MD and Cape Hatteras, NC as northern and
southern cross-shore boundaries, respectively. As for the water
elevation, two types of boundary conditions are considered to re-
solve tidal and sub-tidal (primarily induced by meteorological forc-
ing) flows: a Dirichlet-type (clamped) condition (Bills, 1991; Reid,
1990) for the harmonic constants of nine constituents (M2, S2, N2,
K1, O1, M4, M6, K2, and Q1), and a Flather-type radiation condition
for the sub-tidal component (Flather, 1976; Carter and Merrifield,
2007). An analytical model by Janowitz and Pietrafesa (1996)
was used to determine spatial and temporal variations of sub-tidal
elevation on the open boundaries during storm events, based on
the balance between the production of relative vorticity by bottom
Ekman layer pumping and the topographically induced vertical
velocity. In this study, the alongshore direction coordinate needs
to be transformed from the original due to the consideration of
the surge propagation direction and the decision to neglect the
bottom friction-induced vertical velocity term from the original
form. The results from the analytical model compared well with
coastal observations (Cho, 2009).

3.3.2. Salinity and temperature
The Chesapeake Bay Program (CBP) has provided salinity obser-

vations in the Bay and its tributaries from 1984 to the present.
Salinity is monitored at 49 stations, and sampling occurs once a
month during the late fall and winter and twice a month in the
warmer months at approximately 1–2 m intervals (CBP, 1993).
Outside the Bay, including the continental shelf region, salinity
data are provided by the CORIOLIS Data Center (http://www.corio-
lis.eu.org). Salinity profiles from Argo profilers or oceanographic
vessels (XBT, CTD) are collected and controlled in real time by
CORIOLIS and analyzed in real time once a week. Salinity fields
are obtained on a grid with one-third-degree resolution in latitude
and longitude at 57 vertical levels down to 2000 m in the Atlantic
Ocean using the objective analysis method (Bretherton et al.,
1976). Thus, using the vertical profiles of salinity at all available
stations and grid points, initial conditions can be generated at each
vertical layer and linearly interpolated in space. The Surface-water

Modeling System (SMS) software is incorporated into this interpo-
lation method. Spatially and temporally linearly-interpolated
CORIOLIS salinities are imposed as open boundary conditions.
Temperature was not explicitly modeled, as salinity dominates
the baroclinic effect (Seitz, 1971; Goodrich et al., 1987; Guo and
Valle-Levinson, 2008).

4. Model calibration and result

Model-data comparison involves a quantitative evaluation of
the performance of the model. The skill assessment we use is based
upon computing the mean absolute root-mean-square error
(RMSE), the mean absolute relative error (ARE), and R2, which are
defined as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
PN
i¼1
ðPi � OiÞ2

s
; ARE ¼ 1

N
PN
i¼1

Pi � Oi

Oi

���� ����� �
� 100ð%Þ ð5Þ

R2 ¼
n
Pn

i¼1ðPi � OiÞ
� �

�
Pn

i¼1Oi �
Pn

i¼1Pi
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
Pn

i¼1P2
i

h i
�
Pn

i¼1Pi
� �2

n or
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Pn

i¼1O2
i

h i
�
Pn

i¼1Oi
� �2

n or
ð6Þ

where 0 6 ARE 6 100ð%Þ, Pi is the model prediction at location (or
time) i, and Oi is the corresponding observed value at i. These three
skill assessment factors provide an objective and meaningful
description of a model’s ability to reproduce reliable observations,
respectively. Both tidal and sub-tidal values were subjected to the
analysis procedures.

4.1. Time series comparison of water level, velocity, and salinity fields

4.1.1. Astronomical tides and storm surges
The model was calibrated with respect to the bottom frictional

coefficient by simulating mean tide characteristics. We applied the
quadratic stress at the bottom boundary and assumed that the bot-
tom boundary layer is logarithmic with a bottom roughness height

Fig. 4a. Time series plots of wind and pressure data at two stations (from top to bottom: Thomas Point, MD; CBBT, VA) during Hurricane Floyd (upper) and during Hurricane
Isabel (lower).
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of 0.5 mm. The bottom layer velocity in the 3D baroclinic model
was used in conjunction with the logarithmic profile to calculate
the bottom stress. The use of calibrated bottom friction parameters
during the tidal calculation was found to be adequate to use during
hurricane conditions. This is consistent with the reports by Zhong
and Li (2006) and Li et al. (2007) in that, by including the vertical
stratification in the 3D Chesapeake Bay model, it improved the skill
assessment of the calibration and was adequately used for the sim-
ulation during the hurricane events.

In order to calibrate the astronomical tides, model results were
selected for the last 30 days of the 60-day model run. CB has the
tidal characteristics of a reflected, dampened Kelvin wave, with a
larger tidal range along the Eastern Shore than the Western Shore
(Hicks, 1964; Carter and Pritchard, 1988; Zhong and Li, 2006; Guo
and Valle-Levinson, 2007). The mean tidal range decreases from
0.9 m at the Bay’s entrance to a minimum of 0.27 m from Plum
Point to Annapolis, MD, and then increases to 0.55 m at Havre de
Grace, MD, located near the head of the Bay. The model reproduced

Fig. 4b. The comparison of modeled versus observed wind fields during Hurricane Isabel, observed (left) and modeled (right).
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these characteristics properly. Harmonic analysis results for four
major constituents (M2, S2, N2, and K1) are shown in Tables 4a
and b. The model results have a high correlation and low error
compared with observations. The dominant M2 constituent has
an ARE value of 4.1% and a RMSE value of 1.6 cm. To verify the
model performance during Hurricanes Floyd and Isabel, model
runs were conducted for 15-day periods, from 10–24 September,
1999 and from 12–26 September, 2003, respectively. Time series
plots of storm surges at six selected stations during Hurricane
Floyd in 1999 and Hurricane Isabel in 2003 are shown in Fig. 5.
The model results have high values of R2 (>0.90) at all of the obser-
vation stations, with the exception of the upper Bay station. The
RMSE of predicted surges is on the order of 10 cm.

4.1.2. Velocity field
The velocity data were first plotted in a (u,v) diagram to find the

major and minor axes for each location, which were then used as a
basis to obtain the along-channel velocity component. During hur-
ricane events, the wind-induced sub-tidal velocity superposed on
astronomical tidal currents can reach large magnitudes. During
Hurricane Floyd, currents were measured exceeding 1 m s�1 in
the James River, whereas during Hurricane Isabel currents reached
1.5 m s�1 at the mid-Bay station. The model-simulated along-chan-
nel velocities during Hurricane Floyd were compared with ob-
served velocities at three observation stations: the mid-Bay buoy
at depths 2.4 and 10.4 m, Newport News (NN) at 1.7 and 12.7 m,
and the M5 station at 3 and 5 m, as shown in Fig. 6(a). The R2 val-
ues all exceed 0.8 and the RMSEs are below 3 cm s�1, except at NN
(12.7 m) where the RMSE is 5 cm s�1. During Hurricane Isabel, the
comparisons were made at the mid-Bay buoy at 2.4 and 10.4 m and
Gloucester Point (GP) at the surface and bottom, as shown in
Fig. 6(b). The modeled velocity reproduced the observed velocity
at both surface and bottom depths of the mid-Bay station; in par-
ticular, a striking feature is apparent at day 19.2, when the peak
landward velocity reached a magnitude of 1.5 m s�1. The R2 values
at the mid-Bay buoy both exceeded 0.85. At the GP station, the
comparison was not as good, with an R2 value of about 0.78. Part
of the difficulty here is the fact that the major axis of the current
is not as well defined, and thus there is some difficulty in defining
the axial component of the velocity. Overall, the model results indi-
cate that the SELFE model is capable of reproducing time series of
along-channel velocity during both hurricane events in CB main-
channel as well as in its tributaries, the York and James Rivers.

4.1.3. Calculation of volumetric transport
In order to calculate the transport, we followed the formulation

used by Kuo and Park (1992):

F ¼
Z

A
udA ð7aÞ

where u is the velocity normal to each cell area A of a transect. This
method can be sufficient to estimate not only longitudinal flows
along the main stem, but also lateral volumetric exchanges between
the Bay and its tributaries. The time series of the tidally averaged
volumetric flux across nine transects along the Chesapeake Bay
main stem and six transects in its tributaries was calculated using
Eq. (7a) and shown in Fig. 7. During Hurricane Floyd, the net flux
in the main Bay and the tributaries are characterized by the follow-
ing three general patterns: (1) the landward fluxes at all transects
were dominant through September 14, (2) the seaward flux became
dominant from September 15 to 17, and (3) the landward flux again
occurred after September 18 (see Fig. 7a) During Hurricane Isabel,
the net flux in the Bay main stem and tributaries are characterized
by (1) the landward fluxes across all transects were dominant
through September 17, (2) the huge landward flux occurred from
the second half on September 18 through the first half on Septem-
ber 19, and (3) the huge return flux again headed seaward from the
second half on September 19 to the first half on September 20 and
then decreased (Fig. 7b). It is worth noticing that the volume flux
during the peak of Hurricane Floyd was dominated by the seaward
transport; by contrast, during the peak of Hurricane Isabel, it was
dominated by landward transport. The order of magnitude of the
surge-induced transport in both events is several times 104 m3/s,
which is much larger than the combined river inflow which is on
the order of 103 m3/s.

After the events, however, the river discharge began to gather
from the watershed and have a significant impact on the re-strat-
ification of the Bay subsequently.

4.1.4. Salinity field
To verify the long-term salinity in SELFE, the modeled salinity

data were compared with monthly observed salinity data from
CBP. River discharges and open boundary conditions for salinity
were specified with the USGS daily stream flow data and the CORI-
OLIS salinity data. Fig. 8a shows a comparison of surface and bot-
tom salinities at five selected stations (from Duck, North Carolina
through the Bay mouth to the upper Bay) for two 150-day periods
in 1999 and 2003. SELFE reproduced the temporal salinity varia-
tion with a good agreement in the vertical stratification. The model
highlighted the decrease in surface salinity induced by high fresh-
water inflows at the end of January 1999 and at the end of March
2003. Fig. 8b showed the skill metrics of the comparison. Overall,
the score was high with the root-mean-square error around 2–
3 ppt for both surface and bottom salinities indicating that the
SELFE model is capable of simulating the baroclinic process and
the underlying salinity structure. Fig. 9 shows additional compari-
sons made during Hurricane Floyd, whereby the model and mea-
sured salinity time series were compared at the mid-depth and
bottom of the M5 Station and the surface of the M3 Station. Again,
the model performed well in catching the major salinity draw-
down during 17–18 September, when the major sub-tidal velocity
turned seaward. The model also reproduced the rebound of salinity
after the event. We low-pass filtered the sub-tidal variation of the
modeled and observed values, and then made the comparison. The
metrics for the skill showed a better prediction at mid- and bottom
depths at Station M5 (R2 � 0.65) than that on the surface of Station
M3 (R2 � 0.45). We believe the error is introduced due to the
uncertainty on the amount of the rainfall that fell directly onto
the surface of the Bay water and its subsequent effects.

Table 4a
Comparison of observed and predicted mean tidal amplitudes at 11 selected tide
gauge stations.

Stations M2 S2 N2 K1

OBS PRE OBS PRE OBS PRE OBS PRE

(unit: m)
CBBT 0.38 0.37 0.07 0.09 0.09 0.09 0.06 0.07
Kiptopeke 0.38 0.37 0.07 0.08 0.08 0.08 0.06 0.07
Gloucester

point
0.35 0.31 0.07 0.07 0.07 0.07 0.05 0.05

Windmill point 0.17 0.16 0.03 0.04 0.04 0.04 0.03 0.03
Lewisetta 0.18 0.18 0.03 0.04 0.04 0.04 0.02 0.03
Solomon’s

Island
0.16 0.17 0.02 0.03 0.03 0.04 0.03 0.04

Cambridge 0.23 0.22 0.03 0.04 0.04 0.05 0.05 0.05
Annapolis 0.13 0.12 0.02 0.02 0.03 0.03 0.06 0.06
Baltimore 0.16 0.17 0.02 0.02 0.04 0.04 0.07 0.07
Tolchester

beach
0.17 0.19 0.03 0.04 0.04 0.04 0.07 0.07

ARE (%) 4.1 22.6 5.8 11.7
RMSE (m) 0.016 0.010 0.005 0.006
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4.2. Spatial pattern of water level, salinity, and velocity fields

4.2.1. Horizontal distribution of elevation and depth-averaged flow
The time sequences of elevation and sub-tidal depth-integrated

flows during Hurricane Floyd were shown in Fig. 10. The left panel
was coincided with the hurricane approaching phase and the right
panel with the phase of the land-falling and resurgence. The back-
ground color denotes the water elevation and the depth-averaged
flow is the low-pass filtered sub-tidal velocity (using the Lanczos
filter for removing the intratidal component). On 16 September at
09:00 UTC, a northeasterly wind of 10.9 m s�1 began to drive the
water from the continental shelf into the Bay, and consequently
generated the first stage peak of storm surge in the lower Bay, as

shown in Fig. 10(b). Northeasterly and easterly winds continued
to blow up to 16:00 and 17:00 UTC (Fig. 10(d) and (e)) when the
water from both the northern Bay and the continental shelf con-
verged making the surge elevation reach to its maximum. Directly
after 17:00 UTC on the same day, as the eye of the hurricane swept
over the Bay mouth, the winds changed to a northwesterly direc-
tion with a maximum speed of 23.4 m s�1 (not shown), which ele-
vated the water level specifically along the Eastern Shore of
Virginia. From 18:00 UTC on, consistent large outflows from the
Bay to the ocean were observed and the surge height started to
decrease, as shown in Fig. 10(f), (g), and (h). For Hurricane Isabel,
time sequences of the elevation and sub-tidal depth-integrated
flows were plotted in Fig. 11. (It should be noted that different

Table 4b
Comparison of observed and predicted mean tidal phases at 11 selected tide gauge stations.

Stations M2 S2 N2 K1

OBS PRE OBS PRE OBS PRE OBS PRE

(unit: m)
CBBT 235.3 235.3 255.9 255.9 218.1 218.1 109.1 109.1
Kiptopeke 247.9 251.7 270.8 271.7 229.2 234.6 119.3 120.5
Gloucester point 268.3 267.0 288.7 287.8 250.9 249.2 125.6 125.7
Windmill point 317.3 326.6 334.0 344.7 297.2 309.8 148.7 159.4
Lewisetta 33.8 30.6 54.7 54.3 7.6 11.1 205.0 210.8
Solomon’s Island 54.2 47.9 70.5 74.3 32.4 27.8 243.7 238.4
Cambridge 114.7 91.6 139.0 120.2 94.0 72.1 269.4 252.2
Annapolis 147.2 133.1 175.0 157.7 126.0 115.0 283.3 272.2
Baltimore 193.9 191.2 213.4 216.8 173.4 170.5 296.6 281.5
Tolchester beach 202.7 194.4 227.4 222.0 176.0 173.0 287.9 277.5
ARE (%) 6.1 3.7 10.3 3.2
RMSE (deg) 9.8 9.1 9.2 9.7

Fig. 5. Surge height comparison between observed (red) and predicted (blue) at five selected stations during Hurricanes Floyd (left) and Isabel (right).
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Fig. 6. Comparison of observed and predicted along-channel velocity during Hurricane Floyd in (a) and during Hurricane Isabel in (b).

Fig. 7. Tidally averaged mean volumetric transport represented at half-day intervals at transects in the main stem Bay (top) and the tributaries (bottom) for the Hurricane
Floyd (left) and Hurricane Isabel (right).
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background color scales was used for Figs. 10 and 11). There were
initially a seaward outflow driven by northeasterly winds
(Fig. 11(a)), but from 15:00 UTC, 18 September, the seaward out-
flow along the Bay mouth started to decrease and changed to an in-
flow. As the remote northeasterly and easterly winds strengthened
up to 23 m/s during the period from 15:00 to 21:00 UTC, September
18, it generated very strong landward inflows from the continental
shelf into the Bay as shown in Fig. 11(c) and (d). Over the period
from 01:00 UTC to 03:00 UTC on 19 September, as Hurricane Isabel
made the landfall and moved inland on a northwest track, the trail-
ing edge of the cyclonic, local winds (i.e., southeasterly and southerly
winds) became dominant. This pattern of wind is very persistent
and efficient in intensifying the northward inflows and set up
against the head of the upper Bay (Fig. 11(d), (e), and (f)). During
this period, the peak surge height gradually built up in the upper
Bay (not shown). In the end, the pressure gradient created by the
sea level slope from the north to the south drove the water in an
opposite direction to that of the wind, as shown in Fig. 11(h). From
the comparison of the Bay’s water level response to hurricanes, it
was found that the storm surge in the Bay has two distinct stages:
an initial stage setup by the remote winds and the second stage in-
duced by the local winds. For the initial stage, the remote wind was
setup by both hurricanes initiated in the coastal ocean resulting in
the similar influx of storm surge; but for the second surge, the re-
sponses of the Bay to the two hurricanes were significantly differ-
ent. Hurricane Floyd was followed by down-Bay winds that
canceled the initial setup and caused a set-down from the upper
Bay. Hurricane Isabel, on the other hand, was followed by up-Bay

winds, which reinforced the initial setup and continued to increase
the water level against the head of the Bay.

4.2.2. Along-channel variation of velocity and salinity fields
Longitudinal distributions of 25-h tidally averaged velocity and

salinity during the hurricanes are plotted in Fig. 12(a) and (b) for
Hurricanes Floyd and Isabel, respectively. During Hurricane Floyd,
on 16 September, the Bay had a two-layered circulation prior to the
passage of the eye of the storm, in which fresher water flowed sea-
ward whereas saltwater flowed landward. After the eye had passed
over the mouth of the Bay (17 September), the flow direction chan-
ged to seaward along the entire cross-section in the lower Bay and
mainly two-layered circulation in the deep portion of the Bay. The
salinity decreased by approximately 3–4 ppt. On the next day (18
September), a landward return flow occurred throughout the en-
tire transect (Fig. 12(a)). Stratification in the deep channel was in-
creased by 3–4 ppt due to a relatively strong saltier water inflow
through the bottom layer. Within a week, the non-tidal flow across
the cross-section appeared to return to a two-layered circulation
pattern, and the vertical salinity structure appeared to be adjusted
by the restratification process (not shown).

During Hurricane Isabel, prior to the passage of the strongest
wind, the salinity difference between surface and bottom waters
in the deep channel was approximately 6–7 ppt, which is 4–5 ppt
greater than the pre-Floyd condition. On 18 September, with the
northeasterly wind on the continental shelf, we see that vertically
homogeneous saltwater was pumping into the Bay from the ocean
(Fig. 12(b)). The mid- and upper Bay portions also have strong

Fig. 8a. Comparison of observed and predicted salinity (surface and bottom) at five selected stations for spring 1999 (left) and spring 2003 (right). Model results (red: bottom;
blue: surface) and observed data (black circle: bottom; green circle: surface).

K.-H. Cho et al. / Ocean Modelling 49–50 (2012) 22–46 33



Fig. 8b. The statistical comparison of the modeled versus observed surface and bottom salinity shown in Fig. 8a.

Fig. 9. Salinity comparison between observation data (red) and model prediction during Hurricane Floyd: (a) mid depth at M5, (b) near bottom at M5, and (c) near surface at
M3 (left) and related statistical comparison (right).
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components of landward bottom flow. On 19 September, when the
hurricane passed by, a strong band of surface landward flow
showed in the mid- and upper Bay portions and the previously
stratified water became relatively well-mixed. On 20 September,
the very strong seaward flow rebounded, and the stratification in
the vertical water column of the Bay started to increase by 2, 1.5,
and 5 ppt in the upper, middle, and the lower Bay, respectively
(Fig. 12(b)). Within about a week, the net flow appears to return
to a two-layered circulation pattern with a 7–8 ppt salinity differ-
ence between surface and bottom waters in the channel (not shown).

A comparison of the Bay’s response to the two hurricanes fea-
tures a few highlights: (1) Prior to the storms, there was a signifi-
cant difference between the observed stratification (DS) in the Bay
(Table 5). At CB4.4, pre-Floyd stratification was nearly 4 ppt
whereas pre-Isabel stratification was nearly 11.5 ppt. (2) In the
lower Bay, it is clear that the saltwater intrusion occurred during
both hurricanes. (3) Overall, the winds during both hurricanes gen-
erated vertical mixing that destratified the water column. Even
during the peak of the hurricane events, however, the deep portion
of the mid-Bay remained stratified.

Fig. 10. Horizontal distributions of depth-integrated flow (thin arrows) at the southern portion of the Chesapeake Bay during Hurricane Floyd with time sequence from (a)
September 16 03:00 UTC to (h) September 17 12:00 UTC. Colored map represents storm height, the thick open arrow specifies wind speed and direction recorded at CBBT, VA,
and the gray arrow is the general direction of the flow.
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4.3. Cross-sectional salt flux

Following Lerczak et al. (2006), the total salt flux is expressed
by:

Fs ¼
ZZ

usdA
� 	

ð7bÞ

where the angle bracket denotes a 33-h low-pass filter, u is the axial
velocity, s is salinity, and the cross-sectional integral within the an-
gle bracket represents the instantaneous salt flux. Fs can further be
decomposed as:

Fs ¼ h
RR
ðu0 þ uE þ uTÞðS0 þ SE þ STÞdAi

� h
RR
ðu0S0 þ uESE þ uT STÞdAi

¼ Q f S0 þ FE þ FT

ð8Þ

in which u and S are decamped into tidally and cross-sectionally
averaged (u0 and S0), tidally averaged and cross-sectionally varying
(uE and SE), and tidally and cross-sectionally varying (uT and ST)
components. Here u0 is defined as the low-passed volume transport
divided by the low-passed cross-sectional area. Thus, Qf includes
the volume transport resulting from the correlation between tidal
currents and fluctuation in the cross-sectional area, and S0 is the

Fig. 11. Horizontal distributions of depth-integrated flow (thin arrows) at the southern portion of the Chesapeake Bay during Hurricane Isabel with time sequence from (a)
September 18 09:00 UTC to (h) September 19 18:00 UTC. All legends are the same as depicted in Fig. 10 except the scale of the colored bar is slightly different.
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tidally and cross-sectionally averaged salinity. The resulting three
terms are the salt fluxes due to sub-tidal cross-sectionally averaged
transport (Qf S0), the sub-tidal shear dispersion (FE), and tidal oscil-
lations (FT). As pointed out by Lerczak et al. (2006), in the absence of
axial wind, the two up-estuary salt fluxes (FE and FT) balance the
down-estuary salt loss to river discharge (Qf S0).

4.3.1. Longitudinal distribution
The instantaneous total flux and the tidally averaged total salt

flux Fs were generated at nine cross-sections in CB for Hurricanes
Floyd (Fig. 13, upper panel) and Isabel (Fig. 13, lower panel). In
Fig. 13(a), before the hurricanes make landfall, it is obvious that
the ocean saltwater influx was induced by the remote northeast-
erly wind of both hurricanes. The magnitude of the flux at the
Bay mouth due to Isabel appears to be greater than that due to
Floyd. This can be attributed to the rotation of the unsteady winds
from the northeasterly to easterly, which favored Isabel. For Hurri-
cane Floyd, the initial salt influx only reaches the lower Bay,
whereas during Isabel the salt flux effects were felt at the northern
end of the Middle Bay. The strong seaward flow induced by

down-Bay winds during Floyd restricted landward salt flux to the
upper Bay, whereas landward flow enhanced by up-Bay winds
during Hurricane Isabel strengthened the landward salt flux to
the upper Bay. In the subsequent time sequence, shown in
Fig. 13(b)–(e), the flux is affected by the local wind and dominated
by the large pulse of volume transport in Fs. Most of the time, the
direction of salt transport is unidirectional across the nine tran-
sects of the Bay, with the exceptions of (c) for Floyd and (e) for
Isabel. The salt is either flushed out (Floyd) or pumped in (Isabel)
to the Bay as a result of the net volume transport, and Fs is domi-
nated by Qf S0 rather than FE or FT.

4.3.2. Oceanic salt influx
Further details of the oceanic salt influx at the Bay mouth are

shown in Fig. 14, in which the time series of instantaneous total
salt flux Fs are shown on the top panel for Hurricanes Floyd (left)
and Isabel (right). The full tidal cycle of 16 September, 1999 and
two tidal cycles of 17–18 September, 2003, which were before
the hurricanes made landfall, are marked by the dark shaded area.
The lateral distribution of the total cross-sectional tidally averaged

Fig. 12. Longitudinal distributions of tidally averaged (25 h) velocity and salinity in the along-channel section of the Chesapeake Bay for three days during Hurricanes Floyd
(left) and Isabel (right).

Table 5
Comparison of observed stratification between pre-storm and post-storm at four selected CBP stations during Hurricanes Floyd (1999) and Isabel (2003).

Station ID Salinity Stratification (ppt)

Floyd (1999) Isabel (2003)

pre-storm (Aug/17–18) post-storm (Sep/21–22) pre-storm (Sep/15–16) post-storm (Sep/22–23)

CB3.1 2.43 7.80 9.03 2.39
CB3.2 1.77 6.72 8.37 1.75
CB4.4 4.10 4.85 11.52 4.97
CB5.3 3.04 5.45 10.90 8.61
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salt flux over the period is shown in the middle panel. It is clear
that the tidally averaged salt flux was negative, indicating an oce-
anic saltwater influx from the continental shelf into the Bay for
both hurricanes. The salt influxes were concentrated in the deep
portion of the channels at 0–6 km and 14.8–15.2 km, rather than
in the shoal region at the Cape Henry cross-section. The baroclinic
component of the tidally averaged salt flux excluding QfS0 was also
calculated, and the magnitude is about half of the total flux, as
shown in the bottom panel. It is concluded that both barotropic
and baroclinic components contributed to oceanic saltwater influ-
xes during the first stages of the hurricanes.

5. Analysis of the local axial wind-induced mixing process—a
controlled experiment

Local winds that exert stress on the surface of the water can
cause direct wind mixing, and reduce the stratification, but a mod-
erate down-estuary wind can also induce a wind-straining effect,
which under certain conditions increases stratification (Scully
et al., 2005). Due to their tracks, Hurricanes Floyd and Isabel pro-
duced distinctly different local wind stresses, a down-estuary
and an up-estuary stress. This difference provides a natural test
bed for examining how the direction of the axial wind affects the
vertical stratification and the salt transport.

In order to reasonably compare the wind-induced mixing pro-
cess between the two hurricanes, a controlled experiment is

required to ensure that the local and remote winds are separated,
that different pre- and post-hurricane conditions are equalized,
and that the background conditions are uniform. To start with,
the background state of the estuarine system is required to be in
a quasi-steady state prior to the hurricane. Upon the passage of
the hurricane, the estuarine system will experience the hurricane’s
wind forcing, and then eventually return to the quasi-steady state
when all of the external perturbations are removed. Table 6 shows
seven experiments that were performed to examine the mixing
process induced by the local and remote meteorological external
forcing during the two hurricanes, Floyd (FL) and Isabel (IS). Four
types of wind forcing were considered: no wind (NW), local (L), re-
mote (R), and combined (C). Fig. 15 shows wind and pressure fields
selected from the real hurricane conditions for the controlled
experiment. The base run used only the M2 tidal constituent and
a constant river discharge of 550 m3 s�1, which characterizes the
summer average flow in the Bay. The use of a single semi-diurnal
tidal constituent precludes investigation of the effect of spring–
neap tides on salinity. A constant ambient current of 10 cm s�1

was specified at the cross-shore open boundaries in the continental
shelf, based on the work of Cho (2009). To obtain the initial salinity
condition in an equilibrium state, the model was spun up for
180 days without meteorological forcing from a cold start, such
that salinity had a linear variation horizontally from the Bay head
(0 ppt) to the open ocean (34–35 ppt) with no stratification in the
vertical direction. When the relative gradient of tidally averaged

Fig. 13. Time sequence of net salt flux averaged over a tidal cycle at transects in Chesapeake Bay during Hurricanes Floyd (top) and Isabel (bottom). The positive value
denotes seaward flux and red and blue colors represent the increase and decrease of salt, respectively.
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salinity difference with respect to time is reduced to an insignifi-
cantly small value (0.1%), it is assumed that the salinity has
reached the equilibrium state. The modeled salinity reached the
equilibrium state approximately 150 days after the cold start.

5.1. Response of instantaneous velocity and salinity to the local wind

We first examined the time series of longitudinal velocities
(surface and bottom) under local wind forcing, as shown in
Fig. 16. The time series were plotted for five stations: CB3.3C, in
the upper Bay, CB4.4 and CB5.3 in the middle Bay, and CB6.3
and CB7.4 in the lower Bay. The results for Hurricane Floyd are
shown on the left while those for Isabel are on the right, and
the dashed lines denote the four-day window when local hurri-
cane winds were imposed on the estuary. Several features can
be noted immediately. First, despite the existence of spatial vari-
ability, it appears that a consistent Bay-wide sub-tidal velocity
pattern emerges if one takes an ensemble across all five stations.
Fig. 17 is a schematic drawing of the distinct two-pulse pattern
that is revealed. For Hurricane Floyd, it shows that the surface

current initially flows seaward followed by a landward flow,
whereas for Hurricane Isabel, the surface current initially flows
landward followed by a seaward flow. This two-pulse feature is
closely associated with the sea level adjustment of the estuary
to the local wind forcing; for Hurricane Floyd, the onset of
down-estuary wind generates a down-estuary net volume trans-
port and, at the end of the event, the sea level relaxes; for Hurri-
cane Isabel, the onset of wind is up-estuary, and volume transport
is up-estuary. This is consistent with the findings of CS, in that
the two-pulse feature is a basic pattern of an estuary responding
to the steady local wind forcing involving an exchange flow. Gi-
ven that the present study is conducted using the actual Bay
geometry and under strongly unsteady wind conditions during
a hurricane, there are, however, significant differences between
our results and those of CS. For example, the large sub-tidal
velocity pulses, at the Bay mouth for Hurricane Floyd and in
the upper Bay for Hurricane Isabel, deviate substantially from a
symmetric two-pulse pattern. Furthermore, if one connects the
largest sub-tidal velocity in each time series from the lower Bay
to the upper Bay, as shown by the green line in Fig. 16, a clear

Fig. 14. Estimated net salt flux and baroclinic salt flux at tr01 during Hurricanes Floyd (left) and Isabel (right). The fluxes were averaged over the period shaded.

Table 6
Summary of numerical experiments performed.

Experiments Winds Total river discharge (m3 s�1) Ambient current (cm s�1) Subtidal alongshore PG*

NW No wind 550 10
FL-C Combined winds (Floyd) 550 10 O
IS-C Combined winds (Isabel) 550 10 O
FL-L Local winds (Floyd) 550 10
IS-L Local winds (Isabel) 550 10
FL-R Remote winds (Floyd) 550 10 O
IS-R Remote winds (Isabel) 550 10 O

* PG represents the pressure gradient.
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disturbance can be seen in the propagation pattern along the time
versus space domain. This suggests that the forced long wave in-
duced by the propagation of a storm plays an important role in
shaping the transient response of the Bay to the hurricane forcing.

Fig. 18 shows the salinity response to the local wind. The re-
sponse during Hurricane Floyd (left) is different from that during
Hurricane Isabel (right), as the sub-tidal salinity has a major drop
during Floyd, whereas it increased during Isabel. These large vari-
ations of sub-tidal salinity are associated with the disturbances
propagating down and up the Bay, and are similar to those which
were observed in the sub-tidal velocity time series. For the case of
Hurricane Floyd, the disturbance propagates from the upper to
the lower Bay with a decrease of salinity, whereas, for the case
of Hurricane Isabel, the disturbance propagates from the lower
to the upper Bay associated with an increase in the salinity. A
mechanism that elucidates the time-dependent response of a
propagating storm is critically important in future research, as
hurricane winds are notoriously unsteady. In Fig. 19, we also
show the vertical profiles of sub-tidal salinity in the lower, mid-
dle, and upper Bay as a time sequence. The time t1 is shown as
the initial profile, t2 is the onset of strong winds, and t3 is the
end of the event. It can be seen that the profile in the lower
Bay after the onset of the wind event is more vertically well-
mixed than that in the middle Bay. Hansen and Rattray (1965)
indicated that the exchange flow is inversely proportional to the
vertical mixing, and thus gave us a clue as to what to expect
for the vertical profile of the sub-tidal velocity. Indeed, the profile
in the middle Bay showed a clear shear flow pattern, with much
stronger landward flow at the bottom layer, whereas, in the lower
Bay, the velocity profile is generally more oscillatory across the
two sides of the initial profile.

5.2. Variability of mixing regimes under down-estuary wind

One of the hallmarks of an estuary’s response to a down-estuary
wind is that it can encounter a number of regimes, from wind-in-
duced straining to complete turbulent mixing, when the wind
changes from moderate to strong. We have two cases to demon-
strate this: Fig. 16(e) and Fig. 18(e) show the time series of velocity
and salinity in the lower Bay during Hurricane Floyd. Between days
186–188, when there is a moderate down-estuary wind, it is
shown that the sub-tidal velocities vary slightly between landward
and seaward and the stratification of salinity increases, an indica-
tion of wind-induced straining. However, at the onset of a strong
down-estuary wind at day 189.5, the velocity becomes seaward
and the salinity drops by almost 10 ppt at the surface and bottom,
becoming completely mixed. The regime obviously changes to a
turbulent mixed condition. Given a constant wind, this variation
of the regime can also occur spatially if the parameter characteriz-
ing the mixed layer depth, hs/H, goes above the threshold value of
0.5 (where hs is the mixed layer depth and H is the total depth). In
Fig. 19(b), the vertical profile of sub-tidal velocity is shown along
with the vertical profile of salinity. The time t0–t2 corresponds
to moderate wind, the time t3–t6 corresponds to the strong wind,
and time t7 corresponds to the end of the event in the lower, mid-
dle, and upper portions of the Bay. The value of hs/H was estimated
based on the salinity profile before the onset of the strong wind at
time t3. It is obvious that hs/H takes its largest value in the lower
Bay, followed by the upper Bay, and that the middle Bay has the
smallest value, partly due to the deep basin in this region. The
smaller the value of hs /H, the shallower is the mixed layer and
the less mixing has occurred. The response of the velocity profile
(on the left panel) to the down-estuary wind in the middle Bay
shows that, for most of the time, it was landward with a vertical
shear (an indication of a wind-straining regime), whereas in the
lower and upper portions of the Bay, the velocity profile oscillates
between seaward and landward directions without much of a ver-
tical shear (an indication of the presence of a well-mixed regime).

With the above analysis, it is natural to ask if one can describe
the interaction between the straining and mixing to form a param-
eter to represent the wind-induced variations in stratification. CS
has defined the modified horizontal Richardson number, which is
combined with the Wedderburn number (W), as:

ðRix;CSÞ2 ¼
ðH4N4

x=48KMÞð1�WÞ
Rf ðu3

�S=khS þ u3
�B=khBÞ

ð9Þ

where Nx (�gbC) is the horizontal buoyancy frequency, KM is the
effective vertical eddy viscosity (Dyer, 1997), and u�S and u�B are
the root-mean-square values of friction velocities on the surface
and bottom layers, respectively. The surface and bottom boundary
layer thickness (hS and hB) are estimated by an entrainment model
(Trowbridge, 1992; Chant et al., 2007):

hS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cRi1=2
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u2
�S
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Dt

s
; hB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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u2
�B
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Dt

s
ð10Þ

where c is a constant (=1.22), Ric is the critical gradient Richardson
number (=0.25), Dt is a characteristic time scale chosen as 3 h, and
N1 represents background stratification. Following Ralston et al.
(2008), KM is assumed to scale as a0CdUt‘, where a0 = 0.028 and ‘

is a vertical mixing length scale. When the surface and bottom
boundary layers merge (hS þ hB P H), ‘ scales with H. Otherwise,
the average of hS and hB is used for ‘ (CS, 2009). For values of Rix,CS

greater than a threshold value (of order 1), the water column should
stratify, and for sub-critical values the water column should remain
unstratified (Stacey et al., 2001).

The modified horizontal Ri in Eq. (9) was calculated at selected
stations along the channel of the Bay during both hurricanes. The

Fig. 15. Atmospheric forcing for four-day period during Hurricane Floyd (a) and
Hurricane Isabel (b).
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temporal variation of Rix,CS for three experiments is plotted in
Fig. 20a. Without wind forcing, although Rix,CS showed the tidal

variability, the minimum values of Rix,CS at the three locations
were approximately 0.2, 1.0, and 0.3, respectively (Fig. 20a). This

Fig. 16. Time series plots of surface (blue) and bottom (red) along-channel velocities at five selected stations for the cases of FL-L (left) and IS-L (right). Thin lines denote no
wind case, vertical dashed lines denote the period of wind forcing, and positive value represents a seaward flow.

Fig. 17. A schematic pattern in exchange flow at the surface and effect of unsteady wind during Hurricanes Floyd (left) and Isabel (right).
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indicates that tidally induced mixing dominates in the upper and
lower Bay, whereas stratification is relatively significant in the
mid Bay. In the case of Hurricane Floyd (Fig. 20a(d)–(f)), Rix,CS de-
creased at all three locations. The value of Rix,CS dropped below
0.1 in the upper and lower Bay, and reached a value of 0.25 in
the mid-Bay. Interestingly, the value of Rix,CS increased rapidly to
greater than 1 in the upper and middle Bay regions. In the lower
Bay, the value of Rix,CS persisted below 0.1 for one day and then
increased until the end of the Floyd wind period. The period of
increase in the value of Rix,CS appears to be consistent with the per-
iod of Nx increase due to down-Bay winds. This indicates that
straining becomes important when down-Bay winds diminish. In
the IS-L case (Fig. 20a(g)–(i)), Rix,CS gradually began to decrease
and rapidly dropped below 0.1 at all three locations. The low value
of Rix,CS persisted until the Isabel wind period ended. This indicates
that the expansion of Nx was restricted by the up-estuary winds
until the end of the Isabel wind period. The peaks of Rix,CS between
days 9 and 10 appear to occur when the landward flow changes to
a seaward flow. The time series of the vertical distribution of eddy
diffusivity were also generated for the 5 days event period in the
upper, middle, and lower Bay, as shown in Fig. 20b. The unit of
eddy diffusivity is m2/s and was plotted in log10 scale in order to
cover its wide-range of the values. It is interesting to note that
the bottom half of the water in the middle portion of the Bay did
not completely mix even under the assault of the Hurricane events.
This is consistent with the results shown in Fig. 20a in that the
mid-Bay deep channel is the most resilient spot to the vertical

mixing. On the other hand, the lower Bay was well-mixed from
top to bottom during the peak of the storm in both events with
the corresponding eddy diffusivity as high as 10�1 m2/s. The Upper
Bay was shallow, but maintained a certain degree of stratification
during the hurricane, probably due to the freshwater inflow and
restriction of the fetch distance for the wind by the surrounding
landmass. The re-stratification after the hurricane event was much
stronger for Hurricane Isabel than that for Hurricane Floyd, pre-
sumably due to the fact that hurricane Isabel moved a significant
amount of salty water landward and that, in turn, re-established
the estuarine gravitational circulation faster.

6. Influence of the precipitation on salinity rebound

One of the effects observed during Hurricane Floyd was its
unusually large precipitation (�1 inch/h) discharged directly onto
the Bay water, which was recorded at Norfolk, VA. From a numer-
ical modeling point of view, the precipitation acted like a point
source and can be expressed as:

@g
@t
þr �

Z g

�h

~udz ¼ R ð11Þ

where R (=QR/A) is added to the right hand side of the continuity
equation as a point source.

Based on this record, R [m s�1] was determined as a surface
boundary condition in the model to allow the mass and

Fig. 18. Time series plots of surface (blue) and bottom (red) salinities at five selected stations for the cases of FL-L (left) and IS-L (right). Thin lines denote no wind case and
vertical dashed lines denote the period of wind forcing.
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Fig. 19. Vertical profiles of tidally averaged salinity (left) and along-channel velocity (right) at three stations with time sequence: upper Bay (top); mid Bay (middle); lower
Bay (bottom) for the case of FL-L. The positive value in velocity represents a seaward flow.

Fig. 20a. Temporal variations of the horizontal Richardson number (Rix,CS) at three locations for the cases of NW, FL-L, and IS-L.
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momentum from precipitation to transfer through the water sur-
face. The velocity and volume flux obtained in the momentum
equations are then used in the salt balance equation.

Without precipitation, although the model reproduced rapid
salinity decreases at two stations near the Bay mouth, the pre-
dicted salinity rapidly rebounded within two days, showing
approximately 5 ppt of difference from the observed salinity, as
shown by the thin line in Fig. 21. To improve the accuracy of the
model for salinity, the methods described above were applied to
the model by using the precipitation record of the Norfolk Airport.
The model result without precipitation failed to reduce the 5-ppt
difference, whereas the second method incorporating Eq. (11)
reproduced the observed salinity, as shown in Fig. 21 by the thick
solid line. An additional model test was performed by prescribing

precipitation over the entire domain including the continental
shelf. The results in this case were not much different from the pre-
vious test where the precipitation was only prescribed within the
Bay. The model results indicate that the seaward horizontal baro-
tropic pressure gradient induced by precipitation plays a role in
retarding the salinity rebound after the salinity rapidly dropped.
To improve model accuracy, the spatial distribution of precipita-
tion input based on observation records is suggested for future
model simulation of hurricanes.

7. Conclusions

The response of Chesapeake Bay to forcing from two hurricanes
is investigated using an unstructured-grid three-dimensional
hydrodynamic model SELFE. The hurricanes chosen for the study
are Hurricane Floyd (1999) and Hurricane Isabel (2003), both of
which made landfall within 100 km of the mouth of the Bay. The
two hurricanes differ in track, strength, translation speed, and pre-
cipitation pattern, but the model catches the major features of both
events. The model results agree reasonably well with field observa-
tions of water level, velocity, and salinity. From the Bay’s water le-
vel response to the hurricanes, it was found that the storm surge
has two distinct stages: an initial stage set up by the remote winds
and the second stage - a primary surge induced by the local winds.
For the initial stage, the rising of the coastal sea level was setup by
the remote wind of both hurricanes similarly, but for the second
stage, the responses to the two hurricanes’ local winds are signifi-
cantly different. Hurricane Floyd was followed by down-Bay winds
that canceled the initial setup and caused a set-down from the
upper Bay. Hurricane Isabel, on the other hand, was followed by
up-Bay winds, which reinforced the initial setup and continued
to rise up against the ahead of the upper Bay. The volume flux were
estimated at multiple cross-sectional transects throughout the Bay,
and it was found consistently from each transect that the net out-
flow dominated during Hurricane Floyd while the net influx dom-
inated during Hurricane Isabel. The oceanic influxes of water
volume and salt flux were setup by the remote winds from the con-
tinental shelf into the Bay in the initial stages of the hurricanes. As
the hurricanes approached close to the shore, the local wind be-
came more significant. When the hurricanes made landfall, the
strong local surface wind stress dominated and was the primary
agent in destratifying the water column through transferring tur-
bulent kinetic energy from the surface to the lower layer of the
Bay. The model simulation indicated that large volume and salt

Fig. 20b. Temporal variations of the vertical eddy diffusivity at three locations for the cases of FL-L and IS-L, shown in Fig. 20. The unit of the eddy diffusivity is m2/sec and the
color bar is shown on a log10 scale.

Fig. 21. Same as Fig. 9 except for comparing two experiments without precipitation
(thin solid line) and with precipitation (thick solid line). Green arrows represent the
decrease of salinity.
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fluxes in the form of sub-tidal velocity and down-gradient salt flux
were found to move up the Bay in the case of Hurricane Isabel and
down the Bay in the case of Hurricane Floyd. A controlled experi-
ment was conducted and demonstrated that down-Bay winds of
an eastern-track hurricane tend to enhance stratification under
moderate winds, but exhibit an increasing-then-decreasing vari-
ability when the wind stress increases. The up-Bay winds of a wes-
tern-track hurricane tend to reduce the stratification with the
generation of a deeper mixed layer. A modified horizontal Richard-
son number that incorporated the wind stress, wind direction, hor-
izontal salinity gradient, and vertical eddy viscosity, represented
the stratified–destratified conditions reasonably well for the
wind-induced straining as well as the vertical mixing processes
during hurricane events. In addition, the precipitation associated
with the hurricane acted as a point source of water mass on the
surface of water, which not only diluted surface water but also
generated a seaward barotropic horizontal pressure gradient. This
overwhelmed the baroclinic pressure gradient and was shown in
the model simulation to affect the subsequent redistribution of
salinity after the storm.
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