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We evaluate imaginary time density-density correlation functions for two-dimensional homogeneous
electron gases of up to 42 particles in the continuum using the phaseless auxiliary field quantum
Monte Carlo method. We use periodic boundary conditions and up to 300 plane waves as basis
set elements. We show that such methodology, once equipped with suitable numerical stabilization
techniques necessary to deal with exponentials, products, and inversions of large matrices, gives
access to the calculation of imaginary time correlation functions for medium-sized systems. We
discuss the numerical stabilization techniques and the computational complexity of the method-
ology and we present the limitations related to the size of the systems on a quantitative basis.
We perform the inverse Laplace transform of the obtained density-density correlation functions,
assessing the ability of the phaseless auxiliary field quantum Monte Carlo method to evaluate
dynamical properties of medium-sized homogeneous fermion systems. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4934666]

I. INTRODUCTION

The homogeneous electron gas (HEG) is one of the most
widely studied systems in condensed matter Physics.1–6 It
represents a model of recognized importance, which offers the
opportunity to explore the quantum behavior of many-body
systems on a fundamental basis and provides a ground test
for several quantum chemistry,7 many-body,8 and quantum
Monte Carlo (QMC)4,9–11 methodologies. Furthermore, recent
years have witnessed the realization of increasingly high-
quality two-dimensional (2D) HEGs in devices of considerable
experimental interest such as quantum-well structures12,13 and
field-effect transistors.14

The accuracy of QMC calculations for the HEG is un-
avoidably limited by the well-known sign problem,15,16 arising
from the antisymmetry of many-fermion wavefunctions. The
vast majority of QMC simulations of many-fermion systems
circumvent the sign problem relying on the Fixed-Node (FN)
approximation.17,18 Methodologies based on the FN approxi-
mation provide very accurate estimations of ground state prop-
erties such as the kinetic and potential energies, and the static
structure factor. On the other hand, as the extension of the
FN approximation to the manifold of excited states is less
understood and established,19,20 the study of dynamical prop-
erties of many-fermion systems is a very active and challenging
research field.19,21–26

In a recent work,19 performing an extensive study of
exactly solvable few-fermion Hamiltonians, we have shown
that the phaseless auxiliary field Quantum Monte Carlo
(AFQMC)22,27–36 method (the term phaseless denotes the ap-
proximation with which the method mitigates the sign prob-
lem) provides accurate estimates of imaginary time correlation
functions (ITCFs) for few-fermion systems.

This encouraging results, however, do not grant that the
methodology is able to provide accurate quantitative results
for larger systems. In this paper, we apply the phaseless
AFQMC to the calculation of ITCFs for much larger systems.
We evaluate density-density correlation functions F(q, τ) for
two-dimensional homogeneous electron gases of up to 42
particles and we perform their inverse Laplace transform
to extract information about the excitations of the system.
We finally assess the accuracy of the calculations comparing
AFQMC results with predictions within the random phase
approximation (RPA) for finite systems.8,37 We also compare
AFQMC estimates with the results of FN calculations,11,38

performed with a nodal structure encompassing optimized
backflow correlations.10,39,40

The calculation of ITCFs is more difficult than the calcu-
lation of ground-state properties since, in the long imaginary
time limit, the estimates of ITCFs are affected by a form of
numerical instability that becomes more and more severe as
the number of particles is increased. We face this issue using
a stabilization technique, that was not necessary for the few-
fermions systems,19 for improving the quality of our estimates
of ITCFs.

The unavoidable restrictions of the determinantal meth-
odology (to study finite systems and to work with a finite
basis set in the one-particle Hilbert space) and the difficulties
related to the stabilization of ITCFs provide some limitations.
In the particular case of the electron gas, the severity of such
limitations increases with the Seitz radius rs.5 First, increasing
rs, the number of plane waves required to reach convergence in
the basis set size becomes larger. Moreover, as detailed below,
density-density ITCFs decay in a typical time τ which in-
creases at least as r3/2

s . This makes more and more demanding
the task of extracting physical information on a quantitative
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basis. Therefore, we focus on the high-density regime, which
is nevertheless extremely interesting as the presence of the
interaction leads to the emergence of important correlation
effects, enhanced by the low dimensionality.

The paper is organized as follows: the phaseless AFQMC
method is briefly reviewed in Section II, the results of the
study are discussed in Section III, and conclusions are drawn
in Section IV.

II. METHODOLOGY

A. The model

The 2D HEG is a system of charged spin- 1
2 fermions inter-

acting with the Coulomb potential and immersed in a uniform
positively charged background. For the purpose of studying
the 2D HEG, we simulate a system of N particles moving
inside a square regionR of surfaceΩ = L2, employing periodic
boundary conditions (PBC) at the boundaries of the simulation
domain, in conjunction with an Ewald summation procedure.41

In the present work, energies are measured in Hartree units EHa,
and lengths in Bohr radii aB. The Hamiltonian of the system
reads, in such units,

Ĥ =

kσ

|k|2
2

â†kσâkσ +
1

2Ω


q,0

2π
|q|


kσ
pς

â†k+qσâ†p−qςâpςâkσ, (1)

where spin-definite plane waves

ϕkσ(r,ω) = eik·r
√
Ω
δω, 1

2−σ
L

2π
k ∈ Z2, σ = ±1

2
(2)

with r ∈ R, ω = 0,1 are used as a basis for the single-particle
Hilbert space. The ground-state energy per particle of the sys-
tem is obtained adding, to the mean value of (1), the corrective
constant term,

ξ =
1

2L



2

n∈Z2

n,0

erfc
�√

π |n|�
|n| − 4



= −3.900 265
1

2L
(3)

arising from the Ewald summation procedure employed.41

Hamiltonian (1) can be parametrized in terms of the dimen-
sionless Seitz radius rs defined by

Ω

N
=

1
n
= πr2

sa
2
B, (4)

where n is the density of the system and aB the Bohr radius.
This parametrization shows that the matrix elements of the
kinetic energy roughly scale as |k|2 ≃ r−2

s , and those of the
potential energy as 1/Ω|q| ≃ r−1

s . Thus, for increasing Seitz
radius, the interaction part of Ĥ plays a more and more relevant
role.

B. The phaseless AFQMC

To address the calculation of static and dynamical prop-
erties of the 2D HEG, we resort to the phaseless AFQMC
method,22,27–36 which relies on the observation that the imagi-
nary time propagator e−τĤ acts as a projector onto the ground
state |Φ0⟩ of the system in the limit of large imaginary time.

Therefore, as long as a trial state |ΨT⟩ has non-zero overlap
with |Φ0⟩, the relation

|Φ0⟩ ∝ lim
τ→∞

e−τ(Ĥ−ϵ0)|ΨT⟩ (5)

holds, ϵ0 being the ground state energy, that can be estimated
adaptively following a common procedure in Diffusion Monte
Carlo (DMC) calculations.42 QMC methods rely on the obser-
vation that deterministic evolution (5) can be mapped onto
suitable stochastic processes and solved by randomly sampl-
ing appropriate probability distributions. Determinantal QMC
methods, such as the phaseless AFQMC, use a Slater deter-
minant as trial state |ΨT⟩, typically the Hartree-Fock state,
and map (5) onto a stochastic process in the abstract manifold
D(N) of N-particle Slater determinants. This association is
accomplished by a discretization of the imaginary time prop-
agator e−τ(Ĥ−ϵ0),
e−τ(Ĥ−ϵ0)|ΨT⟩ =

(
e−δτ(Ĥ−ϵ0))n |ΨT⟩ n ∈ N, δτ = τ

n
(6)

and by a combined use of the Trotter-Suzuki decomposi-
tion,43,44 of the transformation31,45,46 and of an importance
sampling technique19,31 on the propagator e−δτ(Ĥ−ϵ0). The
result is

e−δτ(Ĥ−ϵ0)|ΨT⟩ ≃


dg(η)W [η,ξ] Ĝ(η − ξ)|ΨT⟩
⟨ΨT |Ĝ(η − ξ)|ΨT⟩

,

where dg(η) is a multidimensional standard normal probability
distribution, Ĝ(η) is a product of exponentials of one-body
operators, and

W [η,ξ] = e−
ξ ·ξ

2 −η ·ξ⟨ΨT |Ĝ(η − ξ)|ΨT⟩ (7)

is a weight function depending on a complex-valued parameter
ξ , which is chosen to minimize fluctuations inW [η,ξ] to first
order in δτ. Equation (7) illustrates the mechanism responsible
for the appearance of the sign problem in the framework of
AFQMC: when the overlap between Ĝ(η − ξ)|ΨT⟩ and the
trial state vanishes massive fluctuations occur in (7). In the
method conceived by Zhang, the exact complex-valued weight
function appearing in (7) is replaced19,30 by the approximate
form

W [η,ξ] ≃ e−δτ(ϵloc(Ĝ(η−ξ)|ΨT ⟩)−ϵ0) ×max(0,cos(∆θ)), (8)

where ϵ loc(Ψ) = Re

⟨ΨT |Ĥ |Ψ⟩
⟨ΨT |Ψ⟩


is the local energy functional,

and

∆θ = Im

log

 ⟨ΨT |Ĝ(η − ξ)|Ψ⟩⟩
⟨ΨT |Ψ⟩

 
. (9)

The first factor corresponds to the real local energy approx-
imation, which turns (7) into a real quantity, avoiding phase
problems rising from complex weights; the real local energy
approximation is implemented neglecting some fluctuations
in the auxiliary fields.19 The second factor, together with
the introduction of the shift parameters, has been argued in
Refs. 30 and 31 to keep the overlap between the determinants
involved in the random walk and the trial determinant far
from zero. In fact, the angle ∆θ corresponds to the flip in the
phase of a determinant during a step of the random walk: the
term max(0,cos(∆θ)) is meant to suppress determinants whose
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phase undergoes an abrupt change, under the assumption30,31

that such behaviour indicates the vanishing of the overlap with
the trial state.

C. Hubbard-Stratonovich transformation
in the plane-wave basis set

In general, the structure of Ĝ(η) is specified through
a procedure that might result lengthy and computationally
expensive.19,31 When spin-definite plane waves are used as
a basis for the single-particle Hilbert space, a remarkable
simplification derived in details in Appendix A occurs in its
calculation and leads to the following result:

Ĝ(η) = e−
δτ
2 Ĥ0e−i

√
δτ


q,0η1qÂ1(q)+η2qÂ2(q)e−

δτ
2 Ĥ0, (10)

with

Ĥ0 =

kσ

*.
,

|k|2
2
− 1

2Ω


p,k

2π
|p − k|

+/
-

â†kσâkσ

=

kσ

(H0)k â†kσâkσ (11)

and, denoting ρ̂q the Fourier component of the local density

Â1(q) =


2π
Ω|q|

ρ̂q + ρ̂−q

2
Â2(q) =


2π
Ω|q|

i ρ̂q − i ρ̂−q

2
.

(12)

Operators (12) will be henceforth written as

Âs(q) =

kpσ

(As(q))kp â†kσâpσ (13)

with

(A1(q))kp =


2π
Ω|q|

δk,p+q + δk,p−q

2
,

(A2(q))kp =


2π
Ω|q|

iδk,p+q − iδk,p−q

2
.

(14)

Formulas (10)–(12) result from an exact calculation, imme-
diately generalizable to all radial two-body interaction poten-
tials, and to all spatial dimensionalities.

D. Numeric implementation

The observations outlined above give rise to a polynomi-
ally complex algorithm for numerically sampling (5), a picto-
rial representation of which is given in Fig. 1. Several Slater
determinants {|Ψ(w)

0 ⟩}Nw
w=1, called walkers, are initialized to the

Hartree-Fock ground state, a filled Fermi sphere in the case
of translationally invariant systems such as the 2D HEG, and
given initial weights {W(w)

0 }Nw
w=1 equal to 1.

Subsequently, each walker evolves under the action of
operators (10) and its weight is updated through multiplication
by (8). An estimate for the ground state of the system is pro-
vided by the following stochastic linear combination of Slater
determinants:

|Φ0⟩ ≃ 1Nw
w=1W

(w)
n

Nw
w=1

W
(w)
n

|Ψ(w)
n ⟩

⟨ΨT |Ψ(w)
n ⟩

. (15)

FIG. 1. Pictorial representation of the random walk in the manifold of N -
particle Slater determinants D(N ) (lavender surface). The figure points out
that the imaginary time propagator e−δτ(Ĥ−ϵ0) drives a Slater determinant
|ΨT⟩ away fromD(N ), while the one-body propagators Ĝ(η) preserveD(N ).
This permits us to retrieve the analytically intractable state e−δτ(Ĥ−ϵ0)|ΨT⟩
as a stochastic linear combination of Slater determinants Ĝ(η(w)

0 )|ΨT⟩ ac-
cording to (15).

Since numeric calculations can be carried out on finite-dimen-
sional Hilbert spaces only, the numeric implementation of the
phaseless AFQMC algorithm requires single-particle Hilbert
space basis (2) of the system to be truncated, i.e., only the M
lowest-energy plane-waves to be retained.

E. Dynamical correlation functions

The formalism outlined in Secs. II B and II D enables the
calculation of ground state properties, and also of the ITCF,

FÂ, B̂(τ) = ⟨Φ0| Âe−τ(Ĥ−ϵ0)B̂|Φ0⟩ (16)

of two one-body operators Â, B̂. FÂ, B̂(τ) is related to the
dynamical or energy-resolved structure factor

SÂ, B̂(ω) =

R

dt
eiωt

2π
⟨Φ0| Â(t)B̂|Φ0⟩ (17)

of Â, B̂, a quantity appearing in linear response theory and
providing precious information on the time-dependent re-
sponse of the system to external fields. Dynamical structure
factors and ITCFs are related to each other, as revealed by their
Lehmann representation, by a Laplace transform.8

Within the AFQMC formalism, the issue of comput-
ing ITCFs is complicated by the circumstance that the one-
body operators Â, B̂ do not map Slater determinants onto
Slater determinants, but on rather complicated states. Never-
theless, making use of the canonical anticommutation relations
between fermionic creation and destruction operators, it is
possible to show19 that

e−δτ(Ĥ−ϵ0)B̂ =


dg(η) B̂(η)Ĝ(η), (18)

where B̂(η) is a suitable one-particle operator. In the case of
the 2D HEG, it reads

B̂(η) =

kpσ

(B(η))kp â†kσâpσ, (19)

where

B(η) = D(η)BD(η)−1 (20)
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is defined through

(D(η))kp = e−
δτ
2 (H0)k

(
e−i
√
δτ


qs ηqsAs(q)

)
kp

e−
δτ
2 (H0)p. (21)

By application of (18) and of the backpropagation tech-
nique,19,32,33 it is possible to express the ITCF FÂ, B̂(τ) as mean
value of a random variable over the random path followed by
the walkers in the manifold of Slater determinants.

Further details of this calculation procedure are reported
in Ref. 19. For the purpose of the present work, it is sufficient
to recall that the phaseless AFQMC estimator of FÂ, B̂(τ) reads

FÂ, B̂(rδτ) ≃
1Nw

w=1W
(w)
m+n−r

×
Nw
w=1


i jkl

BklW
(w)
m+n

⟨Ψ(w)
BP,m| Ââ†i â j |Ψ(w)

n ⟩
⟨Ψ(w)

BP,m|Ψ(w)
n ⟩

×D(η(w)
n−1 − ξ (w)

n−1, . . . ,η
(w)
n−r − ξ (w)

n−r)ik
×D−1(η(w)

n−1 − ξ (w)
n−1, . . . ,η

(w)
n−r − ξ (w)

n−r)l j, (22)

where

|Ψ(w)
BP,m⟩ = Ĝ†(ηn − ξn) . . . Ĝ†(ηn+m−1 − ξn+m−1)|ΨT⟩ (23)

and

D(η(w)
n−1 − ξ (w)

n−1, . . . ,η
(w)
n−r − ξ (w)

n−r)
= D(η(w)

n−1 − ξ (w)
n−1) . . .D(η(w)

n−r − ξ (w)
n−r). (24)

Estimator (22) is essentially a weighted average of suitably
constructed matrix elements; each walker w constructs the
matrix element and the weights W(w)

m+n−r , W
(w)
m+n involved in

weighted average (22) from two Slater determinants |Ψ(w)
n ⟩,

|Ψ(w)
BP,m⟩ and two matrices D(η(w)

n−1 − ξ (w)
n−1, . . . ,η

(w)
n−r − ξ (w)

n−r).
These objects are functions of the auxiliary fields configura-
tions η(w) defining the random path followed by the walker in
the manifold of Slater determinants, and their calculation is
pictorially illustrated in Fig. 2.

In the present work, we consider the imaginary time
density-density correlation function

F(q, τ) = ⟨Φ0| ρ̂−qe−τ(Ĥ−ϵ0) ρ̂q|Φ0⟩
N

(25)

which is the Laplace transform of the dynamical structure
factor S(q,ω). This quantity is notoriously related to the differ-
ential cross section of electromagnetic radiation scattering and
provides essential information for the quantitative description

of excitations of the HEG, collective charge density fluctua-
tions, i.e., plasmons, end electron-hole excitations.5,8

For a finite system, F(q, τ) is a sum of exponentials with
positive energies, corresponding to the excitations of the sys-
tem.5 To extract information about those excitation energies, it
is, in general, necessary to compute F(q, τ) up to a sufficiently
long imaginary time τ∗. To estimate the scaling of τ∗ with rs,
we now make the assumption that F(q, τ) is a single exponen-
tial

F(q, τ) ≃ S(q) e−τω(q), (26)

with ω(q) equal to the plasmon dispersion relation that, for a
2D HEG,5 in atomic units reads

ω(q) = 
2πn|q|. (27)

Writing n = N
Ω

and q = 2π
L

n, we find that F(q, τ) decays on a
time scale τ∗ proportional to r3/2

s and N1/2. This qualitative
estimate shows that the calculation of F(q, τ) becomes more
and more demanding as rs, N are increased. The assumption
that F(q, τ) is equal to a single exponential is adequate only
for small |q| and for a very large system. Otherwise, F(q, τ)
is a sum of several exponentials. Some of those exponentials
correspond to excitations in the particle-hole band and, for
|q| ≤ 2kF, can have very low energy. Therefore, our estimate
of τ∗ is only a lower bound.

F. Numeric stabilization

In a previous work,19 we have pointed out that estimator
(22) is negatively conditioned by a form of numeric instability.
The aim of the present section is to elucidate the origin of
such phenomenon and to propose a method for stabilizing
the calculation of ITCFs in AFQMC. AFQMC estimator (22)
of the ITCF FÂ, B̂(τ) involves a weighted average, over the
random paths followed by the Nw walkers employed in the
simulation, of a quantity in which the matrix elements of
D(η(w)

n−1 − ξ (w)
n−1, . . . ,η

(w)
n−r − ξ (w)

n−r) and of its inverse appear. In
the remainder of the present section, these matrices will be
referred to asD andD−1 for brevity. The matricesD andD−1

need to be computed numerically, respectively, as product of r
matrices and inverse ofD. It is well-known that the numerical
computation of D and D−1 introduces rounding-off errors,47

which accumulate as r increases with detrimental impact on
the results of the computation.16

Rounding-off errors are particularly severe when the ∞-
norm condition number

FIG. 2. Pictorial representation of
the phaseless AFQMC estimator for
FÂ, B̂(τ), Equation (22); FÂ, B̂(τ) is
computed at τ = r δτ with r = 2, with
n = 5 propagation steps and m = 3
backpropagation steps. The matrix D
appearing in (24) is computed between
the time steps n−r and n (at which
|Ψ(w)

n ⟩ is computed); the determinant
|Ψ(w)

BP,m⟩ is computed between the time
steps n and n+m, and the weights
W

(w)
m+n−r and W(w)

m+n are computed at
the time steps m+n−r and m+n.
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κ(D) = ∥D∥∞∥D−1∥∞ (28)

of the matrix D, in which ∥A∥∞ = maxi j |Ai j | denotes the ∞-
norm on the space of M × M complex-valued matrices, is
large. For the systems under study, we observe a condition
number roughly increasing as κ(D) ≃ Cr

1 for some constant C1.
The rapid increase of κ(D) indicates that the numeric matrix
inversionI (D) used to estimateD−1 might be ill-conditioned,
an intuition that can be confirmed by studying the figure of
merit,

∥E∥∞ = ∥I − DI (D) ∥∞. (29)

For small r , ∥E∥∞
M

is comparable with the machine precision
ϵ = 10−16; it then increases as Cr

2 for some constant C2 and
eventually saturates around 1. In Appendix B, a qualitative
explanation of the power-law increase of ∥E∥∞

M
is provided. The

gradual corruption of data revealed by the increase of ∥E∥∞
reflects, as illustrated in Fig. 3, on the quality of the AFQMC
estimates of ITCFs, which combine the matrix elements of
D and I (D) as prescribed by (22). We propose to mitigate
the numeric instability of the ITCF estimator by performing
a Tikhonov regularization48 of the numeric inverse I (D).
Practically, the SVD of D is computed,

D = Udiag(σ1 . . . σM)V † (30)

and I (D) is obtained as

I (D) = Vdiag(σ̃1 . . . σ̃M)U†, (31)

FIG. 3. Effect of Tikhonov regularization (31) on an ITCF relative to a
system of N = 2 electrons with M = 21 basis set elements. Upper panel:
statistical uncertainty affecting the AFQMC estimate of F(q,τ) with λ
= 10−10 (lavender solid lines), λ = 10−16 (green dashed lines), and λ = 0
(orange dotted lines). Lower panel: bias affecting the AFQMC estimate of
F(q,τ).

where σ̃i =
σi

λ2+σ2
i

is defined by a regularization parameter λ.

Large singular values σi ≫ λ are mapped to σ̃i ≃ 1
σi

, while
small singular values σi . λ are kept below the threshold 1

2λ .
Particular care must be taken in choosing the regularization
parameter λ, since for small λ the Tikhonov regularization is
clearly ineffective, while for large λ it provokes a severe alter-
ation in I (D). On the other hand, an intermediate value of λ
prevents small errors inD, associated to small singular values
σi, to be dramatically amplified by the numeric inversion.

The effect of the Tikhonov regularization has been probed
considering the model systems of 2 particles introduced in
Ref. 19, for which exact numeric solution of the Hamiltonian
eigenvalue problem is feasible, and thus the ITCFs are exactly
known. In Fig. 3, we show the effect of Tikhonov regularization
(31) on the ITCFs. The results show the existence of a broad
interval of λ, comprising the machine precision ϵ = 10−16,
for which the Tikhonov regularization mitigates the numeric
instability affecting the AFQMC estimator of ITCFs without
introducing any appreciable bias besides those coming from
the real local energy and phaseless approximations. The figure
displays, in the upper and lower panels, respectively, the statis-
tical errors of the AFQMC estimations and the discrepancies
with respect to the exact results for three different values of
λ. It is evident that, as the imaginary time becomes large, the
effect of the regularization is very important.

G. Computational cost

The AFQMC estimator of ITCFs should join numeric
stability and low computational cost. The aim of the present
section is to show that the computational cost of (22) isO(M3),
M being the number of orbitals constituting the single-particle
basis. The contribution Fw to (22) brought by a single walker
of index w reads

Fw =


i jklr s

Ar s Bkl ⟨â†r âsâ
†
i â j⟩wDikD−1

l j , (32)

where the abbreviation

⟨·⟩w =
⟨Ψ(w)

BP,m| · |Ψ(w)
n ⟩

⟨Ψ(w)
BP,m|Ψ(w)

n ⟩
(33)

has been inserted. The generalized Wick’s theorem19,49 implies
that

⟨â†r âsâ
†
i â j⟩w = ⟨â†r âs⟩w⟨â†i â j⟩w + ⟨â†r â j⟩w⟨âsâ

†
i ⟩w. (34)

(34) is most conveniently expressed, introducing the definition
Gi j = ⟨â†i â j⟩w and recalling canonical anticommutation rela-
tions, as

⟨â†r âsâ
†
i â j⟩w = Gr sGi j + Gr j (δis − Gis) . (35)

Combining (32) and (35) yields

Fw =


i jklr s

Ar s Bkl Gr sGi jDikD−1
l j

+

i jklr

Ar i Bkl Gr jDikD−1
l j

−


i jklr s

Ar s Bkl Gr jGisDikD−1
l j . (36)
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Despite its cumbersome appearance, (36) can be efficiently
evaluated computing the intermediate tensorsDB,AGT , and
D−1GT at the cost of O(M3) operations, and subsequently
computing Fw as

Fw = *
,


r

�
AGT

�
rr
+
-
*
,


il

(DB)il
�
D−1GT

�
l i
+
-

+

ilr

(DB)il
�
D−1GT

�
lr
Ar i

−

ilr

(DB)il
�
D−1GT

�
l i

�
AGT

�
r i

(37)

at the cost of O(M3) more operations. The calculation of Fw

further simplifies for operators Â whose matrix elements read
Ai j = A j δi,a( j) for some function a : {1 . . . M} → {1 . . . M}.
The density fluctuation operator ρ̂q =


kσ â†k+qσâkσ falls with-

in such category.
The complexity O(M3) is the best allowed by the phase-

less AFQMC methodology: in fact, the calculation of ITCFs
requires at leastO(M3) operations to accumulate the matrixD,
and the contractions in (36) do not compromise this favorable
scaling with the number of single-particle orbitals.

III. RESULTS

The central results of this paper are (i) the practical veri-
fication of the possibility of accurately calculating ab initio
ITCFs of medium-sized homogeneous electron gases and (ii)
the understanding of the computational cost and limitations
of the procedure. We have simulated paramagnetic systems
of N = 18,26,42 electrons at rs = 0.1,0.5,1; we show also
results for N = 18 particles at rs = 2. The complexity scales
as M3 (M being the number of basis sets elements), and the
absolute statistical error of F(q, τ) can be kept at the level
10−3–2.5 × 10−3 with moderate computational resources even
at values of τ ≃ 3/EF for rs = 0.1,0.5,1 and τ ≃ 2.5/EF for
rs = 2, EF = 1/r2

s being the Fermi energy.
The number N of electrons constituting the system is

comparable to that used in the context of excited-states calcu-
lations through imaginary time correlation functions evaluated
via configurational QMC methods reported in the literature.24

The imaginary time steps used in our calculations were
δτ = 0.003,0.004,0.006,0.008 E−1

Ha at rs = 0.1,0.5,1,2, res-
pectively. For each simulation, the number of plane-waves
constituting the single-particle Hilbert space has been raised
up to M = 300 according to the number of particles and to the
strength of the interaction. For all calculations, it was verified
that decreasing the time step and increasing the number of
plane-waves had a negligible effect on the ground state en-
ergy per particle, which we illustrate in Table I, in compar-
ison with RPA and configurational QMC. The configurational
QMC evaluation of the ground state energy per particle has
been performed using DMC, with a nodal structure encom-
passing backflow correlations optimized by means of the linear
method.39,40

At rs = 0.1, the three methods give compatible results.
As rs increases, AFQMC estimates are always closer to FN
than RPA, lying between them. It is well-known that FN calcu-

TABLE I. RPA (column 3), AFQMC (column 4), and FN-DMC (column 5)
estimates of the ground state energy for various systems (parameters are listed
in columns 1-3); energies are measured in EHa. The RPA ground state energy
is calculated on the Gaskell trial wavefunction.50

N rs
ϵ0
N (RPA) ϵ0

N (AF) ϵ0
N (FN)

18 0.1 40.14 40.14(2) 40.13(1)
26 0.1 45.84 45.82(1) 45.81(1)
42 0.1 42.18 42.18(1) 42.17(1)

18 0.5 0.5065 0.5007(2) 0.5012(2)
26 0.5 0.7520 0.7360(2) 0.7326(8)
42 0.5 0.6031 0.6002(1) 0.5922(9)

18 1.0 −0.2489 −0.2562(1) −0.2580(1)
26 1.0 −0.1847 −0.1921(1) −0.1961(1)
42 1.0 −0.2215 −0.2283(1) −0.2309(2)

18 2.0 −0.2661 −0.2695(1) −0.2717(1)

lations with optimized nodal structures yield highly accurate
estimates of the ground state energy, as confirmed by compar-
ison with full configuration interaction QMC calculations:53,54

this result, therefore, confirms the great accuracy of the phase-
less approximation55,56 in the sampling of the ground state
wavefunction.

To obtain correct estimates of ITCFs, it is necessary to
perform a sufficiently large number m of backpropagation
steps. However, it is well-known33 that raising m can result
in an increase in variance, which severely limits the possibility
of extracting physical information from the long imaginary-
time tails of the ITCFs. We have used a number of back-
propagation steps in the range m = 200–600. When m = 600
has proved insufficient, to avoid the increases in variance
mentioned above, AFQMC estimates have been extrapolated
to the m → ∞ limit (data obtained by extrapolation will be
henceforth marked with an asterisk).

A. Imaginary time correlation functions
and excitation energies

For all the values of N and rs, an AFQMC estimate of
ITCF (25) is produced according to the procedure sketched in
Section II E. The obtained F(q, τ) is shown in the upper panel
of Figs. 4–7. It is evident from the plots that the stabilization
technique prevents an uncontrollable increase of the statistical
error with imaginary time.

As it is well-known,51 it is highly non-trivial to extract
physical information from ITCFs. In the case of the HEG, the
finite size of the systems under study induces to expect, for all
the considered wave-vectors, contributions to F(q, τ) coming
from particle-hole excitations. The dynamical structure factor
S(q,ω), the inverse Laplace transform of F(q, τ), is thus ex-
pected to display multiple peaks corresponding to the excita-
tion energies. This picture is confirmed by RPA calculations
for finite systems, reported in Appendix C.

The presence of multiple peaks complicates the task of
performing the analytic continuation providing an estimate of
S(q,ω). Therefore, since the number of peaks grows rapidly
with |q|, we have limited our attention to the wave-vectors
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FIG. 4. Upper panel: imaginary time correlation functions of the density fluctuation operator ρ̂q for paramagnetic systems of N = 18,26, and 42 particles (left
to right) at rs = 0.1, with transferred momenta q1 (green dashed lines) and q2 (lavender solid lines). When not visible, errors are smaller than the symbol size.
Lines are only a guide for eyes. Central panel: dynamical structure factor for N = 18,26, and 42 particles (left to right) with transferred momentum q1 (RPA:
orange impulses, AFQMC: green symbols). Lower panel: dynamical structure factor for N = 18,26, and 42 particles (left to right) with transferred momentum
q2 (RPA: orange impulses, AFQMC: lavender symbols).

FIG. 5. Upper panel: imaginary time correlation functions of the density fluctuation operator ρ̂q for paramagnetic systems of N = 18,26, and 42 particles (left
to right) at rs = 0.5, with transferred momenta q1 (green dashed lines) and q2 (lavender solid lines). When not visible, errors are smaller than the symbol size.
Lines are only a guide for eyes. Central panel: dynamical structure factor for N = 18,26, and 42 particles (left to right) with transferred momentum q1 (RPA:
orange impulses, AFQMC: green symbols). Lower panel: dynamical structure factor for N = 18,26, and 42 particles (left to right) with transferred momentum
q2 (RPA: orange impulses, AFQMC: lavender symbols).
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FIG. 6. Upper panel: imaginary time correlation functions of the density fluctuation operator ρ̂q for paramagnetic systems of N = 18,26, and 42 particles (left
to right) at rs = 1, with transferred momenta q1 (green dashed lines) and q2 (lavender solid lines). When not visible, errors are smaller than the symbol size.
Lines are only a guide for eyes. Central panel: dynamical structure factor for N = 18,26, and 42 particles (left to right) with transferred momentum q1 (RPA:
orange impulses, AFQMC: green symbols). Lower panel: dynamical structure factor for N = 18,26, and 42 particles (left to right) with transferred momentum
q2 (RPA: orange impulses, AFQMC: lavender symbols).

q1 = (2π/L) (1,0) and q2 = (2π/L) (1,1). Notice that |q1|/kF

= 0.707,0.5,0.447 and |q2|/kF = 1,0.707,0.632 for N = 18,
26,42, respectively. Naturally, kF =

√
2/rs is the Fermi wave-

vector. These low-momentum excitations are very interesting
also from a physical point of view, in connection with the well-
known collective plasmon excitation of the HEG.

For finite systems, the ITCF F(q, τ) is a sum of exponen-
tials,

F(q, τ) =
Nw
i=1

sie−τωi (38)

with positive frequencies ωi and weights si. In particular, ωi

are the excitation frequencies of the system. Given our esti-
mates of F(q, τ) we can only predict the S(q,ω) of the finite
systems under study. For this reason, we do not attempt to
predict the S(q,ω) in the thermodynamic limit, but limit our-
selves to extract the excitations energies and weights by fitting
the evaluated ITCF to a sum of exponentials with the well-
established Levenberg-Marquardt curve-fitting method.52 The
number Nw ≤ 3 of frequencies and weights is that leading to
the best fit.

In Figs. 4–7, we show results relative to the simulation of
paramagnetic systems at rs = 0.1,0.5,1,2, respectively. Each
figure contains data relative to the particle numbers N = 18,
26,42 and wave-vectors q1,q2. In the upper panel, we show
the estimated F(q, τ), while in the middle and lower panels
we show, for q1 and q2, respectively, the obtained frequencies
and weights, together with the RPA results. The AFQMC

estimations of the quantities si,ωi are displayed as points with
both horizontal and vertical statistical errors: the horizontal
ones provide the uncertainties on the frequencies ωi of the
excitations, while the vertical ones give the error bars on the
weights si. The coordinates of the points give, naturally, the
mean frequencies and weights. The statistical uncertainties on
the quantities si,ωi are those yielded by the fit procedure. The
frequencies predicted by the RPA are represented as impulses
with height equal to the corresponding weights. Figs. 4–7 reveal
that, for increasing rs, F(q, τ) decays more and more slowly. In
most cases, the dynamical structure factor exhibits a particle-
hole excitation with energy roughly proportional to r−2

s .
In order to extend this calculation to rs = 3, we should

compute F(q, τ) up to τ ≃ 25E−1
Ha. Moreover, at rs = 2, a calcu-

lation without numerical stabilization provides a reliable esti-
mate of F(q, τ) for τ ≤ 5.5E−1

Ha, and a stabilization with λ
= 10−16 brings this threshold to τ ≤ 10.0E−1

Ha. On the basis of
these observations, we expect that the calculation of F(q, τ)
at rs > 3 would be much more demanding and problematic,
requiring a more aggressive stabilization. As a reference value,
the calculations at N = 18 and rs = 1(2) required 6 × 103 (5
× 104) core hours on a Blue Gene/Q (Power BQC 1.6 GHz).
The difference stems from the number of plane waves, of
backpropagation steps and of imaginary time instants on which
F(q, τ) has been computed. Based on these data, we expect that
the calculation with rs = 3 would require at least 2 × 105 core
hours on the same facility.

We see that, at rs = 0.1, there is a close agreement between
AFQMC and RPA predictions of both frequencies and spectral
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FIG. 7. Upper panel: imaginary time correlation functions of the density fluc-
tuation operator ρ̂q for paramagnetic systems of N = 18,26, and 42 particles
(left to right) at rs = 2, with transferred momenta q1 (green dashed lines) and
q2 (lavender solid lines). When not visible, errors are smaller than the symbol
size. Lines are only a guide for eyes. Central panel: dynamical structure factor
for N = 18,26, and 42 particles (left to right) with transferred momentum q1
(RPA: orange impulses, AFQMC: green symbols). Lower panel: dynamical
structure factor for N = 18,26, and 42 particles (left to right) with transferred
momentum q2 (RPA: orange impulses, AFQMC: lavender symbols).

weights. Since it is known that, for small rs, RPA predictions
are very accurate, such agreement provides a robust check for
the reliability of AFQMC methodology in providing informa-
tion about the manifold of excited states of the system. It is
well known19 that, in the same situation, calculations of F(q, τ)
based on the fixed-node approximation would give inaccurate
results even if the nodal structure of the ground state wave-
function is known with very high accuracy. As rs increases,
discrepancies appear between the two approaches. The pres-
ence of such discrepancies is naturally expected: none of the
methodologies used in the present work is free from approx-
imations. The approximations underlying RPA and AFQMC,
in particular, are quite different in nature and are expected to
agree only in the limit of high density (very low rs).

In order to further assess the quality of our estimates of
F(q, τ), we consider the momenta

M j =

 ∞

0
dωω j S(q,ω) j ∈ Z (39)

of the dynamical structure factor. Indeed, several momenta
M j are fixed by sum rules5 and can be compared with exact
quantities or static properties. In particular,

M0 = S(q) (40)

TABLE II. Relative error (column 4) of first momentum (41), ∆M1

= |M(AFQMC)
1 −M1|/M1.

N rs |q| ∆M1

18 0.1 8.355 427 0.015(9)
18 0.1 11.816 36 0.000(1)
26 0.1 6.952 136 0.001(1)
26 0.1 9.831 805 0.002(2)
42 0.1 5.469 911 0.003(4)
42 0.1 7.735 622 0.000(2)

18 0.5 1.671 085 0.015(21)
18 0.5 2.363 271 0.018(14)
26 0.5 1.390 427 0.006(6)
26 0.5 1.966 361 0.019(9)
42 0.5 1.093 982 0.023(38)
42 0.5 1.547 124 0.033(27)

18 1.0 0.835 543 0.020(11)
18 1.0 1.181 636 0.019(8)
26 1.0 0.695 214 0.036(16)
26 1.0 0.983 181 0.022(12)
42 1.0 0.546 991 0.002(10)
42 1.0 0.773 562 0.030(25)

18 2.0 0.417 771 0.078(21)
18 2.0 0.590 818 0.12(6)

whileM1 obeys the continuity sum rule

M1 =
|q|2
2

(41)

andM−1 obeys the compressibility sum rule

M−1 = −
χ(q)
2n

, (42)

where χ(q) denotes the static density response function.
In Table II, we compute momentum (41) using the dynam-

ical structure factors in Figs. 4–7 and we compare it with the
exact value |q|2/2. In most cases, the AFQMC estimate of
(41) is less than 2 standard deviations away from the exact
result. We remark that, unlike in the case of RPA, there is no
a priori motivation for expecting that AFQMC estimators of
density-density ITCFs provide accurate estimates of the first
momentum.

In order to further assess the quality of our results, in
Tables III and IV, we detail the comparison with the RPA
and configurational QMC results for the static structure factor
S(q) = F(q,0) and the static density response function

χ̃(q) = − χ(q)
2n
=

 +∞

0
dτ F(q, τ) =M−1. (43)

In the AFQMC calculations, χ̃(q) is obtained using the dynam-
ical structure factors in Figs. 4–7. In absence of exact results
for ITCFs, the comparison between QMC estimates of static
properties related to the momenta of S(q,ω) is a practical way
of assessing the quality of ITCFs from AFQMC calculations.

The configurational QMC evaluation of the static structure
factor S(q) has been obtained via FN DMC calculations with
the nodal structure described above. The DMC estimates are
calculated using the extrapolated estimator.42 We observe that,
increasing rs above 0.1, the AFQMC predictions remain, in
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TABLE III. RPA (column 4), AFQMC (column 5), and FN-DMC (column
6) estimates of the static structure factor S(q) for various systems and wave-
vectors (parameters are listed in columns 1-3); wave-vectors are measured in
a−1
B .

N rs |q| S(q) (RPA) S(q) (AF) S(q) (FN)

18 0.1 8.355 427 0.3105 0.314(2) 0.319(4)
18 0.1 11.816 36 0.5150 0.525(4) 0.521(4)
26 0.1 6.952 136 0.3326 0.342(2) 0.343(4)
26 0.1 9.831 805 0.3623 0.367(6) 0.370(5)
42 0.1 5.469 911 0.2101 0.212(7) 0.217(4)

42 0.1 7.735 622 0.3045 0.310(6) 0.306(5)
18 0.5 1.671 085 0.2511 0.258(1) 0.266(4)
18 0.5 2.363 271 0.4137 0.440(3) 0.448(5)
26 0.5 1.390 427 0.2225 0.254(3)a 0.238(4)
26 0.5 1.966 361 0.3009 0.313(2) 0.322(4)
42 0.5 1.093 982 0.1533 0.161(2) 0.146(5)
42 0.5 1.547 124 0.2366 0.247(2) 0.264(4)

18 1.0 0.835 543 0.2098 0.231(2) 0.218(5)
18 1.0 1.181 636 0.3451 0.395(3) 0.386(4)
26 1.0 0.695 214 0.1746 0.227(2)a 0.192(5)
26 1.0 0.983 181 0.2558 0.289(2) 0.281(4)
42 1.0 0.546 991 0.1219 0.141(1) 0.126(5)
42 1.0 0.773 562 0.1938 0.219(2) 0.208(5)

18 2.0 0.417 771 0.1657 0.172(2)a 0.176(4)
18 2.0 0.590 818 0.2732 0.304(3)a 0.305(4)

aAFQMC estimates are extrapolated.

TABLE IV. RPA (column 4), AFQMC (column 5), and FN-DMC (column 6)
estimates of the compressibility χ̃(q) for various systems and wave-vectors
(parameters are listed in columns 1-3); wave-vectors are measured in a−1

B ,
and χ̃(q) in E−1

Ha.

N rs |q| χ̃(q) (RPA) χ̃(q) (AF) χ̃(q) (FN)

18 0.1 8.355 427 0.002 76 0.0028(4) 0.002 87(1)
18 0.1 11.816 36 0.004 49 0.0046(1) 0.004 69(1)
26 0.1 6.952 136 0.005 98 0.0065(2) 0.006 53(4)
26 0.1 9.831 805 0.002 82 0.0028(1) 0.002 87(4)
42 0.1 5.469 911 0.003 11 0.0032(4) 0.003 25(4)
42 0.1 7.735 622 0.003 30 0.0034(2) 0.003 35(2)

18 0.5 1.671 085 0.045 16 0.048(1) 0.048 4(4)
18 0.5 2.363 271 0.069 92 0.081(2) 0.078 8(4)
26 0.5 1.390 427 0.062 98 0.085(6)a 0.069(2)
26 0.5 1.966 361 0.048 27 0.051(1) 0.050 4(4)
42 0.5 1.093 982 0.040 74 0.043(5) 0.042(2)
42 0.5 1.547 124 0.049 03 0.051(3) 0.049(2)

18 1.0 0.835 543 0.126 12 0.152(3) 0.143(2)
18 1.0 1.181 636 0.189 79 0.301(6) 0.226(1)
26 1.0 0.695 214 0.146 01 0.22(2)a 0.162(2)
26 1.0 0.983 181 0.138 72 0.188(6) 0.161(2)
42 1.0 0.546 991 0.102 12 0.158(7) 0.14(1)
42 1.0 0.773 562 0.130 14 0.176(9) 0.16(1)

18 2.0 0.417 771 0.314 51 0.34(1)a 0.374(4)
18 2.0 0.590 818 0.462 38 0.89(1)a 0.590(2)

aAFQMC estimates are extrapolated.

general, closer to the configurational QMC ones than to the
RPA ones: this is a further verification about the quality of the
phaseless AFQMC and of the backpropagation technique.

Even more significant is the comparison between AFQMC
estimates of the static density response function χ̃(q), which
we obtain from momentum (42) of the dynamical structure
factor, with RPA and fixed-node estimations. In principle, the
fixed-node evaluation of the static density response function
χ̃(q) is highly non-trivial, involving the manifold of excited
states. However, it is well-known that this difficulty can be
circumvented11 extracting χ̃(q) from the ground state energy
E(vq) of a system subject to an external periodic potential of
amplitude vq in the vq → 0 limit. Again, increasing rs above
0.1, the AFQMC predictions remain, in general, closer to the
configurational Monte Carlo ones than to the RPA ones: this is
a strong indication about the quality of AFQMC results, since
the FN QMC calculations include correlations beyond the RPA
level.

This result is remarkable, since the AFQMC evaluation
of χ̃(q) is considerably influenced by the low-energy excita-
tions which, if predicted inaccurately, can significantly bias
the result. We notice that knowledge of momenta (40)–(42)
was not enforced in the fitting procedure that led us to the
dynamical structure factor: instead, those quantities have been
computed from the dynamical structure factor and found in
satisfactory agreement, at least for rs ≤ 1, with independently
derived quantities.

The study of momenta (40) and (42) leads to argue that
the deviations from the RPA observed at rs ≤ 1 indicate the
better accuracy of the AFQMC dynamical structure factor.
Indeed, the configurational QMC includes correlations beyond
the RPA level, and thus its estimate of momenta (40) and
(42) should be considered more accurate than RPA estimates.
Since the AFQMC dynamical structure factor leads to esti-
mates of (40) and (42) which are in better agreement with
FN QMC, at least for rs ≤ 1, we argue that AFQMC provides
more accurate estimates of F(q, τ) and thus S(q,ω) than RPA.
This result shows that, remarkably, in the high-density regime
the accuracy of AFQMC for the imaginary time dynamics is
comparable to that of the ground state energy.

As rs further increases, however, the agreement decreases.
We have verified that the number of plane-waves and the num-
ber of backpropagation steps are sufficiently large to extrapo-
late the results and to filter the excited states contributions from
the trial wavefunction. Hence, the origin of the discrepancies
between the estimations yield by the three methodologies used
in the present work has to be sought in the approximation
schemes underlying them.

IV. CONCLUSIONS

We have shown the possibility to provide accurate first
principles calculations of imaginary time correlations for
medium-sized fermionic systems in the continuum, using the
phaseless auxiliary field quantum Monte Carlo method.

We have simulated a 2D homogeneous electron gas of
up to N = 42 electrons using a plane-waves basis set of up
to M = 300 elements. We have shown that the density-density
correlation function in imaginary time can be calculated via
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a polynomially complex algorithm with the favorable scal-
ing O(M3). In order to achieve a good accuracy level in the
calculations, we propose stabilization procedures to deal with
matrix inversion, which can be used in combination with well-
established stabilization procedures for matrix exponentiation
and multiplication:57,58 in particular, we suggest a Tikhonov
regularization that allows to maintain a good accuracy level
even for imaginary time values of the order of 3/EF. We
have yielded also comparisons with predictions of the static
structure factor and the static density response obtained via the
RPA approximation and via fixed-node quantum Monte Carlo
calculations.

At small rs, the AFQMC correctly reproduces the RPA
results. At larger rs on the other hand, it provides quantitative
estimates of the deviations from the RPA, as the comparison
with FN calculations reveals. We believe this is a relevant result
for QMC simulations: it is known, in fact, that the widely
employed fixed-node approximation fails to properly sample
the imaginary-time propagator, due to the imposition of the
ground-state nodal structure to excited states.19 AFQMC, on
the other hand, appears to provide a useful tool to explore,
from first principles, the manifold of the excited states of a
fermionic system. In particular, our calculations qualify the
phaseless AFQMC as a practical and useful methodology for
the accurate evaluation of F(q, τ), for homogeneous systems
of N = O(102) correlated fermions in the continuum. Calcula-
tions are lighter and more accurate when ITCFs decay rapidly,
as in the case of 2D HEGs in the high-density regime. To
further assess the performance of the methodology, it would
be relevant to compute other ITCFs for both homogeneous and
non-homogeneous systems, such as chemical systems.
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APPENDIX A: HUBBARD-STRATONOVICH
TRANSFORMATION FOR THE 2D HEG

By a straightforward application of the canonical anticom-
mutation relations, Hamiltonian (1) can be exactly rewritten as

Ĥ =

kσ

( |k|2
2
− µ(k)

)
â†kσâkσ +

1
2Ω


q

2π
|q| ρ̂q ρ̂−q, (A1)

where

µ(k) = 1
2Ω


p,k

2π
|p − k| (A2)

and ρ̂q =


kσ â†k−qσâkσ is the density fluctuation operator. Re-
calling the parity of 2π

|q| and the anticommutation relation

�
ρ̂q, ρ̂−q

�
+
=

( ρ̂q + ρ̂−q)2
2

+
(i ρ̂q − i ρ̂−q)2

2
, (A3)

one eventually finds

Ĥ = Ĥ0 +
1
2


q

�
Â1(q)2 + Â2(q)2� (A4)

with

Ĥ0 =

kσ

( |k|2
2
− µ(k)

)
â†kσâkσ (A5)

and

Â1(q) =


2π
Ω|q|

ρ̂q + ρ̂−q

2
Â2(q) =


2π
Ω|q|

i ρ̂q − i ρ̂−q

2
(A6)

which, since ρ̂−q = ρ̂†q, are hermitian operators. Applying the
Hubbard-Stratonovich transformation to the propagator of
Hamiltonian (11) yields

Ĝ(η) = e−
δτ
2 Ĥ0e−i

√
δτ


qη1qÂ1(q)+η2qÂ2(q)e−

δτ
2 Ĥ0. (A7)

APPENDIX B: NUMERIC STABILITY
OF MATRIX INVERSION

The distance

∥I (Dr) − D−1
r ∥∞ (B1)

between the actual inverseD−1
r ofDr and its numeric estimate

I (Dr) (B1) is bounded47 by

∥I (Dr) − D−1
r ∥∞ ≤ M∥I (Dr) ∥∞ ∥Er∥∞

1 − M∥Er∥∞ (B2)

with

∥Er∥∞ = ∥I − DrI (Dr) ∥∞. (B3)

Equation (B2) holds for ∥Er∥∞ < 1
M

and is therefore adequate
to the description of ∥Er∥∞ for small r . It can be combined with
the following estimate:59

∥I (Dr) − D−1
r ∥∞ ≃ ϵ ∥D−1

r ∥2
∞

M3

3
(B4)

to yield

M∥Er∥∞ ≃
ϵ M3

3 ∥D−1
r ∥2
∞

∥I (Dr) ∥∞ + ϵ M3

3 ∥D−1
r ∥2
∞
. (B5)

In the case of AFQMC calculations, whereDr andD−1
r come

from the product of r matrices,

∥D−1
r ∥∞ = Cr

3 ∥I(Dr)∥∞ = Cr
4 , (B6)

where C3 and C4 are suitable constants, close to each other.
Merging (B4) and (B6) leads to

∥Er∥∞ ≃
ϵ M2

3(
C4
C2

3

)r
+ ϵ M3

3

(B7)

which reduces to

∥Er∥∞ ≃ ϵ
M2

3
*
,

C2
3

C4

+
-

r

(B8)
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in the limit of small r . Since C4 < C2
3, C3 and C4 being close

to each other, estimate (B8) leads to a power-law increase of
∥Er∥∞.

APPENDIX C: RPA FOR FINITE
HOMOGENEOUS SYSTEMS

The aim of this appendix is to provide a brief description of
the RPA5,8,37 for finite interacting systems and of the procedure
leading to the excitation energies and weights, with which
AFQMC results have been compared.

The RPA can be regarded to Ref. 8 as a refinement of
the well-known Tamm-Dancoff approximation8,60,61 (TDA),
which has long been supporting the study of excitations in
nuclear systems. The TDA relies on the assumptions that the
ground state of the system is the Hartree-Fock determinant,
and that excited states can be represented as superpositions
of determinants obtained promoting a single particle above
the Fermi surface. Within RPA, on the other hand, a better
approximation |Φ0⟩ for the actual ground state of the interact-
ing system is employed to build up an Ansatz for plasmonic
wavefunctions. To this purpose, the distinction between spin-
orbitals below and above the Fermi level is made explicit by
writing

â†kσ =



ĉ†kσ if |k| > kF

b̂kσ if |k| ≤ kF

(C1)

and Hamiltonian (1) is consequently expressed as

Ĥ = T̂ + V̂

=

kσ

tk ĉ†kσĉkσ +

kσ

tk
(
1 − b̂†kσb̂kσ

)
+

1
2Ω


q,0

φq ρ̂q ρ̂−q, (C2)

where tk =
|k|2
2 , φq =

2π
|q| , the first sum goes over all wave-

vectors k such that |k| > kF, the second sum goes over all
wave-vectors k such that |k| ≤ kF, and the density fluctuation

operator ρ̂q is approximated37 by

ρ̂q ≃

kσ

ĉ†k+qσb̂†kσ + b̂k+qσĉkσ, (C3)

where the first sum, describing forward scattering processes
in which a particle is promoted above the Fermi level, goes
over all wave-vectors k such that |k| > kF and |k + q| ≤ kF,
and the second sum, describing backward scattering processes
in which a particle is brought back below the Fermi level, goes
over all wave-vectors k such that |k| ≤ kF and |k + q| > kF.
The RPA Ansatz for plasmonic wavefunctions is

|Φq⟩ =

kσ

Xkĉ†k+qσb̂†kσ |Φ0⟩ +

kσ

Ykb̂k+qσĉkσ |Φ0⟩. (C4)

(C4) is justified by the observation that the pair destruction
operator b̂k+qσĉkσ annihilates the Hartree-Fock determinant
but not the actual ground state of the interacting system. The
eigenvalues ϵ such that Ĥ |Φq⟩ = ϵ |Φq⟩ are obtained recalling
that the commutators between the Coulomb interaction and the
pair creation and destruction operators can be approximated37

as

[ĉ†k+qσb̂†kσ,V̂ ] ≃ −φq

Ω
ρ̂q (C5)

and

[b̂k+qσĉkσ,V̂ ] ≃ φq

Ω
ρ̂q, (C6)

respectively. Now, since |Φ0⟩ and |Φq⟩ and eigenstates of Ĥ
with eigenvalues ϵ0 and ϵ = ϵ0 + ∆ϵ , respectively, the follow-
ing identity holds

0 = ⟨Φq|(ϵ − Ĥ) ĉ†k+qσb̂†kσ |Φ0⟩
= ∆ϵ ⟨Φq|ĉ†k+qσb̂†kσ |Φ0⟩ − ⟨Φq|[Ĥ , ĉ†k+qσb̂†kσ]|Φ0⟩ (C7)

from which

⟨Φq|ĉ†k+qσb̂†kσ |Φ0⟩ =
φq

Ω
⟨Φq| ρ̂q|Φ0⟩

∆ϵ + tk − tk+q
(C8)

follows. Similarly,

⟨Φq|b̂k+qσĉkσ |Φ0⟩ = −
φq

Ω
⟨Φq| ρ̂q|Φ0⟩

∆ϵ + tk − tk+q
. (C9)

Equations (C8) and (C9) can be summed over k,σ to yield the secular equation

⟨Φq| ρ̂q|Φ0⟩ = 2φq

Ω
⟨Φq| ρ̂q|Φ0⟩

*....
,


|k|≤kF|k+q|>kF

1
∆ϵ + tk − tk+q

−


|k|>kF|k+q|≤kF

1
∆ϵ + tk − tk+q

+////
-

(C10)

which, simplifying the matrix element ⟨Φq| ρ̂q|Φ0⟩ in both members, and applying the change of variables r = −k − q in the second
sum, takes the form

1 =
φq

Ω



2


|k|≤kF|k+q|>kF

1
tk − tk+q + ∆ϵ

+
1

tk − tk+q − ∆ϵ



, (C11)
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FIG. 8. RPA secular equation for a paramagnetic system of N = 18 particles
at rs = 1, and q2. The blue solid line is the right member f (∆ϵ) of (C11),
and the orange dashed line is the constant function g (∆ϵ)= 1; intersections
between the two graphs are marked with red dots. The RPA eigenvalues are
the abscissas of such intersections.

where the term between square brackets is immediately identi-
fied with the real part of the 2D Lindhard function χ0(q,∆ϵ).5
The coefficients Xk,Yk are determined substituting (C4) in (C8)
and (C9), and read

Xk =
N

tk − tk+q + ∆ϵ
,

Yk = −
N

tk − tk+q + ∆ϵ
,

(C12)

whereN is a normalization constant. Notice that Xk is defined
for |k| ≤ kF, |k + q| > kF while Yk for |k| > kF and |k + q|
≤ kF. The right-hand side of (C11) is a function f (∆ϵ) = φq

Ω

χ0(q,∆ϵ), illustrated in Fig. 8, with the following properties:

lim
∆ϵ→0

f (∆ϵ) < 0,

lim
∆ϵ→+∞

f (∆ϵ) = 0+
(C13)

and diverging in correspondence to the particle-hole ener-
gies tk+q − tk. As a consequence, there exists a root of secular
equation (C11) between all the poles of f (∆ϵ) and another
root above them. The excited state corresponding to this root
has coefficients Xk,Yk sharing the same sign and is therefore
a coherent superposition of particle-hole excitations describ-
ing a collective high-energy oscillation being precursive of
the plasmon. The excited states corresponding to other roots
of (C11) have coefficients Xk,Yk with non-constant sign, and
therefore take into account the persistence of non-interacting
properties in the spectrum of the electron gas, even in presence
of Coulomb interaction.

We have seen that the RPA approximation yields an
Ansatz for the energies ϵq,n and wavefunctions |Φq,n⟩ of excited
states with definite momentum q, which results in the following
approximation for the image of the RPA ground state through
the density fluctuation operator ρ̂q:

ρ̂q|Φ0⟩ =

n

|Φq,n⟩⟨Φq,n| ρ̂q|Φ0⟩ (C14)

with

⟨Φq,n | ρ̂q|Φ0⟩ =


|k|≤kF|k+q|>kF

Xk,n +


|k|>kF|k+q|≤kF

Yk,n (C15)

and for the dynamical structure factor,

S(q,ω) = 1
N


n

δ(ω − ϵq,n)|⟨Φq,n | ρ̂q|Φ0⟩|2. (C16)

1E. P. Wigner, Phys. Rev. 46, 1002 (1934).
2F. Bloch, Z. Phys. 57, 549 (1929).
3A. W. Overhauser, Phys. Rev. Lett. 3, 414 (1959).
4D. Ceperley, Phys. Rev. B 18, 3126 (1978); D. M. Ceperley and B. J. Alder,
Phys. Rev. Lett. 45, 566 (1980).

5G. F. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid
(Cambridge University Press, 2005).

6S. Zhang and D. Ceperley, Phys. Rev. Lett. 100, 236404 (2008).
7For a comprehensive review of the existing quantum chemistry method-
ologies see for example the book, A. Szabo and N. S. Ostlund, Modern
Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
(Dover Publications, 1996).

8A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems
(Dover, 2003).

9B. Tanatar and D. M. Ceperley, Phys. Rev. B 39, 5005 (1989).
10Y. Kwon, D. M. Ceperley, and R. M. Martin, Phys. Rev. B 48, 12037 (1993).
11S. Moroni, D. M. Ceperley, and G. Senatore, Phys. Rev. Lett. 75, 689 (1995).
12M. Padmanabhan, T. Gokmen, N. C. Bishop, and M. Shayegan, Phys. Rev.

Lett. 101, 026402 (2008).
13T. Gokmen, M. Padmanabhan, K. Vakili, E. Tutuc, and M. Shayegan, Phys.

Rev. B 79, 195311 (2009).
14Y.-W. Tan, J. Zhu, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W.

West, Phys. Rev. Lett. 94, 016405 (2005).
15R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals

(McGraw-Hill, 1965).
16E. Y. Loh et al., Phys. Rev. B 41, 9301 (1990).
17J. Anderson, J. Chem. Phys. 69, 1499 (1975).
18P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester, J. Chem. Phys.

77, 5593 (1982).
19M. Motta, D. E. Galli, S. Moroni, and E. Vitali, J. Chem. Phys. 140, 024107

(2014).
20D. M. Ceperley, J. Stat. Phys. 63, 1237 (1991).
21G. H. Booth, A. J. W. Thom, and A. Alavi, J. Chem. Phys. 131, 054106

(2009).
22M. Feldbacher and F. F. Assaad, Phys. Rev. B 63, 073105 (2001).
23D. M. Ceperley and B. Bernu, J. Chem. Phys. 89, 6316 (1988); P.-M.

Zimmerman, J. Toulouse, Z. Zhang, C.-B. Musgrave, and C.-J. Umrigar,
ibid. 131, 124103 (2009).

24M. Nava, A. Motta, D. E. Galli, E. Vitali, and S. Moroni, Phys. Rev. B 85,
184401 (2012).

25G. H. Booth and G. Chan, J. Chem. Phys. 137, 191102 (2012).
26G. H. Booth and G. Chan, Phys. Rev. B 91, 155107 (2015).
27R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D 24, 2278

(1981).
28G. Sugiyama and S. E. Koonin, Ann. Phys. 168, 1 (1986).
29S. Zhang and H. Krakauer, Phys. Rev. Lett. 90, 136401 (2003).
30S. Zhang, H. Krakauer, W. A. Al Saidi, and M. Suewettana, Comput. Phys.

Commun. 169, 394 (2005).
31S. Zhang, Theoretical Methods for Strongly Correlated Electron Systems

(Springer-Verlag, 2003).
32S. Zhang, J. Carlson, and J. E. Gubernatis, Phys. Rev. B 55, 7464 (1997).
33W. Purwanto and S. Zhang, Phys. Rev. E 70, 056702 (2004).
34W. Purwanto, S. Zhang, and H. Krakauer, J. Chem. Phys. 130, 094107

(2009).
35W. Purwanto, H. Krakauer, Y. Virgus, and S. Zhang, J. Chem. Phys. 135,

164105 (2011).
36W. Purwanto, H. Krakauer, and S. Zhang, Phys. Rev. B 80, 214116 (2009).
37K. Sawada, Phys. Rev. 106, 372 (1957).
38S. Baroni and S. Moroni, Phys. Rev. Lett. 82, 4745 (1999).
39J. Toulouse and C. J. Umrigar, J. Chem. Phys. 128, 174101 (2008).
40M. Motta, G. Bertaina, D. E. Galli, and E. Vitali, Comput. Phys. Commun.

190, 62–71 (2015).
41P. P. Ewald, Ann. Phys. 369, 253 (1921).

http://dx.doi.org/10.1103/PhysRev.46.1002
http://dx.doi.org/10.1007/BF01340281
http://dx.doi.org/10.1103/PhysRevLett.3.414
http://dx.doi.org/10.1103/PhysRevB.18.3126
http://dx.doi.org/10.1103/PhysRevLett.45.566
http://dx.doi.org/10.1103/PhysRevLett.100.236404
http://dx.doi.org/10.1103/PhysRevB.39.5005
http://dx.doi.org/10.1103/PhysRevB.48.12037
http://dx.doi.org/10.1103/PhysRevLett.75.689
http://dx.doi.org/10.1103/PhysRevLett.101.026402
http://dx.doi.org/10.1103/PhysRevLett.101.026402
http://dx.doi.org/10.1103/PhysRevB.79.195311
http://dx.doi.org/10.1103/PhysRevB.79.195311
http://dx.doi.org/10.1103/PhysRevLett.94.016405
http://dx.doi.org/10.1103/PhysRevB.41.9301
http://dx.doi.org/10.1063/1.431514
http://dx.doi.org/10.1063/1.443766
http://dx.doi.org/10.1063/1.4861227
http://dx.doi.org/10.1007/BF01030009
http://dx.doi.org/10.1063/1.3193710
http://dx.doi.org/10.1103/PhysRevB.63.073105
http://dx.doi.org/10.1063/1.455398
http://dx.doi.org/10.1063/1.3220671
http://dx.doi.org/10.1103/PhysRevB.85.184401
http://dx.doi.org/10.1063/1.4766327
http://dx.doi.org/10.1103/PhysRevB.91.155107
http://dx.doi.org/10.1103/PhysRevD.24.2278
http://dx.doi.org/10.1016/0003-4916(86)90107-7
http://dx.doi.org/10.1103/PhysRevLett.90.136401
http://dx.doi.org/10.1016/j.cpc.2005.03.087
http://dx.doi.org/10.1016/j.cpc.2005.03.087
http://dx.doi.org/10.1103/PhysRevB.55.7464
http://dx.doi.org/10.1103/PhysRevE.70.056702
http://dx.doi.org/10.1063/1.3077920
http://dx.doi.org/10.1063/1.3654002
http://dx.doi.org/10.1103/PhysRevB.80.214116
http://dx.doi.org/10.1103/PhysRev.106.372
http://dx.doi.org/10.1103/PhysRevLett.82.4745
http://dx.doi.org/10.1063/1.2908237
http://dx.doi.org/10.1016/j.cpc.2015.01.013
http://dx.doi.org/10.1002/andp.19213690304


164108-14 Motta et al. J. Chem. Phys. 143, 164108 (2015)

42W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev. Mod. Phys.
73, 33 (2001).

43H. F. Trotter, Proc. Am. Math. Soc. 10, 545 (1959).
44M. Suzuki, Prog. Theor. Phys. 56, 1454 (1976).
45J. Hubbard, Phys. Rev. Lett. 3, 77 (1959).
46R. L. Stratonovich, Sov. Phys. Doklady 2, 416 (1957).
47A. M. Turing, Q. J. Mech. Appl. Math. 1, 287 (1948).
48A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-posed Problems (Winston

& Sons, 1977).
49R. Balian and E. Brezin, Il Nuovo Cimento B 64, 37 (1969).
50T. Gaskell, Proc. Phys. Soc. 77, 1182 (1961); 80, 1091 (1962).
51E. Vitali, M. Rossi, L. Reatto, and D. E. Galli, Phys. Rev. B 82, 174510

(2010).
52K. Levenberg, Q. Appl. Math. 2, 164 (1944); D. Marquardt, SIAM J. Appl.

Math. 11, 431 (1963).

53J. J. Shepherd, G. H. Booth, A. Grüneis, and A. Alavi, Phys. Rev. B 85,
081103(R) (2012).

54J. J. Shepherd, G. H. Booth, and A. Alavi, J. Chem. Phys. 136, 244101
(2012).

55H. Shi and S. Zhang, Phys. Rev. B 88, 125132 (2013).
56F. Ma, W. Purwanto, S. Zhang, and H. Krakauer, Phys. Rev. Lett. 114, 226401

(2015).
57E. Y. Loh, Jr., J. E. Gubernatis, R. T. Scalettar, R. L. Sugar, and S. R. White,

Interacting Electrons in Reduced Dimensions, NATO ASI Series Vol. 213
(Plenum Press, 1989), pp. 55–60.

58C. N. Gilbreth and Y. Alhassid, Comput. Phys. Commun. 188, 1–6 (2014).
59L. Fox, H. D. Huskey, and J. H. Wilkinson, Q. J. Mech. Appl. Math. 1, 149

(1948).
60I. Tamm, J. Phys. (USSR) 9, 499 (1945).
61S. M. Dancoff, Phys. Rev. 78, 382 (1950).

http://dx.doi.org/10.1103/RevModPhys.73.33
http://dx.doi.org/10.1090/S0002-9939-1959-0108732-6
http://dx.doi.org/10.1143/PTP.56.1454
http://dx.doi.org/10.1103/PhysRevLett.3.77
http://dx.doi.org/10.1093/qjmam/1.1.287
http://dx.doi.org/10.1007/BF02710281
http://dx.doi.org/10.1088/0370-1328/77/6/312
http://dx.doi.org/10.1088/0370-1328/80/5/307
http://dx.doi.org/10.1103/PhysRevB.82.174510
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1103/PhysRevB.85.081103
http://dx.doi.org/10.1063/1.4720076
http://dx.doi.org/10.1103/PhysRevB.88.125132
http://dx.doi.org/10.1103/PhysRevLett.114.226401
http://dx.doi.org/10.1016/j.cpc.2014.09.002
http://dx.doi.org/10.1093/qjmam/1.1.149
http://dx.doi.org/10.1103/PhysRev.78.382

	Imaginary time density-density correlations for two-dimensional electron gases at high density
	Recommended Citation

	Imaginary time density-density correlations for two-dimensional electron gases at high density

