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ELA

LINE SEGMENTS ON THE BOUNDARY OF THE NUMERICAL

RANGES OF SOME TRIDIAGONAL MATRICES∗

ILYA M. SPITKOVSKY† AND CLAIRE MARIE THOMAS‡

Abstract. Tridiagonal matrices are considered for which the main diagonal consists of zeroes,

the sup-diagonal of all ones, and the entries on the sub-diagonal form a geometric progression. The

criterion for the numerical range of such matrices to have line segments on its boundary is established,

and the number and orientation of these segments is described.

Key words. Numerical range, Tridiagonal matrices, Flat portions.

AMS subject classifications. 15A60.

1. Introduction. Let Mn(C) stand for the set of all n-by-n matrices with their

entries in the field C of complex numbers. The numerical range (also called the field

of values, or the Hausdorff set) of A ∈ Mn(C) is defined as

F (A) = {〈Ax, x〉 : ‖x‖ = 1},

where of course 〈·, ·〉 and ‖·‖ are the standard scalar product and the norm on Cn,

respectively. It is well known that F (A) is a convex (the Toeplitz-Hausdorff theorem)

compact subset of C containing the spectrum σ(A) of A, and thus the convex hull

of the latter: F (A) ⊇ conv σ(A). For normal matrices in fact F (A) = conv σ(A), so

F (A) is a polygon, and its boundary ∂F (A) consists exclusively of line segments, i.e.

“flat portions”, and corner points. On the other hand, for a 2× 2 non-normal matrix

A, F (A) is an elliptical disk with the foci at the eigenvalues of A (the elliptical range

theorem), and the boundary is smooth, with positive curvature throughout.

Starting with n = 3, however, flat portions of ∂F (A) may exist for not normal,

and even unitarily irreducible, A ∈ Mn(C). The possible number of such portions for
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n ≥ 3 does not exceed n(n−1)/2 [4], and this bound is sharp if n = 3 but not for larger

values of n. More specifically, the sharp upper bound is 4 if n = 4 [1, Theorem 37], 6

if n = 5 [7, Lemma 2.2], and not known for n > 5. A detailed constructive description

of the flat portions was obtained in [1] for tridiagonal matrices, that is, when

A =





















a1 b1 0 . . . 0

c1 a2 b2
. . .

...

0 c2 a3
. . . 0

...
. . .

. . .
. . . bn−1

0 . . . 0 cn−1 an





















. (1.1)

Note that all A ∈ Mn(C) with n ≤ 4 are tridiagonalizable, that is, unitarily similar

to tridiagonal ones. This is a tautology for n ≤ 2, an easy exercise for n = 3, and a

non-trivial result from [10] for n = 4. For n ≥ 5, not all matrices are tridiagonaliz-

able; moreover, the non-tridiagonalizable ones form a dense, second-category subset

of Mn(C) [6]. A concrete example of a non-tridiagonalizable A ∈ M5(C) can be found

in [9].

In this paper, we concentrate on matrices of the form (1.1) where, in addition,

a1 = a2 = · · · = an (:= a) and {bj, cj} = {1, zj}, j = 1, . . . , n− 1, (1.2)

for some fixed z ∈ C. Note that by [2, Lemma 3.1], the numerical range of the

matrix (1.1) does not change if the elements of any pair bj , cj of its off diagonal

entries are flipped. So, instead of (1.2) we may without loss of generality suppose

that A = aI +An,z, where

An,z =





















0 1 0 . . . 0

z 0 1
. . .

...

0 z2 0
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 zn−1 0





















. (1.3)

Furthermore, for such A, F (A) = F (n, z) + a, where we follow [5] in abbreviating

F (An,z) to F (n, z) for simplicity of notation. So, instead of (1.1)–(1.2), we may

simply consider matrices of the form (1.3).

By methods different from those of [1], it was established in [3, Theorems 7 and

8] that for all n ≥ 5 the set F (n,−1) has four flat portions on its boundary. An

explanation based on [1] was offered in [5], where the case of arbitrary z ∈ C for small

matrices (n ≤ 5) was also tackled. Here we lift the size restriction.
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2. Auxiliary results. For convenience of reference, we state here several results

on tridiagonal matrices which are either known or easily follow from such. Proposi-

tions 1 and 2 below are, respectively [2, Lemma 5.1] and [1, Corollary 7].

Proposition 1. A tridiagonal matrix (1.1) is normal if and only if |bj| = |cj |

for all j = 1, . . . , n− 1, arg bj + arg cj does not depend on j for all contiguous j such

that bj 6= 0 (equivalently: cj 6= 0), and 2 arg(aj+1 − aj) = arg bj + arg cj whenever

aj 6= aj+1 and bj , cj 6= 0.

From here it immediately follows:

Corollary 1. Any principal submatrix of a normal tridiagonal matrix is also

normal.

As in [1], we will say that a tridiagonal matrix (1.1) is proper if for each j =

1, . . . , n − 1 at least one of the off diagonal entries bj , cj is different from zero. Of

course, for normal proper tridiagonal matrices all bj and cj are different from zero,

j = 1, . . . , n− 1.

Proposition 2. All eigenvalues of a normal proper tridiagonal matrix are sim-

ple, and all eigenvectors have non-zero fist and last entries.

For any square matrix B we will denote by B[l1, . . . , lk] its principal k-by-k sub-

matrix located in the rows and columns numbered l1, . . . , lk.

Proposition 3. The spectra of a normal proper tridiagonal A ∈ Mn(C) and its

principle submatrix A[1, . . . , n− 1] are disjoint.

Proof. Suppose A and A[1, . . . , n−1] do have an eigenvalue in common. Without

loss of generality, passing from A to A−λI, we may also suppose that this eigenvalue

is zero. Being normal by Corollary 1, A[1, . . . , n− 1] is unitarily similar to a diagonal

matrix diag[0, λ2, . . . , λn−1]. So, for an appropriately chosen unitary U ∈ Mn−1(C)

we have

[

U∗ 0

0 1

]

A

[

U 0

0 1

]

=

















0

λ2

. . .

λn−1

bn−1u

∗
...

∗

cn−1u ∗ · · · ∗ an

















, (2.1)

where u is the lower left element of U . Consequently,

det(A) = −bn−1cn−1 |u|
2
λ2 · · ·λn−1.

Since |bn−1| = |an−1| by Proposition 1 and λ2, . . . , λn−1 6= 0 by Proposition 2, from

det(A) = 0 it follows that u = 0. In particular, the first column of the matrix in the
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right hand side of (2.1) is equal to zero. But then (2.1) implies that the eigenvector

of A corresponding to its zero eigenvalue is the first column of U augmented by zero.

This, however, contradicts the pattern of the non-zero entries of eigenvectors of normal

proper tridiagonal matrices, as stated in Proposition 2.

Of course, a similar statement holds for the principle submatrix A[2, . . . , n]. On

the other hand, a simple example of a 3-by-3 matrix B with zero in all four corner

positions shows that both B and B[1, 3] are singular, while B can be normal, and

even hermitian. So, the condition that the (n − 1)-by-(n− 1) submatrix is obtained

by deleting either the first or the last row and column is essential.

However, a version of Proposition 3 holds for arbitrary principle submatrices of

A, provided that we restrict our attention to extreme eigenvalues, that is, the vertices

of F (A).

Corollary 2. Let A be a normal proper tridiagonal matrix, and B its arbitrary

principal submatrix of a smaller size. Then the vertices of F (A) do not lie in the

numerical range of B (and thus are not its eigenvalues).

Proof. Suppose λ ∈ F (B) is a vertex of F (A). Since F (B) ⊂ F (A), it then has

to be also a vertex of F (B) and, moreover, of the numerical range of any principal

submatrix C of A containing B, and thus λ ∈ σ(C). Let us choose C = A[1, . . . , n−1]

if B does not contain the last row and column of A. This leads to a contradiction

with Proposition 3. The case of B not containing the first row and column of A can

be treated similarly.

It remains to consider the case of B being a principle submatrix of C = A[1, . . . , k,

k + 1, . . . , n] for some (1 <)k(< n). Observe that then C is a block diagonal matrix

with the blocks A[1, . . . , k − 1] and A[k + 1, . . . , n]. Consequently, λ is an eigenvalue

of at least one of these blocks. Relabeling this block by B, we arrive at the situation

already considered.

For our purposes, we need only the version of Corollary 2 for hermitian A, in

which case it simply means that the eigenvalues of any (strictly smaller) principle

submatrix B of A lie strictly between the extreme eigenvalues of A. This is a small,

but important for us, addition to the interlacing theorem, see example on pg. 185 of

[8] for the statement of the latter.

Finally, we state the criterion for flat portions to exist on the boundary of the

numerical range for matrices (1.1). This is a slightly reworded [1, Theorem 10].

Theorem 1. Let A be a proper tridiagonal matrix of the form (1.1). Then ∂F (A)

contains a line segment at an angle θ from the positive x-axis if and only if
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(i) The set set J =
{

j : bj = e2iθcj
}

is non-empty:

J = {j1, . . . , jm−1} for some (j0 = 0 <) j1 < · · · < jm−1 (< jm = n), m > 1;

(ii) The minimal or maximal eigenvalue µ of Im(e−iθA) is attained by at least

two of its diagonal blocks Im(e−iθAk), where

Ak = A[jk−1 + 1, . . . , jk], k = 1, . . . ,m.

(iii) Among the blocks Im(e−iθAk) satisfying (ii), either there are two adjacent

ones, or for their unit eigenvectors xk corresponding to the eigenvalue µ the

values Re(e−iθ〈Akxk, xk〉) are not all the same.

Note that the matrices Im(e−iθAk) are proper tridiagonal and hermitian. So,

according to Proposition 2, their eigenvalues are simple and the eigenvectors have

non-zero first and last entries. This justifies the simplification made in the statement

of Theorem 1 compared to [1, Theorem 10], where the simplicity of µ and non-

zero requirement on the first/last entries of xl, xl+1 in case of adjacent Im(e−iθAl),

Im(e−iθAl+1) were explicitly mentioned.

3. Main result. As was already observed in [5], condition (i) of Theorem 1

implies that flat portions on the boundary of F (n, z) are possible only if |z| = 1.

Besides, matrices An,1 are hermitian, with F (n, 1) =
[

− 2 cos π
n+1 , 2 cos

π
n+1

]

. So, we

will from now on suppose z unimodular and different from one. The following lemma

will play a key role.

Lemma 1. Let in (1.3) z be unimodular and let ω be a square root of z. Then

for any m,n and k ≤ min{m,n−m}, the matrices

B1 = Im(ω−mAn,z [m− k + 1, . . . ,m]) and B2 = Im(ω−mAn,z [m+ 1, . . . ,m+ k])

have the same spectra.

Proof. Both B1 and B2 are tridiagonal hermitian k-by-k matrices with zero main

diagonal. Such matrices are completely determined by their first sup-diagonal, that

is, the (k − 1)-string of their (i, i + 1) entries, i = 1, . . . , k − 1. So, for brevity of

notation we will operate with these strings in place of the matrices per se. This string

for B1 is

1

2i
[ω−m − ω−m+2k−2, ω−m − ω−m+2k−4, . . . , ω−m − ω−m+2]. (3.1)

Denoting by Z(= ZT ) ∈ Mk(C) the permutational matrix corresponding to the order

reversing permutation σ =

(

1 2 · · · k

k k − 1 · · · 1

)

, observe that ZBT
1 Z has the sup-

diagonal string

1

2i
[ω−m − ω−m+2, ω−m − ω−m+4, . . . , ω−m − ω−m+2k−2].
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In its turn, the unitary similarity via V = diag[v1, . . . , vk], where vj = (−1)jω−j(j−1),

yields the matrix V ∗(ZBT
1 Z)V with the sup-diagonal

1

2i
[ω−m − ω−m−2, ω−m − ω−m−4, . . . , ω−m − ω−m−2k+2],

which coincides with the sup-diagonal of B2. Thus, B1 and B2 can be transformed

one into another via unitary similarities and transpositions, and so have the same

spectra.

In the statement of our main result, an important role will be played by the order

of z as a root of unity. We will denote this order by p, meaning that p = ∞ if z is

not a root, and that z, . . . , zp−1 6= 1 = zp otherwise.

Note that the tridiagonal matrices B1 and B2 from Lemma 1 are proper provided

that k < p. Combining the results of Lemma 1 and Corollary 2 we thus obtain:

Corollary 3. Let in (1.3) z be a root of unity of order p, and let ω be a square

root of z. Then for any m,n and k1, k2 ≤ min{m,n−m, p−1}, k1 6= k2, the matrices

B1 = Im(ω−mAn,z[m − k1 + 1, . . . ,m]) and B2 = Im(ω−mAn,z [m + 1, . . . ,m + k2])

have different maximal eigenvalues.

A similar statement of course holds for the minimal eigenvalues.

Proof. Indeed, if say k1 < k2, then by Lemma 1 the spectrum of B1 coincides

with that of the upper left k1-by-k1 principle submatrix B3 of B2. In its turn, σ(B3)

lies strictly between the minimal and maximal eigenvalues of B2, because the latter

is a proper tridiagonal matrix (since k2 < p), and thus Corollary 2 is applicable.

Finally, recall that the set F (n, z) is centrally symmetric [5, Lemma 1], and so

the flat portions on its boundary, if any, come in parallel pairs.

Theorem 2. Let in (1.3) z be a root of unity of order p > 1. Then the number

N(n, z) of parallel pairs of the flat portions on the boundary of F (n, z) and their

orientation are determined by the following rules:

N(n, z) =















0 if n < 2p is odd,

1 if n ≤ 2p is even,

min{p, n− 2p+ 1} if n > 2p.

(3.2)

The angle formed by these flat portions with the positive x-axis is θj = (j arg z)/2,

j = 0, . . . ,min{p− 1, n− 2p} if n > 2p, and θ = (n arg z)/4 if n ≤ 2p is even.

Proof. Condition (i) of Theorem 1 holds if and only if θ attains one of the n− 1

values

θk = (k arg z)/2, k = 1, . . . , n− 1. (3.3)
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If n ≤ 2p, then for θ = θk in the notation of the same Theorem 1 we have J = {k},

m = 2, and A1 = A[1, . . . , k], A2 = A[k + 1, . . . , n]. By Corollary 3, the matrices

Im(e−iθkA1) and Im(e−iθkA2) will have different maximal and minimal eigenvalues

whenever their sizes are different, that is, when k 6= n − k. On the other hand, if

their sizes happen to coincide, they will have the same spectra due to Lemma 1.

Consequently, condition (ii) of Theorem 1 is satisfied if and only if n is even and

k = n/2; the respective (unique) value of θ is given by (3.3) with k = n/2 thus

equaling (n arg z)/4. Since the blocks A1 and A2 are adjacent, condition (iii) is then

satisfied automatically. This proves the first two lines of (3.2) and verifies the value

of θ corresponding to the second of them.

Let now n > 2p, implying in particular that p is finite and thus z is indeed a

root of unity. Then only p of the θk given by (3.3) define different directions, and we

may choose any p pairwise different mod p of them. It is notation-wise convenient

to relabel them in (3.3) by k = 0, . . . , p− 1.

For k = n− 2p+ 1, . . . , p− 1 (which is a non-vacuous set only if n < 3p− 1) we

will have m = 3, J = {k, k + p}, and Im(e−iθkA) splits into three proper tridiagonal

blocks, the middle of them being p-by-p, and two others having strictly smaller size.

By Corollary 3, the minimal and maximal eigenvalues of Im(e−iθkA) are attained by

its middle block only. Thus, condition (ii) of Theorem 1 is not satisfied for the angles

θk in the considered range.

Consider now the remaining values of k = 0, . . . , p−1, that is, k = 0, . . . ,min{p−

1, n− 2p}. The matrix Im(e−iθkA) then splits into at least two contiguous identical

p-by-p blocks, preceded and/or succeeded by a block of strictly smaller size. The

maximal and minimal eigenvalues of Im(e−iθkA) are therefore attained by its p-by-p

blocks, and so conditions (ii) and (iii) of Theorem 1 are met.

Corollary 4. Let in (1.3) z be a root of unity of order p > 1 while n ≥ 3p− 1.

Then there are exactly p parallel pairs of the flat portions on ∂F (n, z), and the angles

jπ/p, j = 0, . . . , p− 1, do not depend on the particular choice of z.

Note that for n < 3p − 1 the number of flat portions depends on the particular

value of n and their orientation depends on the specific choice of z.

4. Examples.

Example 1. Let p = 2, that is, z = −1. According to Theorem 2, there are no

flat portions on ∂F (3,−1), one pair of horizontal flat portions on ∂F (4,−1), and two

pairs (one horizontal, and one vertical) on ∂F (n,−1) for n ≥ 5. This is in complete

agreement with Theorem 8 of [3]. Note that formally ∂F (2,−1) also should contain

two flat portions; what happens though is that F (2,−1) is a vertical line segment,

that is, the two flat portions in this case degenerate into one.
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Example 2. Let n = 4. Then n ≤ 2p unless z = 1. In agreement with [5,

Theorem 4], we see from our Theorem 2 that for all unimodular z 6= 1 there is one

pair of flat portions on ∂F (4, z), forming the angle arg z with the positive x-axis.

Example 3. Let n = 5 and z 6= ±1. Then p ≥ 3, and so n < 2p. According to

Theorem 2, there are no flat portions on the boundary of F (5, z) – the fact established

earlier in [5, Theorem 5].

Example 4. Let n = 6 and z 6= ±1. Then p ≥ 3, and so n < 2p. According to

Theorem 2, there is exactly one pair of parallel flat portions, at the angle of 3(arg z)/2

with the positive x-axis. The following figures illustrate this point, for z = e2πi/3 and

z = −e3πi/7.

Fig. 4.1. A(6, e2πi/3) (left) and A(6,−e3πi/7) (right).

Example 5. Let n > 6 and p = 3. By Theorem 2, in this case N(n, z) =

min{3, n− 5}, and so there will be 2 pairs of parallel flat portions if n = 7 and 3 such

pairs otherwise. Below are the corresponding figures for z = e2πi/3 and n = 7, 8, 9, 10

and 13.

Fig. 4.2. A(7, e2πi/3).
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Fig. 4.3. A(8, e2πi/3).

Fig. 4.4. A(9, e2πi/3).

Fig. 4.5. A(10, e2πi/3).
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Fig. 4.6. A(13, e2πi/3).

Example 6. Finally, the figures below illustrate Corollary 4.

Fig. 4.7. A(13, i).

Fig. 4.8. A(15,−eπi/5).
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