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1 Introduction

Determining the detailed flavor and spin structure of the nucleon remains a central chal-

lenge for hadronic physics into the 21st century. Considerable progress has been made

over the past two decades in understanding the characteristics of the momentum and spin

distributions of quarks and gluons (or partons) through precise measurements of the nu-

cleon’s parton distribution functions (PDFs) in various hard scattering reactions [1, 2]. In

addition to the traditional inclusive deep-inelastic scattering (DIS), Drell-Yan and other

high-energy scattering processes, an increasingly important role in this quest has been

played by semi-inclusive production of hadrons in lepton-nucleon scattering.

Identification of specific hadrons, such as pions or kaons, in the current fragmenta-

tion region of a deep-inelastic collision serves as a tag of individual quark flavors, which

in inclusive DIS are summed over. Important insights have been provided through semi-

inclusive deep-inelastic scattering (SIDIS) experiments on phenomena such as the SU(2)

flavor asymmetry in the proton sea [3] and the ratio of strange to nonstrange quark distri-

butions [4, 5]. From experiments with polarized targets, SIDIS data have also provided fas-

cinating glimpses of the possible flavor asymmetry in the polarized light-antiquark sea [6],

while kaon production data has fueled the recent controversy concerning the sign of the

polarized strange sea [7–9]. Furthermore, detection of forward baryons (in the center of

mass frame) in the target fragmentation region of SIDIS is a potentially important avenue

for extracting information on the pion cloud of the nucleon or the structure of the virtual

pion itself [10–13].

In more recent developments, detection of both the longitudinal and transverse mo-

mentum distributions of hadrons produced in SIDIS measurements of various single- and
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double-spin asymmetries has opened up the largely unexplored realm of transverse mo-

mentum dependent parton distributions [14–16]. These reveal an even richer landscape

of three-dimensional momentum and spin distribution of partons in the nucleon, that will

be the subject of increasingly greater attention at facilities such as Jefferson Lab [17] and

COMPASS [18], and a central component of the science program at the proposed Electron-

Ion Collider [19–21].

The unambiguous interpretation of any SIDIS experiment in terms of leading twist

PDFs or transverse momentum distributions requires control of various subleading 1/Q2

corrections, such as target mass and higher twist effects, as well as knowledge of the

fragmentation functions describing the parton hadronization. For inclusive DIS, the finite-

Q2 corrections are known to become important at low Q2 values, particularly when the

parton momentum fraction x is large [22–24]. Their effects on global fits of spin-averaged

PDFs have been systematically studied in recent analyses by the CTEQ-Jefferson Lab

(CJ) [25–27], ABM [28, 29] and JR groups [30], and in spin-dependent PDF analyses

by the JAM collaboration [31] (and to some extent also by the LSS [32], BB [33] and

NNPDF [34, 35] groups).

Typically, the effects of target mass corrections (TMCs) can be computed within a spe-

cific framework, while higher twist effects, which involve more complicated multi-parton

correlations, are parametrized phenomenologically. The standard approach for computing

TMCs has traditionally been within the operator product expansion, in which the mass

corrections to inclusive DIS structure functions arise from twist-two quark bilinear opera-

tors with an arbitrary number of derivative insertions [22, 36]. Extending this framework

to processes involving particles in the final state is problematic, however, which has in

practice limited the study of hadron mass corrections in SIDIS.

An alternative framework for TMCs was developed using techniques based on collinear

factorization (CF) [37–39], in which the hard scattering is formulated in momentum space

directly. The method has been applied to the computation of TMCs in inclusive scattering,

both in unpolarized [40–42] and polarized [43] DIS, and in semi-inclusive hadron production

in electron-proton anhilation [44, 45]. For semi-inclusive hadron production in lepton-

proton collisions, in contrast to inclusive DIS and e+e− anihilation, finite-Q2 corrections can

arise from both the effects of the target mass and the mass of the produced hadron. While

earlier analyses [46, 47] considered some of these corrections within the CF framework, the

phenomenology of the combined effects of the target and produced hadron masses — which

we refer collectively as “hadron mass corrections” (HMCs) — was systematically explored

in ref. [48] for unpolarized scattering.

In this work we extend the analysis of HMCs to the case of spin-dependent SIDIS

at finite Q2. Because high energy spin-dependent data are generally more scarce than

spin-averaged cross sections, a significantly larger fraction of the world’s data set used to

constrain spin-dependent PDFs lies in the low-Q2 region (Q2 ∼ 1− 2GeV2). While target

mass corrections have been incorporated in some global spin-PDF analyses [31–35], none of

the analyses which have included polarized SIDIS data [32, 49] have accounted for HMCs.

With the increasing precision of new polarized measurements, and the consequently more

accurate determination of spin-dependent PDFs, it is imperative to reliably account for

subleading corrections which could impact the extraction of the leading twist distributions.

– 2 –
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Figure 1. Semi-inclusive deep-inelastic lepton-nucleon scattering with production of a final state

hadron h. The external momenta of the incident (ℓ) and scattered (ℓ′) leptons, virtual photon

(q), target nucleon (p) and observed hadron (ph) are labeled explicitly. The unobserved final state

hadrons are labelled by X.

In section 2 we outline the formalism used to compute the SIDIS cross sections at fi-

nite values of Q2 within the collinear approximation in the presence of target and produced

hadron masses. For completeness, we consider both polarized and unpolarized scattering,

since the latter enters the calculation of the measured polarization asymmetries. In sec-

tion 2.2 we review the collinear formalism and its application to hadron production in

SIDIS. Expanding the hadronic tensor in terms of quark correlators, in section 2.3 we de-

rive semi-inclusive cross sections, which at leading order are given by factorized products

of PDFs and fragmentation functions expressed as functions of modified scaling variables.

The relative importance of the HMCs is explored numerically in section 3, where we quan-

tify the dependence of the finite-Q2 cross sections on the kinematical variables and estimate

the corrections for specific current and future experiments. Finally, we conclude by sum-

marizing our results in section 4.

2 Semi-inclusive scattering with mass corrections

The semi-inclusive lepton-nucleon scattering process is illustrated in figure 1, where the in-

cident lepton (with momentum ℓ) scatters from an initial state nucleon (p) to a recoil lepton

(ℓ′) via the exchange of a virtual photon (q), producing a final state hadron h (with mo-

mentum ph). In this section we first review the external kinematics and choice of variables,

before outlining the collinear factorization framework for describing the hard scattering

process. After defining the hadronic tensor in terms of quark-nucleon and quark-hadron

correlation functions, we derive expressions for the spin-averaged and spin-dependent cross

sections in terms of parton distribution and fragmentation functions at leading order in

the strong coupling constant and for finite values of Q2.

2.1 External kinematics

We expand the four-momenta of the external particles in terms of coplanar light-cone unit

vectors n and n, satisfying n2 = n2 = 0 and n · n = 1 [37]. The “plus” and “minus”

components of a four-vector vµ are defined by v+ = v · n = (v0 + v3)/
√
2 and v− = v · n =

(v0 − v3)/
√
2. We work in a class of reference frames where the initial nucleon and virtual

– 3 –
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photon momenta are coplanar, so that

pµ = p+ nµ +
M2

2p+
nµ, (2.1)

qµ = −ξp+ nµ +
Q2

2ξp+
nµ, (2.2)

where M is the nucleon mass, Q2 = −q2, and the scaling variable ξ = −q+/p+. The (p, q)

collinear frames are related to each other by a boost of parameter p+ and contain, in partic-

ular, the target rest frame (where the nucleon p+ component is p+ = M/
√
2) and the Breit

frame (p+ =Q/(
√
2ξ)). For other choices of reference frames see appendix A of ref. [48].

In the collinear (p, q) frame, ξ is identical to the Nachtmann scaling variable [36, 50, 51],

ξ =
2xB

1 +
√
1 + 4x2BM

2/Q2
, (2.3)

where xB = Q2/2p · q is the Bjorken scaling variable, and in the Bjorken limit (Q2 and

q− →∞ with xB fixed) one finds that ξ → xB. Momentum and baryon number conser-

vation (and, for K production, strangeness conservation) impose an upper limit on xB,

xB ≤ xmax
B , where

1

xmax
B

= 1 +
mh(mh + 2Mb) +M2

b −M2

Q2
, (2.4)

withMb = M for π production andMb = MΛ (the lightest hyperon mass) forK production.

This value of xB corresponds to a final state consisting of the nucleon and hadron h at rest

in the hadron’s rest frame.

For spin-dependent scattering, the polarization vector Sµ of the initial state nucleon

can be parametrized as

Sµ =
SL

M

(
p+ nµ − M2

2p+
nµ + Sµ

T

)
, (2.5)

and satisfies the conditions p ·S = 0 and S2 = −1. In the case of a longitudinally polarized

initial state nucleon (which we consider in this work), one has SL = ±1 and the transverse

spin vector Sµ
T = 0.

The incident and scattered lepton momenta can be decomposed as

ℓµ = ηp+ nµ +
(
1 +

η

ξ

) Q2

2ξp+
nµ + ℓµ⊥, (2.6)

ℓ′µ = (η + ξ) p+ nµ +
η

ξ

Q2

2ξp+
nµ + ℓµ⊥, (2.7)

where ℓµ⊥ is the lepton transverse momentum four-vector, η = ℓ+/p+ is the lepton momen-

tum fraction, and we assume massless leptons, ℓ2 = ℓ′2 = 0. After some algebra one can

show that

η =
ξ

2y(1 + γ2)

[
(2− y)

√
1 + γ2 − y(1 + γ2)

]
, (2.8)

where y = q ·p/ℓ ·p and γ2 = 4x2BM
2/Q2. In the target rest frame y = ν/E is the fractional

energy transfer from the lepton to the target, with ν and E the virtual photon and incident

– 4 –
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lepton energies, respectively. The magnitude of the lepton transverse momentum is set by

four-momentum conservation,

ℓ2⊥ = −ℓ2⊥ = −η

ξ

(
1 +

η

ξ

)
Q2. (2.9)

For the hadron produced in the final state, the momentum is parametrized as

pµh =
ξm2

h⊥

ζhQ2
p+ nµ +

ζhQ
2

2ξp+
nµ + pµ

h⊥, (2.10)

where ζh = p−h /q
− is the scaling fragmentation variable, and the hadron transverse momen-

tum four-vector pµ
h⊥ satisfies ph⊥ · n = ph⊥ · n = 0, with norm p2h⊥ = −p 2

h⊥. The squared

transverse mass of the produced hadron h is defined by m2
h⊥ = m2

h+p 2
h⊥, where mh is the

mass of the hadron. The variable ζh can be related to the fragmentation invariant

zh =
ph · p
q · p =

xB
ξ

(
ζh +

ξ2

ζh

M2m2
h⊥

Q4

)
. (2.11)

In the target rest frame it coincides with the ratio of the produced hadron to virtual photon

energies, zh = Eh/ν, which is frequently used in experimental analysis of SIDIS data. In

the Bjorken limit the fragmentation variable ζh → zh, while at finite Q2 one has

ζh =
zh
2

ξ

xB

(
1 +

√
1− 4x2BM

2m2
h⊥

z2h Q4

)
. (2.12)

Since the produced hadron’s energy is bounded from below by Eh ≥ mh⊥, one can show

that zh ≥ zmin
h , where

zmin
h = 2xB

Mmh

Q2
. (2.13)

Combining eqs. (2.12) and (2.13), one can show that the corresponding minimum value of

ζh is given by ζmin
h = ξMmh/Q

2. In the target rest frame, zmin
h corresponds to the hadron h

produced at rest, with the remaining final state hadrons moving collectively in the direction

of the virtual photon. At the other extreme, conservation of four-momentum, baryon

number, and (for K production) strangeness impose the upper limit zh ≤ zmax
h , where

zmax
h = 1− 2xB

M(Mb −M)

Q2
, (2.14)

with again Mb = M for h = π and Mb = MΛ for h = K. This limit corresponds to

diffractive production of the observed hadron with maximal energy. As Q2 → ∞, both the

upper and lower limits become independent of Q2, zmin
h → 0 and zmax

h → 1.

As an alternative to the fragmentation invariant zh, one can define the invariant mo-

mentum fraction

ze =
2ph · q
q2

= ζh −
m2

h⊥

ζhQ2
, (2.15)

which is used in the study of hadron production in e+e− collisions. The choice of this

variable avoids mixing inclusive (xB) and semi-inclusive (zh) variables as in eq. (2.11). It

– 5 –
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also allows a clean separation of the current (ze > 0) and target (ze < 0) fragmentation

regions in the Breit frame, in which ze = pzh/q
z is the ratio of the longitudinal components

of the hadron and photon momenta. In the current region, where the observed hadrons

are produced with longitudinal momentum in the direction of the virtual photon, ζh can

be written in terms of the ze variable as

ζh =
ze
2


1 +

√

1 +
4m2

h⊥

z2e Q
2


 . (2.16)

Hadrons produced in the current region have ζh > ζ
(0)
h ≡ ζh(ze = 0), where

ζ
(0)
h =

mh⊥

Q
. (2.17)

Note that ζh(z
min
h ) ≤ ζ

(0)
h , which reflects the fact that a hadron produced at rest in the

target rest frame belongs to the target region. Finally, in the Bjorken limit all three

fragmentation variables become equivalent, ζh → zh → ze, and the current region extends

down to the smallest values of zh, ζ
(0)
h → 0.

The relation between the variable ζh and zh is illustrated in figure 2 for several fixed

values of xB and Q2. At finite Q2 the kinematically allowed regions of zh are determined

by eqs. (2.13) and (2.14), and the boundaries between the current and target fragmentation

regions occur at ζh = ζ
(0)
h . For the production of pions, at low xB . 0.3 and high Q2 &

5GeV2 the differences between the two variables are almost negligible, and begin to be

noticeable only for the highest zh values at lower Q2 or higher xB. At these kinematics,

pions are produced in the current region for zh & 0.08 − 0.15. At high xB ≈ 0.6 and low

Q2 ≈ 1GeV2, the effects are more pronounced, with deviations of ∼ 30% as zh → 1, and

current fragmentation begins at a slightly higher zh. The effects of the kinematic lower

limit in zh [eq. (2.13)] is noticeable only at low Q2 and high xB.

For kaons, the effects at high Q2 and low xB are again negligible, although the larger

K mass enhances the differences relative to the pion at the same kinematics. In particular,

at low Q2 = 1GeV2 the lower limit on ζh is dramatically increased, and the current region

is pushed to higher values of zh. At sufficiently large xB, the phase space for K production

eventually vanishes; for Q2 = 1GeV2, for example, no kaons can be produced in the current

fragmentation region with xB & 0.66, and no kaons can be produced at all for xB & 0.8.

2.2 Collinear factorization

At leading order in the strong coupling αs, the SIDIS reaction proceeds through the hard

scattering of the virtual photon from an initial state quark with momentum k to a quark

with momentum k′ = k+ q, which then fragments to a hadron h, as illustrated in figure 3.

Higher order processes involving gluon radiation and scattering from qq̄ pairs can be con-

sidered, but for clarity of the derivation of the finite-Q2 corrections we restrict ourselves

to the leading order calculation.

– 6 –
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Figure 2. Finite-Q2 fragmentation variable ζh versus zh for the semi-inclusive production of (a)

pions, h = π and (b) kaons, h = K, at fixed values of xB = 0.3 (blue curves) and 0.6 (red curves) for

Q2 = 1 (solid curves) and 5GeV2 (dashed curves). The curves are shown only in the kinematically

allowed zh regions, and the boundaries between the current (ζh > ζ
(0)
h

) and target (ζh < ζ
(0)
h

)

fragmentation regions are indicated by the open circles.

Figure 3. Semi-inclusive deep-inelastic lepton-nucleon scattering with production of a final state

hadron h at leading order in αs. The internal momenta of the initial (k) and scattered quarks (k′)

are labeled explcitly. The intermediate state X ′ represents a nucleon with a quark removed, and

the state Y ′ results from the fragmenting parton with the hadron h removed. The dashed vertical

line represents the cut in the forward scattering amplitude.

The parton four-momenta can be parametrized, in analogy with the external variables

in section 2.1, in terms of the light-cone vectors n and n as

kµ = xp+ n̄µ +
k2 + k2

⊥

2xp+
nµ + kµ⊥, (2.18)

k′µ =
k′2 + k′2

⊥

2p−h /z
n̄µ +

p−h
z

nµ + k′µ⊥ , (2.19)

where x = k+/p+ is the light-cone momentum fraction of the nucleon carried by the struck

quark, and z = p−h /k
′− is the light-cone fraction of the fragmenting quark carried by the

– 7 –
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hadron h. The parton transverse momentum four-vectors k⊥ and k′⊥ are orthogonal to n

and n, k⊥ · n = k⊥ · n̄ = 0 and k′⊥ · n = k′⊥ · n̄ = 0, with norms k2⊥ = −k2
⊥ and k′2⊥ = −k′2

⊥.

The essence of the collinear factorization approach is to expand the hard scattering

term around “collinear” momenta k̃ and k̃′,

k̃µ = xp+ n̄µ +
k̃2

2xp+
nµ, (2.20)

k̃′µ =
k̃′2 + p2

h⊥/z
2

2p−h /z
n̄µ +

p−h
z

nµ +
pµh⊥
z

, (2.21)

where the initial and final parton virtualities k̃2 and k̃′2 are kept for generality. In this

approximation the transverse momentum of the initial parton is neglected, and the trans-

verse momentum of the final parton is taken along the direction of the hadron h, making

these collinear to the proton target and produced hadron, respectively.

Defining the partonic analog of the Bjorken scaling variable xB at finite Q2 by

x̂ = − q2

2k̃ · q
=

ξ

x

1

1− ξ2k̃2/x2Q2
, (2.22)

one can show that x̂ lies within the range x̂min ≤ x̂ ≤ x̂max, where [42, 48]

1

x̂min
=

1

xB
− 2Mmh + k̃2

Q2
,

1

x̂max
= 1 +

m2
h

ζhQ2
− k̃2

Q2

(
1− ξm2

h

xζhQ2

)
. (2.23)

Here the lower limit x̂min corresponds to the minimal mass of collinear spectator partons,

while the upper limit x̂max arises from the minimum value of the current jet invariant mass.

These limits are consistent with the limit on xB in eq. (2.4) for any k̃2 ≥ x(ζh−1)Q2/ξ, and

in the Bjorken limit the range of x̂ reduces to being between xB and 1, as required. Anal-

ogous limits can be found for the partonic fragmentation variable z, zmin ≤ z ≤ 1, where

1

zmin
=

1

ζh

(
1 +

ξ

x

k̃2

Q2

)
. (2.24)

For the practical implementation of the finite-Q2 kinematical limits, a choice of the

initial and scattered parton virtualities k̃2 and k̃′2 must be made. For the initial parton the

requirement that the collinear parton virtuality is independent of x leads to the restriction

k̃2 ≥ 0. For light, bound initial-state partons (k̃2 ≤ 0) this constrains therefore the collinear

expansion to be around k̃2 = 0. Determining the virtuality k̃′2 of the scattered parton is

generally less clear, on the other hand. For the leading order hard scattering in figure 3,

conservation of four-momentum and the condition k̃2 = 0 constrain the parton momentum

fraction x to equal ξh, where

ξh = ξ

(
1 +

k̃′2

Q2

)
. (2.25)

In order for x to respect the limits in eq. (2.23), the choice k̃′2 = m2
h/ζh was proposed in

ref. [48], giving ξh = ξ(1+m2
h/ζhQ

2). Larger k̃′2 values would also allow x̂ to fall within the

bounds in eq. (2.23); however, the above choice is the closest to the physical quark mass,

and is the one adopted in our numerical analysis here. The dependence of the calculated

cross sections on the choice of k̃′2 is explored further in section 3.

– 8 –



J
H
E
P
0
9
(
2
0
1
5
)
1
6
9

2.3 SIDIS at finite Q2

The cross section for the SIDIS process can be written as a product of hadronic (Wµν) and

leptonic (Lµν) tensors [15],

dσ

dxB dy d3ph/2Eh
=

πα2y

Q4
2MWµν Lµν , (2.26)

where α is the electromagnetic fine structure constant. The leptonic tensor can be com-

puted straightforwardly from QED,

Lµν(ℓ, ℓ
′, λ) = 2ℓµℓ

′
ν + 2ℓνℓ

′
µ + q2 gµν + 2iλ ǫµνρσ ℓ

ρℓ′σ, (2.27)

where λ is the lepton helicity.

The semi-inclusive hadronic tensor is defined in terms of matrix elements of the elec-

tromagnetic current operator Jµ between the initial state nucleon with spin S and the final

state with a hadron h and unobserved hadrons X,

2MWµν(p, S, q, ph) =
1

(2π)3

∑

X

∫
d3pX

2EX
δ(4)

(
p+ q − pX − ph

)

×〈N,S|Jµ(0)|h,X〉〈h,X|Jν(0)|N,S〉, (2.28)

where we use the shorthand notation d3pX/2EX =
∏

i∈X d3pi/2Ei, with pX the total

momentum of teh unobserved hadrons. The hadron tensor can be expressed at leading

order in αs in terms of quark-quark correlators Φq and ∆h
q , associated with the quark

distribution and fragmentation functions, respectively [38, 39, 47],

2MWµν(p, S, q, ph) =
∑

q

e2q

∫
d4k d4k′ δ(4)(k̃ + q − k̃′) Tr

[
Φq(p, S, k) γ

µ∆h
q (k

′, ph) γ
ν
]
,

(2.29)

where the sum is taken over quark and antiquark flavors q. Note that since the parton

momenta in the δ-function have been approximated by their collinear components, the

integrations over dk− d2k⊥ and dk′+ d2k′
⊥ act directly on the correlators Φq and ∆h

q .

The correlator associated with the parton distribution function is defined, in the light-

cone gauge, as [52]

Φq(p, S, k) =
1

(2π)3

∑

X′

∫
d3pX′

2EX′

δ(4)
(
p− k − pX′

)
〈N,S|ψ̄q(0)|X ′〉〈X ′|ψq(0)|N,S〉, (2.30)

where ψq is the quark field operator, and EX′ and pX′ are the energy and momenta of the

intermediate state X ′ corresponding to a nucleon with a quark removed. Similarly, for the

quark fragmentation correlator one has [52]

∆h
q (k

′, ph) =
1

(2π)3

∑

Y ′

∫
d3pY ′

2EY ′

δ(4)
(
k − ph − pY ′

)
〈0|ψq(0)|h, Y ′〉〈h, Y ′|ψ̄q(0)|0〉, (2.31)

where EY ′ and pY ′ are the energy and momenta of the state Y ′ resulting from the frag-

menting quark with the hadron h removed.
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The leading twist contributions to the SIDIS cross section can be extracted by expand-

ing the integrated correlators and selecting the terms linear in the light-cone vectors. For

the parton distribution function, one finds

Φq(x) ≡
∫

dk−d2k⊥Φq(p, S, k) =
1

2
q(x)n/ +

1

2
SL∆q(x) γ5 n/ + . . . , (2.32)

where the first and second terms define the spin-averaged, q(x), and spin-dependent, ∆q(x),

distribution functions, and the ellipsis indicates higher twist contributions [15]. The frag-

mentation function Dh
q (z) is analogously defined from the ∆h

q correlator by

∆h
q (z) ≡

z

2

∫
dk′+d2k′

⊥∆h
q (k

′, ph) =
1

2
Dh

q (z)n/ + . . . (2.33)

Inverting eqs. (2.32)–(2.33), one can write the quark distribution and fragmentation func-

tions explicitly by projecting with the appropriate Dirac operators,

q(x) =
1

2

∫
dk−d2k⊥Tr

[
γ+Φq(p, S, k)

]
k+=xp+

=
1

4π

∫
dw− eixp

+w−〈N |ψq(0) γ
+ ψq(w

−n)|N〉, (2.34)

∆q(x) =
1

2

∫
dk−d2k⊥Tr

[
γ5γ+Φq(p, S, k)

]
k+=xp+

=
1

4π

∫
dw− eixp

+w−〈N |ψq(0) γ
5 γ+ ψq(w

−n)|N〉, (2.35)

Dh
q (z) =

z

4

∫
dk′+d2k′

⊥Tr
[
γ−∆h

q (k
′, ph)

]

k′−=p−
h
/z

=
z

8π

∑

Y ′

∫
dw+ ei(p

−

h
/z)w+〈0|ψq(w

+n)|h, Y ′〉〈h, Y ′|ψq(0)γ
−|0〉, (2.36)

where ω± are light-cone coordinates. (For ease of notation we omit the Q2 dependence in

the arguments of the quark distribution and fragmentation functions.) The fragmentation

function Dh
q (z) here is defined with the standard normalization,

∑
h

∫ 1
0 dz z Dh

q (z) = 1 [47].

To compute the hadronic tensor in eq. (2.29), we can decompose the δ(4)(k̃ + q − k̃′)

function along the +, − and transverse components of the momenta. The δ-functions

for the + and − components constrain the partonic variables to x = ξh and z = ζh,

respectively. The δ-function for the transverse component forces the transverse momentum

of the produced hadron h to vanish, ph⊥ = z k′⊥ = 0. Nonzero transverse momentum

hadrons can be produced via higher order perturbative QCD processes, or from intrinsic

transverse momentum in the parton distribution functions themselves [15]. With these

constraints, the hadron tensor can then be factorized into products of parton distribution

and fragmentation functions evaluated at ξh and ζh, respectively,

2MWµν(p, S, q, ph) =
ζh
2

∑

q

e2q δ
(2)(p⊥)

(
Tr [n/γµn/γν ] q(ξh)

+ SLTr
[
γ5n/γµn/γν

]
∆q(ξh) + · · ·

)
Dh

q (ζh). (2.37)
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The main effect of the hadron masses at finite kinematics is therefore a replacement of the

Bjorken limit scaling variables xB and zh by their finite-Q2 analogs. However, since ξh
depends explicitly on mh, and ζh depends on zh and xB, the scattering and fragmentation

parts of the hadronic tensor at finite Q2 are not independent.

Contracting the hadronic tensor in eq. (2.37) with the leptonic tensor in eq. (2.27)

enables the leading order spin-averaged (σh) and spin-dependent (∆σh) SIDIS cross sections

to be written in terms of parton distributions evaluated at the new scaling variables,

σh ≡ 1

2

dσ↑↑+↓↑
h

dxB dQ2 dzh
=

2πα2

Q4

y2

1− ε
σ̄h, (2.38a)

∆σh ≡ dσ↑↑−↓↑
h

dxB dQ2 dzh
=

4πα2

Q4

y2
√
1− ε2

1− ε
∆σ̄h, (2.38b)

where the reduced unpolarized and polarized cross sections are defined as

σ̄h = Jh
∑

q

e2q q(ξh, Q
2)Dh

q (ζh, Q
2), (2.39a)

∆σ̄h = Jh
∑

q

e2q ∆q(ξh, Q
2)Dh

q (ζh, Q
2). (2.39b)

In eqs. (2.38) the arrows denote the spins of the lepton and target nucleon, and the

dependence of the functions on the scale Q2 is made explicit. In eqs. (2.38) the variable

ε =
1− y − y2γ2/4

1− y + y2(1 + 1
2γ

2)/2
(2.40)

is the ratio of longitudinal to transverse photon flux, and in eqs. (2.39) Jh is a scale

dependent Jacobian factor, Jh = dζh/dzh = (1 − M2ξ2/Q2)/(1 − ξ2M2m2
h/ζ

2
hQ

4), with

Jh → 1 at large Q2.

Note that at the maximum value of xB allowed for SIDIS [see eq. (2.4)] the finite-Q2

variable ξh satisfies ξh < ξh(xB = xmax
B ) < 1. As in the case of inclusive DIS [42], the SIDIS

cross section therefore does not vanish as xB → xmax
B , which reflects the well-known thresh-

old problem in which the leading twist structure function is nonzero for xB ≥ 1 [53–57].

Analogously, for the finite-Q2 fragmentation varialble one has ζh < ζh(zh = zmax
h ) < 1,

and since the fragmentation function does not vanish as zh → zmax
h , the perturbatively

calculated SIDIS cross section can also exceed the fragmentation threshold.

Before exploring the dependence of the SIDIS cross sections on the finite-Q2 scaling

variables in the next section, it is useful to first establish the purely kinematic corrections,

independent of the PDFs and fragmentation functions, which augment the finite-Q2 results

from their scaling limit. In figure 4 we show the zh dependence of the Jacobian factor Jh
in eqs. (2.39) at fixed values of xB and Q2 for the case of pion production (h = π). For

xB = 0.3 the factor Jh deviates very little for unity over most of the range of zh, with

an upturn only at small zh, zh . 0.1 for Q2 ≥ 1GeV2. At higher xB values the finite-

Q2 effects are more visible, with Jh spiking above unity at zh . 0.2 for xB = 0.8 and

Q2 = 1GeV2, and decreasing to ≈ 25% below unity at large zh. This behavior should be
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Figure 4. Jacobian factor Jh versus zh for pion production (h = π) at fixed values of xB = 0.3

(blue curves) and 0.8 (red curves), at Q2 = 1 (solid curves) and 5GeV2 (dashed curves). The open

circles denote the boundary between the target (small zh) and current (large zh) fragmentation

regions.

kept in mind when assessing the numerical effects of the HMCs in the cross sections in the

next section. One should also note that the upturn in Jh is almost entirely confined to

the target fragmentation region (small zh), where the validity of calculations based on the

perturbative handbag diagram in figure 3 is more questionable, and factorization in terms

of fracture functions [58–60] may be more appropriate.

3 Phenomenological implications

In this section we examine numerically the phenomenological consequences of the finite-Q2

rescaling of the SIDIS cross section derived in section 2, and explore their impact on future

hadron production experiments.

3.1 Kinematical dependence of HMCs

To disentangle the separate HMC effects in the SIDIS cross sections arising from the PDFs

and fragmentation functions, in figure 5 we illustrate the ratios of PDFs at finite Q2 to the

corresponding massless limit distributions. For a systematic comparison we consider both

the spin-averaged isoscalar q = u + d and spin-dependent ∆q = ∆u + ∆d distributions

at several fixed values of Q2 from Q2 = 1GeV2 to 20GeV2. For the spin-averaged and

spin-dependent PDFs we use the leading order CT [61] and LSS [62] parametrizations,

respectively, and evaluate the scaling variable ξh for the case of pion production, mh = mπ,

and for a typical value of ζh = 0.2. The results for other ζh values are similar, essentially

given by the PDF evaluated at a rescaled value of Q2 [see eq. (2.25)].

The most dramatic feature in the ratios is the steep rise at large xB, which sets

in at smaller xB values for decreasing Q2. The results are qualitatively similar for the

unpolarized and polarized distributions, with the rise delayed to slightly larger xB for the
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Figure 5. Ratios of (a) spin-averaged q = u+ d and (b) spin-dependent ∆q = ∆u+∆d isoscalar

PDFs to the corresponding massless limit distributions, q(0) and ∆q(0), as a function of xB at

various fixed Q2. The finite-Q2 scaling variable ξh here is evaluated for mh = mπ and ζh = 0.2.

latter. The differences between the unpolarized and polarized PDF ratios for the most part

reflect the differences in the shapes of the respective input PDFs. However, the qualitative

features of the results do not change when using other leading order distributions, such as

the unpolarized GJR [63] and polarized BB [64] parametrizations. Generally, the behavior

of the ratios observed in figure 5 is reminiscent of that found in previous studies of TMCs

for inclusive DIS [23].

For the fragmentation functions, ratios of the finite-Q2 isoscalar functions for π++π−

production to those in the massless limit D(0) are displayed in figure 6 for fixed values

of xB and Q2, using the leading order HKNS parametrization [65] for the fragmentation

functions. At xB = 0.3 the fragmentation function ratio at Q2 = 1GeV2 is enhanced by

≈ 20−30% for zh . 0.7, before rising rapidly as zh → 1. The effect is less pronounced with

increasing Q2, with a smaller enhancement of the ratio and a delayed (though even more

dramatic) rise at large zh. The fragmentation function ratios at xB = 0.8 in figure 6(b), on

the other hand, display a significantly stronger enhancement, particularly at the lowest Q2

value. Here the effect is about an order of magnitude larger, and features a striking upturn

at zh . 0.2, where the finite-Q2 fragmentation function becomes several times larger than

the high-Q2 limit. As outlined in ref. [48], this arises from the shape of the fragmentation

function at finite-Q2 kinematics. The general features of the results, however, remain

unchanged if one uses the KKP parametrization [66], for instance.

In particular, expanding the hadron mass corrected fragmentation function in a Taylor

series about the massless limit, one can write the corrected to uncorrected ratio as

D(ζh)

D(zh)
≈ 1 +

dD(zh)

dzh

∣∣∣∣
ζh

(ζh − zh)

D(zh)
. (3.1)

The zh dependence of the correction is thus determined by the negative shift in the frag-

mentation variable (ζh − zh) and by the zh slope of D(zh). Since the pion fragmentation

function is generally a decreasing function of zh at small zh, the ratio is driven upward as

zh → zmin
h , where |ζh − zh| is maximum. Note that for kaons and protons, in contrast, the
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Figure 6. Ratio of π+ + π− isoscalar fragmentation functions D to the corresponding massless

limit functions D(0) at fixed Q2 values for (a) xB = 0.3 and (b) xB = 0.8. The open circles denote

the boundary between the target and current fragmentation regions.

slope at small zh can be positive, which would lead to a suppression of the mass corrected

function at zh ∼ zmin
h . At the other extreme, in the exclusive production limit the frag-

mentation function ratio becomes divergent for the same reason as the PDFs; namely, the

functions in the scaling limit vanish as xB → 1 or zh → 1, whereas the finite-Q2 scaling

variable and the corresponding rescaled functions remain finite.

Combining the effects of the HMCs in the parton distribution and fragmentation func-

tions, in figure 7 we show ratios of the SIDIS spin-averaged and spin-dependent cross

sections with and without HMCs as a function of zh, for several fixed values of Q2 and xB.

Specifically, we consider scattering from a proton target, with the production of π+ + π−

mesons in the final state. The massless limit cross sections σ
(0)
h and ∆σ

(0)
h are defined by

taking the high-Q2 limits of the scaling variables in the arguments of the PDFs and frag-

mentation functions, σ
(0)
h ≡ σh(ξh → xB, ζh → zh) and ∆σ

(0)
h ≡ ∆σh(ξh → xB, ζh → zh).

Overall, the zh dependence of the cross section ratios follows the trends indicated in

figures 5 and 6 for the PDF and fragmentation function ratios, with strong enhancement

of the finite-Q2 cross sections at large zh, and decreasing effects at higher Q2. At the lower

xB value (xB = 0.3 in figure 7(a)), the HMC effects in the spin-dependent (thick lines) and

spin-averaged (thin lines) ratios are very similar, which reflects the qualitatively similar

shapes of the u and ∆u distributions at intermediate xB. (Note that the fragmentation

functions for π production are the same for the spin-dependent and spin-averaged cross

sections.) While small differences are visible at Q2 = 1GeV2, at the higher Q2 values the

unpolarized and polarized ratios are almost indistinguishable. The differences are more

striking at larger xB (xB = 0.8 in figure 7(b)), where the effects on the spin-averaged cross

section are somewhat larger than on the spin-dependent cross section. This stems directly

from the delayed rise above unity of the ∆q/∆q(0) PDF ratio in figure 5(b) at high xB
values compared with the corresponding q/q(0) ratio in figure 5(a).

While most of the existing SIDIS data have involved the production of charged pions,

the detection of heavier mesons and baryons can provide complementary information on
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Figure 7. Ratios of spin-averaged (σh/σ
(0)
h

, thin lines) and spin-dependent (∆σh/∆σ
(0)
h

, thick

lines) cross sections with and without HMCs for semi-inclusive π+ + π− production as a function

of zh, at fixed Q2 for (a) xB = 0.3 and (b) xB = 0.8. Note the logarithmic scale on the ordinate in

(b). The open circles denote the boundaries between the target and current fragmentation regions.

the flavor and spin structure of PDFs, as well as on the dynamics of hadronization. The

production of kaons, for instance, tags strange or antistrange quarks, and has been used

with polarized targets as an independent means of determining the ∆s distribution in

the nucleon [7, 8], and for unpolarized scattering to determine the magnitude of the s

distribution at small xB [4, 5]. In figure 8 the spin-averaged and spin-dependent cross

section ratios with and without HMCs are shown for the production of charged pions

(π+ + π−) and kaons (K+ +K−) at xB = 0.3 and Q2 = 5 GeV2. The effects are enhanced

significantly with increasing hadron mass, particularly at low zh values, mostly because of

the (1 +m2
h/ζhQ

2) factor in the ξh variable in eq. (2.25). Increasing values of m2
h/ζh shift

the argument of the PDF to higher xB, where the smaller magnitude of the distributions

effectively suppresses the cross section.

This phenomenon inherently arises from the choice of invariant mass squared k̃′2 for the

scattered quark, discussed in section 2.2. While the choice of the mass becomes irrelevant at

high Q2, the dependence on k̃′2 can be appreciable at low Q2 values, as figure 9 illustrates.

Here the spin-averaged cross section ratios computed with k̃′2 = m2
h/ζh are compared with

those for massless partons, k̃′2 = 0, as used in ref. [45]. For the production of pions, the

dependence on the quark virtuality is negligible at Q2 = 5GeV2, but becomes evident at

lower Q2 for small zh, zh . 0.5. Overall, the σh/σ
(0)
h ratio is closer to unity for the preferred

choice of k̃′2 = m2
h/ζh (see section 2.2), with greater deviations for the k̃′2 = 0 choice.

For kaon production the effects are expectedly larger, with significant dependence on

the quark virtuality at Q2 = 1GeV2 for most of the zh range. Interestingly, the sign of

the correction is different for the two choices of quark mass for zh . 0.8. By Q2 = 5GeV2

the dependence on k̃′2 is weaker, except at zh . 0.3 where visible differences persist.

These results suggest that care must be taken when extracting PDF information from

low-Q2 SIDIS data at the extremeties of the zh spectra, particularly for heavier produced
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Figure 8. Ratio of the (a) spin-averaged and (b) spin-dependent cross sections with and without

HMCs for semi-inclusive production of various hadrons h (h = π+ + π− or K+ + K−), for xB =

0.3 and Q2 = 5GeV2. The open circles denote the boundary between the target and current

fragmentation regions.

Figure 9. Ratio of spin-averaged cross sections with and without HMCs for the production of (a)

pions and (b) kaons, for different choices of the scattered parton invariant mass k̃′2 at Q2 = 1GeV2

(thick lines) and Q2 = 5GeV2 (thin lines) for xB = 0.3. The open circles denote the boundary

between the target and current fragmentation regions.

hadrons such as kaons. Caution must also be exercised when including data in the target

fragmentation region at small zh, where factorization based on the use of fragmentation

functions becomes more questionable. In this region utilization of data may require the

fracture functions formalism as discussed in refs. [58–60].

3.2 Mass corrections for specific experiments

The relevance of the HMCs to future SIDIS experiments is illustrated in figure 10, where

the difference between the finite-Q2 and Bjorken limit cross sections,

δ(HMC)σh = σh − σ
(0)
h , (3.2)
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Figure 10. Relative effect of HMCs on the spin-averaged SIDIS cross section as a function of zh for

π production from protons at kinematics typical of future 11GeV Jefferson Lab experiments [67–69].

The relative HMC correction δ(HMC)σh/σh is evaluated for each of the three xB values (xB =

0.275, 0.575 and 0.725) at two fixed values of Q2 (indicated in the legend) from 1.5GeV2 to 9GeV2.

is evaluated relative to the finite-Q2 cross section at kinematics typical of planned 11GeV

Jefferson Lab experiments [67–69]. The cross sections are computed using the same spin-

averaged PDF (CT [61]) and fragmentation function (HKNS [65]) parametrizations dis-

cussed in section 3.1 above.

The effects are pronounced mostly at large zh, where the ratio of uncorrected to cor-

rected cross sections σ
(0)
h /σh → 0. This is directly correlated with the behavior of the

fragmentation function ratio D/D(0) in figure 6, which diverges as zh → 1 because at finite

Q2 the fragmentation variable ζh < 1 at zh = 1. The effects at lower zh are stronger with

increasing xB and with decreasing Q2. In the range 0.3 . zh . 0.6, which is typical for the

coverage expected in the future experiments, the HMCs are . 10% at xB = 0.275 (where

the corresponding Q2 is between 1.5 and 3.5GeV2), but increase to ≈ 40% at xB = 0.725

(for Q2 between 7.5 and 9GeV2).

The effect of HMCs on the actual (reduced) spin-averaged σ̄h as well as spin-dependent

∆σ̄h cross sections is shown in figure 11, where the cross sections are calculated at the same

kinematics as in figure 10. The impact of HMCs on the cross sections are more pronounced

for increasing xB and decreasing Q2.

For spin-dependent scattering, the effects on the semi-inclusive polarization asymmetry

Ah
1 can also be quantified by defining the difference with respect to the massless limit

asymmetry A
h(0)
1 ,

δ(HMC)Ah
1 = Ah

1 −A
h(0)
1 , (3.3)

where (neglecting the transverse g2 contribution) Ah
1 = Ah

‖/D. Here Ah
‖ = ∆σh/2σh is the

parallel asymmetry, and D = (1− (1− y)ε)/(1 + εR) is the photon depolarization factor,

with R the ratio of longitudinal to transverse photoproduction cross sections. At leading
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Figure 11. Effect of HMCs on the (a) unpolarized and (b) polarized SIDIS cross sections for π+

production from protons at typical 11GeV Jefferson Lab kinematics [69]. The cross sections with

(solid lines) and without (dotted lines) are evaluated at selected xB (and corresponding Q2) values,

xB = 0.275 (Q2 = 1.5GeV2), xB = 0.575 (Q2 = 3.5GeV2), and xB = 0.725 (Q2 = 7.5GeV2).

order, the polarization asymmetry is then given in terms of the ratios of sums of polarized

and unpolarized PDFs,

Ah
1 =

√
1− ε2

D

∑
q e

2
q ∆q(ξh, Q

2)Dh
q (ζh, Q

2)
∑

q e
2
q q(ξh, Q

2)Dh
q (ζh, Q

2)
, (3.4)

where the kinematic prefactor
√
1− ε2/D =

√
1 + γ2/(1 + γ2y/2). In the Bjorken limit

this becomes unity, but at finite Q2 it represents the projection of the longitudinal lepton

polarization along the virtual photon direction, cos θSL
= D/

√
1− ε2, where θSL

is the

angle between the lepton and photon spin vectors.

The corrections to the asymmetry δ(HMC)Ah
1 as well as to the actual Ah

1 asymmetry are

shown in figure 12 as a function of zh for the production of π+ mesons from a proton target,

at fixed xB and Q2 values corresponding to planned 11GeV Jefferson Lab experiments [69].

At low xB values the differences are very small except at very small zh, where the effects

increase as zh → 0. As for the spin-averaged cross sections in figure 10, the effects increase

with increasing xB and with decreasing Q2. At the highest xB value, xB = 0.725, the

asymmetry is reduced by ≈ 0.03 for zh & 0.3. If the asymmetry were to approach unity in

the xB → 1 limit, this would amount to a correction of ≈ 3%− 4%. Somewhat larger cor-

rections are obtained using the GJR [63] and BB [64] PDF parametrizations, although for

this combination the Ah
1 asymmetry is not guaranteed to respect the positivity constraint

at large xB. On the other hand, any dependence of the HMCs on the input PDFs and

fragmentation functions is in principle artificial, since in the actual global analyses of SIDIS

data the distributions would be determined uniquely and self-consistently by implementing

the hadron mass corrected expressions in eqs. (2.38) directly.
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Figure 12. Effect of HMCs on the SIDIS polarization asymmetry Ah
1 for π+ production from

protons, expressed as (a) relative shift δ(HMC)Aπ
1 and (b) effect on the asymmetry directly. The

asymmetries are evaluated at typical 11GeV Jefferson Lab kinematics [69], for several values of xB

and Q2, as in figure 11.

4 Conclusion

With the imminent completion of the 12GeV upgrade of Jefferson Lab, and with ongoing

programs at existing facilities, a new generation of SIDIS experiments will vastly improve

our understanding of the spin and flavor decomposition of parton distributions in the nu-

cleon, and explore the relatively new domain of transverse momentum dependent parton

distributions. A full utilization of the new data will require that effects associated with

kinematical constraints at finite energy are properly taken into account. Following earlier

work which studied the dependence of unpolarized SIDIS cross sections on the masses of

hadrons in the initial and final states [46–48], in this work we have presented a comprehen-

sive analysis of hadron mass corrections to both spin-averaged and spin-dependent cross

sections and asymmetries at finite values of Q2.

Using the framework of collinear factorization, we have derived formulas for SIDIS cross

sections in the presence of HMCs, which at leading order in αs result in a rescaling of the

PDFs in terms of the modified Nachtmann variable ξh and of the fragmentation functions

in terms of the finite-Q2 fragmentation variable ζh. Our results respect all kinematical

limits at finite Q2, and reproduce the standard expressions in the Bjorken limit. An

interesting feature of the modified formulas is that, in the presence of HMCs, the parametric

dependence on the scattering and fragmentation variables in the parton distribution and

fragmentation functions becomes kinematically intertwined. While this complicates the

analysis of SIDIS data in certain regions of kinematics, the effects are calculable within our

framework.

We have quantified the hadron mass effects numerically as a function of the kinematic

variables xB, zh and Q2 in order to determine the regions where the corrections are most

relevant. Generally, the HMCs are strongest at large xB and low Q2 (as for target mass

corrections in inclusive DIS), and for large as well as very low values of the fragmentation

variable zh. The effects are also more dramatic for heavier hadrons such as kaons than
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for pions at the same kinematics. Extending the previous analysis of mass corrections in

unpolarized SIDIS [48], we have also examined the dependence of the HMCs on the choice

of scattered parton virtuality, k̃′2. In some cases the uncertainty due to this choice is quite

significant, particularly at small values of Q2 and low zh for pions, and over a larger zh
range for kaons, where the correction is observed to change sign.

To illustrate the importance of HMCs in practical applications, we have computed the

corrections to SIDIS cross sections and polarization asymmetries that would need to be

applied at kinematics relevant to upcoming experiments at Jefferson Lab [67–69]. Here the

xB and Q2 are necessarily correlated, so that usually the data bins at small xB correspond

to lower Q2 values, while at large xB the Q2 is typically higher. For unpolarized pion

production, the HMCs are strongest at large zh, for all kinematics. At intermediate zh
values the corrections at low xB are relatively small, . 10%, but increase to ∼ 40%−50% at

higher xB (xB = 0.725), even at moderately large Q2 (Q2 ≈ 9GeV2). Qualitatively similar

behavior is observed for the semi-inclusive polarization asymmetry Ah
1 , which receives larger

HMCs at higher xB values, although there is stronger sensitivity to the specific behavior of

the input PDFs. Overall, our analysis suggests that mass corrections may be an important

ingredient in future analysis of SIDIS data from facilities such as Jefferson Lab, especially

at high values of xB, and particularly for hadrons heavier than the pion.

An immediate application of the results derived here will be in upcoming global spin

PDF analyses, such as by the JAM Collaboration [31], which aims to fit an expanded set

of high-energy scattering data, including SIDIS, down to Q2 = 1GeV2. Future theoretical

development of this work should include extending the calculation to next-to-leading order

in αs, which will necessitate consideration of hadron production at nonzero transverse

momenta, ph⊥. The work can also be extended to other types of distributions measured

in various single-spin asymmetries in SIDIS reactions, which provide information not only

on the xB and zh distributions but also on the transverse momentum of the partons.
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