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Microorganisms and zooplankton are both important components
of aquatic food webs. Although both inhabit the same environ-
ment, they are often regarded as separate functional units that are
indirectly connected through nutrient cycling and trophic cascade.
However, research on pathogenic and nonpathogenic bacteria has
shown that direct association with zooplankton has significant
influences on the bacteria’s physiology and ecology. We used strat-
ified migration columns to study vertical dispersal of hitchhiking
bacteria through migrating zooplankton across a density gradient
that was otherwise impenetrable for bacteria in both upward and
downward directions (conveyor-belt hypothesis). The strength of
our experiments is to permit quantitative estimation of transport
and release of associated bacteria: vertical migration ofDaphniamag-
na yielded an average dispersal rate of 1.3 × 105·cells·Daphnia−1·
migration cycle−1 for the lake bacterium Brevundimonas sp. Bidirec-
tional vertical dispersal by migrating D. magna was also shown for
two other bacterial species, albeit at lower rates. The prediction that
diurnally migrating zooplankton acquire different attached bacterial
communities fromhypolimnionandepilimnionbetweendayandnight
was subsequently confirmed in our field study. In mesotrophic Lake
Nehmitz, D. hyalina showed pronounced diel vertical migration along
with significant diurnal changes in attached bacterial community com-
position. These results confirm that hitchhiking on migrating animals
canbean importantmechanism for rapidly relocatingmicroorganisms,
including pathogens, allowing them to access otherwise inaccessible
resources.

bacterial dispersal | conveyer-belt hypothesis | migration

Microorganisms are the major component of the earth’s bio-
diversity and indispensable in organic-matter cycling in

aquatic systems (1). Understanding their distribution is crucial to
elucidate evolutionary forces governing microbial community dy-
namics. The traditional view in microbiology that “everything is
everywhere, but the environment selects” (2) assumes high dis-
persal rates of microorganisms, leading to their ubiquity. Sup-
porting this view, the same species or lineages of pro- as well as
eukaryoticmicroorganisms are found globally (3–5), although these
findings are still debated (6) because of the difficulty in discrimi-
nating cryptic taxa using 18S and 16S rRNAmarker genes. Studies
in European lakes showed that bacterial dispersal is not limited,
even at large spatial scales, and that fast bacterial growth rates fa-
cilitate species sorting along environmental gradients (7). Dispersal
rates of bacteria in shallow and well-mixed lakes can be sub-
stantially increased by atmospheric transport (8, 9), and airborne
dispersal is likely responsible for the global distribution of closely
related thermophiles in hot springs (10). Aerial and terrestrial
animals can also help disperse bacteria among different surface
waters. For example, all lakes studied by Van der Gucht et al. (7)
are located along the major European route of migrating birds,
which fostersmicrobial exchange between these lakes, releasing the
bacterial communities from local isolation.
Rapid species sorting along environmental gradients has also

been shown using multiple molecular markers. For instance, Wu
and Hahn (11) found clear differences in community composi-
tion of limnetic Polynucleobacter necessarius between different
habitats but no large-scale geographic patterns within similar
habitat types. The same is true for endosymbiotic P. necessarius
strains that are host-specific and hence, follow the distribution of

their ciliate host (12). In contrast, experiments using different
inocula from several Swedish lakes found a major influence of
the source community on establishment of bacterial populations
under identical environmental conditions (13, 14). The latter
suggests that low dispersal rates may prevent bacterial commu-
nity homogenization, even within short geographical distances.
This might also be true within large water bodies where strati-
fication limits vertical mixing of bacteria. Within a stratified
water column, exchanges between epipelagic bacteria and deep-
water bacteria can be facilitated by sinking particles (15, 16), but
this mechanism works primarily in the downward direction.
Because many zooplankton species harbor high numbers of

bacteria on and inside their bodies (17–19) and perform diel
vertical migration, they are expected to move attached bacteria
through the water column on a daily basis. However, unless the
zooplankton repeatedly acquire and release viable bacteria be-
tween the different water masses, zooplankton migration will
have no effect on vertical dispersal and relocation of the bacte-
rial populations. This is the essence of our conveyor-belt hy-
pothesis (Fig. 1), which states that hitchhiking bacteria actively
associate and dissociate from a migrating organism, leading to
vertical dispersal of the bacterial population through otherwise
impassable density discontinuities in both upward and downward
directions. This dispersal mechanism can affect not only micro-
bial dynamics in general but also the transmission of pathogens
in the environment.
Epipelagic and deeper waters are often characterized by large

differences in environmental conditions. Vertical migration of
higher organisms could allow hitchhiking bacteria to exploit fa-
vorable conditions in each water body, such as high concen-
trations of oxygen and algal-derived organic matter in the upper
waters and high concentrations of inorganic nutrients in deeper
waters. Hitchhiking on migrating organisms would also increase
exchanges and interactions between different bacterial, viral, and
grazer communities spatially separated by stratification (20).
To provide a quantitative estimate of bacteria dispersal through

this conveyor-belt mechanism, we used migration columns with
stable stratification separating two water bodies (slightly different
in salinity) and measured the transport of bacteria by vertically
migrating zooplankton across the density discontinuity in both
upward and downward directions. Three bacterial species were
isolated from oligotrophic Lake Stechlin (Brevundimonas sp.,
Pseudonocardia sp., and Pimelobacter sp.) and labeled with aGFP;
GFP-labeled bacteria were added to either the upper water layer
(downward transport experiments) or the lower water layer (up-
ward transport experiments) of the migration columns, which
contained different numbers of Daphnia magna. To stimulate
zooplankton migration across the pycnocline, the upward and

Author contributions: H.-P.G. and K.W.T. designed research; H.-P.G., C.D., F.L., and K.W.T.
performed research; H.-P.G., C.D., F.L., and K.W.T. analyzed data; and H.-P.G., C.D., F.L.,
and K.W.T. wrote the paper.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.

Freely available online through the PNAS open access option.
1To whom correspondence should be addressed. E-mail: hgrossart@igb-berlin.de.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1000668107/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1000668107 PNAS | June 29, 2010 | vol. 107 | no. 26 | 11959–11964

M
IC
RO

BI
O
LO

G
Y

mailto:hgrossart@igb-berlin.de
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1000668107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1000668107/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1000668107


downward movements of the phototactic daphnids were guided
by a focused light beam along the side of the migration columns.
The abundance of GFP-labeled bacteria in the receiving end of
the water column was counted through multiple migration cycles.
Release of bacteria from precolonized daphnids into the sur-
rounding water was further confirmed in a separate experiment.
To complement our experimental observations, field samples
were collected to determine diel differences in bacterial com-
munity composition (BCC) on migrating zooplankton.

Results and Discussion
In all upward transport trials with Brevundimonas sp. (Fig. 2), no
significant transport was detected in the control column (no
D. magna) (Table S1), but when D. magna migrated, Brevundi-
monas sp. was effectively transported upward. Likewise, in the
downward transport trials (Fig. 2), Brevundimonas sp. abundance
in the lower layer increased much faster when D. magna was
present, although there was a significant but small increase of
Brevundimonas sp. in the lower layer of the control columns over
time (Table S1). Comparison of all regression slopes (non-
significant slopes were treated as zero) using two-way ANOVA
yielded an overall significant model (P < 0.001). Post hoc pair-
wise comparisons using Tukey’s test showed a significant effect
of the number of daphnids (80 daphnids > 20 daphnids > con-
trol; P < 0.005) and direction of transport (downward > upward;
P < 0.001). The also significant interaction between number of
daphnids and direction (P < 0.001) indicates a differential in-
fluence of the dispersal direction with a high or low number of

daphnids. For identical numbers of D. magna, Brevundimonas sp.
was dispersed 1.4–1.8 times faster in the downward direction
than in the upward direction.
Vertical transport of bacteria by migrating D. magna was also

shown for two other bacterial species but at lower rates: both
Pseudonocardia sp. and Pimelobacter sp. were effectively dis-
persed across the pycnocline in both upward and downward
directions relative to controls (Table S2). Again, downward
dispersal was 1.9 and 1.4 times faster than upward dispersal for
Pseudonocardia sp. and Pimelobacter sp., respectively (compari-
son of two regression slopes by t test; P < 0.001 for Pseudono-
cardia and P < 0.05 for Pimelobacter). Differences in dispersal
rates among the three bacterial species may reflect their different
abilities to attach and detach, their likelihood to be ingested,
their chance of surviving digestion, and their growth rates while
attached to the host. We did observe that Pimelobacter sp. at-
tached to the body surface of D. magna at a much lower density
(mean ± SD; 1,992 ± 425 cells·mm−2) than Brevundimonas
sp. (5,408 ± 582) and Pseudonocardia sp. (7,108 ± 1,181).
Data from the migration-column experiments showed that,

although small and limited in their own motility, bacteria are
able to travel and cross aquatic boundaries by hitchhiking on
migrating organisms, which thus facilitates exchanges between
separate microbial communities. Unlike slowly sinking aggre-
gates and other detritus that transport bacteria primarily in the
downward direction (15), motile and migrating hosts can cover
long distances rapidly and disperse bacteria in all directions re-
peatedly and effectively. This dispersal mechanism would be

Fig. 1. Transport and dispersal of bacteria in the water column. Free bacteria (1) may attach to suspended matters such as microgels (2) and particles (3) that
form large sinking aggregates (4) and transport the bacteria to deeper water. Free bacteria may also be ingested by grazers and subsequently, released as
part of the fecal matter (5), which also helps transport the bacteria to deeper water. These mechanisms work primarily in the downward direction. Alter-
natively, free bacteria may attach to large and motile organisms (6), which, through horizontal and vertical migration, transport the bacteria across aquatic
boundary layers, such as thermo-, chemo-, and pycnoclines, that are otherwise impassable for the bacteria. Unlike passively sinking aggregates, large motile
organisms can cover long distances in a short time and transport bacteria in both downward and upward directions. As such, migrating organisms function as
a conveyor belt within the water column to facilitate the dispersal and exchanges of bacteria between isolated water masses.
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particularly important for exchanging bacteria between layers in
water bodies with permanent or seasonal stratification.
In our experiments, there are at least two means by which

D. magna disperse bacteria bidirectionally: (i) bacteria actively
attach to the exterior surfaces of the animal in one water body and
then detach in another water body, and (ii) bacteria ingested by
the animal in one water body survive digestion and are released
through egestion into another water body. The latter mechanism
requires that the bacteria survive digestion (21). Because our
GFP-labeled bacteria cease to fluoresce shortly after death, our
results represent the dispersal of mainly live bacteria. GFP-la-
beled bacteria were observed both on the carapace and inside the
gut of D. magna (Fig. S1), which confirms that both dispersal
mechanisms were acting simultaneously. Ingested bacteria may
remain aggregated on defecation, evidenced by the presence of
some microaggregates of bacteria in the columns with Daphnia;
this gives them a higher sinking rate than individual cells, resulting
in higher downward transport rate than upward transport rate.
Although specific rate measurements of the two dispersal

mechanisms are not available, we estimate and compare the
rates based on generalized models from the literature: the
clearance rate of ambient bacteria caused by attachment can be
estimated according to Kiørboe (22) as 4π × D × a, where D is
the diffusion coefficient for motile bacteria (10−6–10−5 cm2·s−1)
and a is the equivalent spherical radius for D. magna, which is
approximated to be 0.15 cm. This yields a clearance rate of 0.2–
1.6 mL·Daphnia−1·d−1 because of direct attachment. In com-
parison, clearance rate of ambient bacteria caused by filtration
can be estimated from the daphnid’s body length (L = 3 mm) as
12.9 × L1.545 (23), which is 70.5 mL·Daphnia−1·d−1. This calcu-
lation suggests that ingestion/defecation is potentially more ef-
ficient than attachment/detachment in dispersing bacteria.
To test how fast externally and internally attached bacteria

were released into the surrounding water, we transferred
D. magna precolonized with Brevundimonas sp. into bacteria-free
water and measured the increase of bacteria in the surrounding
water over time. The observed release rate can be described by
the equation Y = 12,139 (1 − e−0.033X), where Y is number of
cells released per animal and X is time in minutes (r2 = 0.93; P <

0.0001). This equation is consistent with the exponential decay
function for bacterial detachment from marine snow particles
(24) and suggests that a constant fraction of the attached bac-
terial population is released from the daphnid per unit of time.
The exponential factor of 0.033 gives an average residence time
of ca. 30 min for a bacterium on the daphnid, which is on par
with the zooplankton’s gut passage time at our experimental
temperature (25) and the average searching time for highly
motile bacteria to encounter a particle in the water column (24).
Using this equation, we estimated a release rate of 1.2 ×
104·cells·Daphnia−1·migration cycle−1 (120 min).
We independently calculated the release rate using the migration-

column experimental data as slope of regression line (cells·mL−1·mi-
gration cycle

−1
) × volume (3,000 mL) ÷ number of D. magna, which

yields an average release rate of 1.3 × 105·cells·Daphnia-1·migration
cycle−1 for Brevundimonas sp. Because ≥10 times higher con-
centrations of D. magna were used in the release experiment
than in the migration columns, the chance for the bacteria to
reattach or be reingested was much higher. The larger surface-
to-volume ratio of the container used in the release experiment
relative to the migration columns would also lead to higher
bacterial attachment rates to the container surfaces, resulting in
the lower observed release rates.
Both laboratory approaches independently showed thatD. magna

released a constant fraction of the attached bacteria per unit time.
Together, these observations indicate that D. magna acquired
(through direct attachment or ingestion) bacteria in one layer and
released them into another layer at similar rates. The consequence
would be an active exchange between the attached and the ambient
bacterial communities, resulting in diurnal changes in bacterial
community composition associated with a vertically migrating zoo-
plankter. This prediction was subsequently confirmed in our field
study in mesotrophic Lake Nehmitz. The water column of Lake
Nehmitz was thermally stratified at the time of our study such that
the water temperature was 21 °C in the epilimnion and<7 °C in the
hypolimnion (Fig. 3A). D. hyalina showed a strong diel vertical
migration: it was absent from the epilimnion at midday but
appeared there athighabundanceatmidnight.Denaturinggradient
gel electrophoreis (DGGE) analysis showed that the daphnids
hosted very different bacterial communities between day and night
(Analysis of Similarities [ANOSIM], R= 0.4; P= 0.001) and when
they resided at different depths (ANOSIM, R= 0.174; P= 0.001)
(Fig. 3 B and C).
Recently, Van der Gucht et al. (7) concluded that “. . .bacterial

taxa need not to be everywhere at all times to yield the observed

A B

C

Fig. 3. (A) Water-temperature profile for Lake Nehmitz and relative vertical
distribution of D. hyalina at midday and midnight. (B) Cluster analysis of
DGGE banding patterns of bacterial communities on D. hyalina collected at
different depths and times of the day. (C) ANOSIM analysis testing for dif-
ferences in bacterial community composition on D. hyalina collected at dif-
ferent depths and time (details in Text).

Fig. 2. Upward (Left) and downward (Right) transport of Brevundimonas
sp. in migration columns with different numbers of D. magna (● = 0; ▼ = 20;
■ = 80). D. magna completed one migration cycle (downward + upward)
across the pycnocline every 2 h. Error bars represent SEs of 10 bacterial
counts. Numbers next to lines are slopes of linear regressions (P < 0.05). NS,
not significant. Full statistics are provided in Table S1.
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patterns: it is sufficient that low but sustained or regular dispersal
is coupled with very efficient tracking of environmental conditions
through local population dynamics.” Adding to their conclusion,
our study provides a quantitative estimate of bacterial dispersal
through migrating zooplankton and shows that bacteria may ex-
ploit resources in different water layers by hitchhiking on large
migrating organisms. Daphnid’s size, physiology, and abundance
as well as environmental conditions and distances in lakes vary
spatially and temporally, which may affect the rate functions of
ambient and attached bacteria. Therefore, generalization of
our experimental results should be done with care. In natural
environments with diverse species of zooplankton and other
motile organisms, dispersal of hitchhiking bacteria will not be
uniform and can occur in different directions (vertical vs. hor-
izontal), between different water bodies (littoral vs. pelagic
zone; epipelagic vs. deeper waters), and on different temporal
(diel vs. seasonal migration) and spatial scales (millimeter to
kilometer scale).
The importance of zooplankton as carrier has been shown for

pathogenic bacteria, most notably Vibrio spp. (26). However, the
significance of zooplankton association goes beyond pathogenic
bacteria, because zooplankton harbors very diverse bacterial
phylotypes (19) in great abundances. For example, a single zoo-
plankter can harbor up to 109 bacteria (27, 28), which is equivalent
to or higher than ambient bacterial concentrations. With 10 zoo-
plankters·L−1, not uncommon for lakes during the growth season
(29), up to 1010 bacteria/L could be associatedwith the animals. The
volume of Lake Stechlin, Germany, is 9.7 × 1010 L, with the epi-
limnion accounting for 40% of its volume in the summer. Assuming
a population density of 10 zooplankter·L−1 (29) and a dispersal rate
of 1.3 × 105·cells·zooplankter−1·migration cycle−1, dispersal by mi-
grating zooplankton would replace about 1–2%·d−1 of the ambient
bacteria in both epi- and hypolimnion. Although, based on our
calculations, the redistribution of cells by migrating zooplankton
seems to be small, it serves as a mechanism to inoculate a water
body with bacteria from a remote source and allows bacteria to
proliferate in an otherwise inaccessible environment.
In oceanic environments, many zooplankton species perform

strong diel, seasonal, or ontogenetic vertical migration, some-
times up to thousands of meters (30, 31). They may, therefore,
transport and disperse bacteria over a vast distance, affecting
the ecology and physiology of even deep-sea microbes. There are
other examples where bacteria use migrating organisms as vectors
to efficiently exploit favorable growth conditions of even distant
locations: the cave-dwelling amphipods of the genus Niphargus
efficiently transport chemoautotrophic, sulfur-oxidizing bacteria
of the genus Thiothrix all over the cave (32). The amphipods are
even able to place the bacteria at the most favorable growth
conditions along the chemical gradient on top of the anoxic bot-
tom layer of the cave (32).
The life history of hitchhiking bacteria is inherently linked to

that of their hosts, whereby bacteria growth and dispersal are
directly influenced by the hosts’ physiology and behavior (18, 33).
High dispersal rates of aquatic bacteria through hitchhiking would
allow for rapid species sorting along environmental gradients (7).
Long-range migration of hosts may also help spread pathogens
across a broad geographical range, even among otherwise isolated
water masses. Hence, dispersal rate plays a key role in deter-
mining community structure and function (e.g., productivity)
over ecological as well as evolutionary time scales (34). Ecolo-
gical and microbiological studies should take this important re-
lationship into consideration to understand the full extent of
microbial processes and evolutionary potential in aquatic and
other ecosystems.

Materials and Methods
Migration Columns. Experiments were conducted in transparent Plexiglas
cylindrical columns 120 cm tall and 10 cm inner diameter. A sampling valve

was affixed to the side 25 cm from the bottom of each column. To test that
a stable stratification could be maintained in the migration columns, the
columns were first filled to one-half with freshwater (0 psu; 15 °C). There-
after, an equal amount of slightly saline water (2 psu; 5 °C) with food color
(to aid visual observation) was slowly added through a siphon to the bottom
to slowly displace the freshwater layer upward. After filling the columns, the
siphon was slowly retrieved without breaking the stratification, as indicated
by persistent color contrast at the pycnocline. The columns were allowed to
equilibrate to the experimental temperature (21 °C), and both water layers
remained well-separated for up to 1 wk, as indicated by the color contrast.
This test confirmed that a stable density discontinuity could be maintained
for an extended time, mimicking a stratified lake water column. Before each
experiment, the columns were thoroughly cleaned with research-grade hy-
pochlorite solution followed by several rinses with deionized water to
remove all organic matter and bacteria.

Sampling of Water. Experimental water was taken in early July 2009 from the
epilimnion of Lake Stechlin, an oligotrophic lake in northeastern Germany.
The water was sequentially filtered through a 22-μm nylon sieve, a 5-μm
polycarbonate membrane filter, and a 0.2-μm Sterivex cartridge (Millipore)
to remove ambient bacteria and particles. The water was then split into two
portions; to one portion, NaCl was added to increase the salinity to 2 psu.
The water was kept at 5 °C in the dark until use, usually within 24 h.

Zooplankton. The freshwater cladoceran D. magna, originating from a mono-
clonal culture, was kept in M4 medium (35) and fed with a diet of yeast (36).
We picked individuals of ca. 2.5–3 mm in size for the experiments, but occa-
sionally, smaller individuals were included. Preliminary tests confirmed that
D. magna tolerates a salinity of 2 psu without any noticeable adverse effects.
The animals used in this study were positively phototactic such that we were
able to control their vertical movement by placing a small and focused light
source to the side of the migration column. We are aware that this behavior
was opposite to the negatively phototactic migration pattern normally ob-
served in nature (37), but for the purpose of this study, it was only necessary to
manipulate the animals’ vertical movement, regardless of whether they
responded positively or negatively to light. The animals were acclimated to
filtered Lake Stechlin water (21 °C) for several hours before each experiment.

Bacteria Labeling with GFP. Fresh zooplankton were collected from Lake
Stechlin and washed with sterile water to remove loosely attached bacteria.
The animals were then streaked out on agar plates (1.5%) with lactose broth
(DEV) medium (10 g peptone·L−1, 10 g meat extract·L−1, 5 g NaCl·L−1). The
resultant colonies were picked and streaked out on new DEV agar plates.
Pure isolates were transferred and grown in liquid DEV medium. At expo-
nential growth, bacteria were harvested by short centrifugation (8,000 × g
for 6 min), heat shocked at 42 °C for 1 min, and inoculated with extracted
GFP plasmids from Escherichia coli. Cells with a GFP plasmid were grown and
selected in liquid DEV medium containing the antibiotics erythromycin, be-
cause a gene for erythromycin resistance was present on the GFP plasmid
(38). After 1 d of growth, we checked the bacteria under an epifluorescence
microscope for their fluorescent signal. With this procedure, we isolated
three bacterial pure cultures from the zooplankton and successfully labeled
them with the GFP. Sequencing of their 16S rRNA gene revealed a 99–100%
similarity to Brevundimonas sp. (99% similarity to DQ825663), Pseudono-
cardia sp. (99% similarity to EU741109), and Pimelobacter sp. (100% simi-
larity to AY509240).

Upward Transport of Brevundimonas sp. All migration-column experiments
were conducted inadark roomat 21 °C. Three columnswerefirstfilledwith 3 L
of the filtered lake water (15 °C), and 4 L of the saline water (5 °C) was slowly
added through a siphon to the bottom. The columns were allowed to equil-
ibrate to the room temperature, and concentrated aliquots of the bacterial
culture, free of growth medium, were injected with syringes through the
sampling valves to the lower layer for an initial concentration of 1.6 × 105

cells·mL−1.D.magnawas addedwith awide-mouth pipette to the upper layer
of two of the columns (20 and 80 animals, respectively). The column without
D. magna was used as control. A small light source was placed near the bot-
tom of each column, including the control, to attract the animals to the lower
layer. Initial samples (20 mL) were taken with pipettes from the top layer
about 3 cm below the surface. After 1 h, the light source was moved to near
the top of the columns to attract the animals to the upper layer. The light
source was alternated between upper and lower positions every 1 h, and
samples were taken from the upper layer every 2 h. The experiment lasted for
8 h (four migration cycles) and was repeated two times using new water,
bacteria, and Daphnia. Water samples were filtered onto black 0.2-μm poly-
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carbonate membrane filters (Whatman), and the GFP-labeled bacteria were
counted using a Zeiss epifluorescence microscope with a blue filter set
(475-nm excitation and 530-nm emission).

Downward Transport of Brevundimonas sp. The setup was similar but with
a few differences: each column was first filled with 4 L of the filtered lake
water, and 3 L of the salinewaterwas slowly added to the bottom. Aliquots of
the bacterial culture were added to the upper layer (1.6 × 105 cells·mL−1; final
concentration). D. magna was added to the upper layer of two of the col-
umns (20 and 80 animals, respectively). Initial samples (20 mL) were taken
from the bottom layer through the sampling valves (>10 cm below the
pycnocline). The light source was alternated between upper and lower
positions every 1 h, and samples were taken from the bottom layer every
2 h. The experiment was repeated two times using new water, bacteria, and
D. magna.

Transport Experiments with Other Bacterial Species. To verify that the ob-
served vertical transport of Brevundimonas sp. by migrating daphnids was
applicable to other bacterial species, we repeated the upward and down-
ward transport experiments with Pseudonocardia sp. and Pimelobacter sp.
Experimental designs were the same as described above with the exception
that 40 D. magna were used in each treatment, and the experiments were
conducted only one time.

Release Experiment with Brevundimonas sp. To provide additional evidence
that D. magna releases previously attached bacteria when moved to sterile
filtered lake water, we took 40 animals that had been previously colonized by
Brevundimonas sp. for 1 d and transferred them to 150 mL of sterile-filtered
Lake Stechlin water in an Erlenmeyer flask. A 10-mL aliquot was drawn from
the surrounding water at 0, 10, 30, 60, and 120 min for bacterial counts.

Field Sampling. Field sampling was conducted in early July 2008 in Lake
Nehmitz, a mesotrophic lake connected to Lake Stechlin through a narrow
artificial channel. The sampling station was 19 m deep with a thermocline at
ca. 6 m. The zooplankton community was dominated by D. hyalina at the
time of the study. Zooplankton within the epilimnion (0–4 m) and hypo-
limnion (12–16 m) were sampled with an open-close net at midday, sunset,
sunrise, and midnight. Temperature profiles were measured with a Wissen-
schaftlich Technische Werkstätten (WTW) probe to determine the exact

position of the thermocline. Collected zooplankton were concentrated onto
200-μm meshes on board, rinsed with deionized water to remove loosely
attached bacteria, and kept in Petri dishes on ice. D. hyalina was picked
individually, briefly rinsed in sterile deionized water, and transferred to
Eppendorf vials for DGGE (15 animals per vial). The vials were kept at −20 °C
until DNA extraction. Extraction of DNA was done according to Zhou et al.
(39), and parts of the 16S rDNA were amplified using the primers 341f-gc
and 907r. Thereafter, DGGE was run for 20 h at 100 V with a 7% acrylamide
gel and a denaturing gradient of 40–70%. After staining with SybrGold, gels
were illuminated by UV and photographed with a digital camera.

Data Analysis. For the upward and downward transport experiments with
Brevundimonas sp., linear-regression functions were fitted to the data, and
the significance level for the y intercept and slope was set at P = 0.05. The
slopes of the regressions, representing the dispersal rates, were compared
with two-way ANOVA, and number of daphnids and dispersal directions was
independent factors. Tukey’s test was used for posthoc comparisons. Be-
cause experiments with Pseudonocardia sp. and Pimelobacter sp. were done
only one time with one abundance of D. magna, t test was used to compare
the linear-regression slopes between upward and downward transport
experiments. For bacteria-release experiment, an exponential function with
maximum was fitted to the data at a significance level of P = 0.05.

For the field experiment, DGGE banding patterns of epilimnion and hy-
polimnion samples and different time points were compared with cluster
analysis using Dice coefficient and the program GelComparII. Afterward, the
similarity matrix was loaded into the software Primer6 (Primer-E Ltd.) with
Analysis of Similarities (ANOSIM) for differences between sampling depth
and time.
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