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Hyperfine Anomalies in Fr: Boundaries of the Spherical Single Particle Model
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We have measured the hyperfine splitting of the 7P1=2 state at the 100 ppm level in Fr isotopes
(206g;206m;207;209;213;221Fr) near the closed neutron shell (N ¼ 126 in 213Fr). The measurements in five
isotopes and a nuclear isomeric state of francium, combined with previous determinations of the 7S1=2
splittings, reveal the spatial distribution of the nuclear magnetization, i.e., the Bohr-Weisskopf effect.
We compare our results with a simple shell model consisting of unpaired single valence nucleons orbiting a
spherical nucleus, and find good agreement over a range of neutron-deficient isotopes (207–213Fr). Also, we
find near-constant proton anomalies for several even-N isotopes. This identifies a set of Fr isotopes whose
nuclear structure can be understood well enough for the extraction of weak interaction parameters from
parity nonconservation studies.

DOI: 10.1103/PhysRevLett.115.042501 PACS numbers: 21.10.Gv, 27.80.+w, 32.10.Fn

Weak interaction studies in heavy atoms require, for their
interpretation, precise knowledge of the atomic and nuclear
wave functions. To extract nucleon-nucleon weak inter-
action couplings from the weak interaction induced parity-
violating anapole moment [1], nuclei with simple and
regular magnetic properties are desirable [2–4]. The nuclear
magnetic moment is used to benchmark nuclear structure
theories for calculating the anapole moment [3], which is a
contact field effect produced inside the finite extent of the
nucleus. Here, we explore the regularity of the magnetic
properties of a chain of Fr isotopes and find that 207–213Fr in
the vicinity of the neutron shell closure mark a range where
the nuclear structure is sufficiently tractable for standard
model tests and constraints on new physics [5].
To lowest order, the atomic hyperfine interaction can be

described using a pointlike nucleus characterized by the
magnetic dipole moment. Deviations from the pointlike
approximation of the nucleus, referred to as hyperfine
anomalies, come from considering how finite magnetic
and charge distributions affect the interaction between the
magnetization of the nucleus and the magnetic field created
by the electrons. The magnetic contribution is known as
the Bohr-Weisskopf (BW) effect [6,7]. The difference in the
nuclear charge distribution [Breit-Rosenthal (BR) effect
[8–10] ] produces very small variations between isotopes,
leaving the BW effect dominant [11,12]. As a new gen-
eration of proposed parity violation experiments in atoms

(including Fr) and molecules starts [13–19], it is important
to understand the limiting factors due to the nuclear
structure, e.g., the nuclear magnetization, for the interpre-
tation of parity-violating anapole moments [2–4].
Here, we present a systematic study of the variations of

the hyperfine splittings (HFS) in a chain of Fr isotopes. Our
measurements include 213Fr with the closed neutron shell
(magic number N ¼ 126), 206g;mFr, 207Fr, and 209Fr on the
neutron-deficient side, and the neutron-rich 221Fr. In the
region of 207–213Fr with up to six neutron holes, we find
near-constant magnetic hyperfine anomalies for the odd-Z,
even-N isotopes [20]. The neutron rich odd-even isotope
221Fr shows a different behavior due to the deformation of
the nucleus. The odd-Z, odd-N isotopes have anomaly
contributions from both the proton and the valence neutron.
BW effect measurements usually require precise knowl-

edge of both, hyperfine structure constants and magnetic
moments. Measurements of the nuclear magnetic dipole
moment in Fr are limited to 211Fr [21] and 210Fr [22].
Empirical values for other isotopes are usually obtained by
scaling with the isotopic ratios of the hyperfine constants
based on these two experiments, both of which have
uncertainties larger than 1% and cannot be used to extract
the hyperfine anomaly. A different approach to studying the
BW effect, which circumvents the limited precision in the
magnetic moments, comes from the suggestion by Persson
[23] that was implemented in Fr [20], Tl [24], and Eu [25].
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This method relies on looking at the ratio between hyper-
fine splittings of two levels where the electron wave
functions are overlapping differently with the nuclear wave
function and, consequently, is sensitive to the differences in
their hyperfine anomalies. We can normalize the change in
this ratio to a specific isotope (213Fr) for the purpose of
directly revealing the contribution from the neutron wave
function. See Ref. [7] for a review and Ref. [26] for a recent
compilation of all available hyperfine anomaly data.
The magnetic hyperfine interaction W can be written

as [23,27]

Wl
extended ¼ Wl

pointð1þ ϵlÞ; ð1Þ
where ϵl is a small quantity that depends on the particular
isotope, and on the atomic state (l ¼ S or P). The 7P1=2
electron overlaps with the nuclear wave functions more
uniformly than the 7S1=2 electron. The ratio R of the
hyperfine splittings for an isotope with mass number A is
sensitive to the nuclear magnetization distribution [20]

RHFSðAÞ ¼
WS

extended

WP
extended

≈ R0½1þ ϵSðAÞ − ϵPðAÞ�; ð2Þ

with R0 the ratio of hyperfine structure constants for a point
nucleus. Since both states have J ¼ 1=2, the extraction of
precise magnetic hyperfine structure constants from the
measurements is not hampered by the presence of higher
order nuclear moments. The relative size of ϵP grows with
nuclear charge number Z, and is about 1=3 of ϵS in Fr [27].
We measure the 7P1=2 hyperfine splitting of Fr at the

100 ppm level in a number of isotopes. We use these
measurements in combination with the 7S1=2 hyperfine
splittings [28–31] to determine RHFSðAÞ to study changes in
the hyperfine anomaly. These measurements are carried out
at the Francium Trapping Facility (FTF) at TRIUMF [13].
We briefly summarize the operation of the FTF: A 500 MeV
proton beam irradiates a target that consists of uranium
carbide foils to produce between 107 to 109 Frþ= sec of the
selected isotope [32]. We produce an ultracold sample of
neutral Fr atoms for Doppler-free spectroscopy by capturing,
typically, a few 105 atoms in a magneto-optical trap (MOT).
Two Ti:Sapphire lasers (trap and repumper) form the MOT
on the D2 line (718 nm) and leave the D1 line (817 nm)
background free for the measurement [Fig. 1(a)]. A com-
puter-controlled Fabry-Perot cavity monitors and stabilizes
[33] the long-term frequency variation of all of the lasers to
better than �5 MHz.
A third Ti∶Sapphire laser excites the transition from the

upper ground state hyperfine level to each of the two 7P1=2
hyperfine levels at 817 nm [Fig. 1(a)]. We amplitude-
modulate the probe laser with a fiber electro-optic modu-
lator (EOM), (EOSpace AZ-2K1-10-FPA-FPA-800-UL)
that suppresses the carrier and produces sidebands at about
half the hyperfine splitting, such that the two sidebands are
separated by the size of the splitting [34]. With this method,

we produce rapid scans of the sidebands [35] that minimize
many systematic effects compared to scanning the carrier
frequency [20]. For instance, we are less sensitive to atom
number fluctuations or laser frequency drifts, and the
frequency axis of the scan can be precisely characterized
since it lies in the microwave regime. We produce the
microwaves with phase-locked-loop synthesizers refer-
enced to a Rb clock (SRS FS275). The frequency sweep
covers 140 MHz in 10 ms [Fig. 1(b)]. The probe beam has a
3 mm diameter with 100 μWpower in each sideband and is
retroreflected to minimize trap displacement from radiation
pressure imbalance.
We collect the fluorescence light with a double relay

imaging system (numerical aperture of 0.12) with an
interference filter at 817 nm and an edge filter at 795 nm
to suppress background light, in particular the trapping laser
at 718 nm. A photomultiplier tube (Hamamatsu H7422-50)
operating in photon counting mode detects the fluorescence,
and we record the photon events as a function of time with a
multichannel scaler (SRS SR430). We use a typical bin
width of 640 ns with count rates below 250 kilocounts=s.
We avoid the ac Stark shift from the MOT trapping light
with an experimental cycle of 27 μs of trapping followed by
2.97 μs of probing with the trap laser off [Fig. 1(c)]. Data
with signal-to-noise ratios of ≳20 are obtained within a few
seconds. Figure 2 shows a typical spectrum, which yields a

7S1/2

7P3/2

Trap
718nm

Probe
817nm

7P1/2

2.97 µs 27 µs

~140 MHz

10 ms

(a)

(b)

(c)

Trap on

Trap off

Repump
718nm

~6 GHz

~46 GHz

~1 GHz

640 nsTime bin

}

}

}

FIG. 1. Measurement scheme. (a) Atomic energy levels relevant
for trapping and measuring. (b) Sideband frequency scan around
2.9 GHz (isotope dependent). (c) Time sequence for trapping and
data collection.
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HFS splitting with statistical uncertainty at the 30 kHz level.
The two peaks indicate the modulation frequency where
the þ1 (−1) sideband is resonant with the upper (lower)
hyperfine peak.
The linear Zeeman effect is the dominant systematic

uncertainty, because the quadrupole magnetic field of the
MOT stays on during the measurement, and the atoms
populate all Zeeman sublevels. We characterized this effect
by changing the magnetic field gradient (7 to 15 G=cm),
probe laser polarization (linear as used in the measurement,
to circular), and the position of the atom cloud (1 mm
dislocation). We put an upper bound of 540 kHz systematic
uncertainty from the Zeeman shift. This agrees well with
auxiliary tests in Rb. The sideband laser power changes
during the scan due to rf power variations, which contrib-
utes to a background structure in the data. We take scans
without the trapped atoms to record this background. These
variations, in addition to line-asymmetries caused by laser
drifts during the data accumulation, create small line-shape
deviations from a Lorentzian function, as can be seen in the
residual structures of the fit in Fig. 2. We evaluate a
systematic uncertainty of 100 kHz from the line-shape
distortions. The differential ac Stark shift from the trap laser
is mitigated by the fast chopping technique, and the shift
from the repump laser is 90 kHz with an uncertainty of
60 kHz [36]. Other potential systematic effects include
Doppler shifts, probe laser power, frequency calibration,
and linearity of the scan, which we all evaluated to be at
a negligible level. The total systematical uncertainty is
552 kHz.
Table I shows the hyperfine splittings of the 7P1=2 state

for the five isotopes from this work, together with those
reported in Ref. [20]. The uncertainty includes both the
statistical and systematic error contributions stated above.

For 209Fr and 221Fr, we find good agreement with Ref. [20]
and Ref. [38], respectively, with smaller error bars. The
table also lists the ratio RHFSðAÞ introduced in Eq. (2),
based on the literature values for the 7S1=2 splittings [28–31].
The normalized ratio of the hyperfine anomalies RHFSðAÞ=
RHFSð213Þ (with 213Fr taken as the reference isotope for
convenience), in a chain of isotopes A ¼ 206–213 and 221 is
shown in Fig. 3. The isotopes span neutron numbers between
N ¼ 119 and 134. The red squares correspond to measure-
ments from Ref. [20], and the blue diamonds are the new
results. For A ¼ 206, we measured both the low spin (I ¼ 3)
nuclear ground state 206gFr, and the first high-spin (I ¼ 7),
long-lived isomeric state 206mFr (lifetime > 10 s, deduced
from MOT lifetime). We clearly distinguish 206mFr from
206gFr in the MOT due to their different trapping and
repumping laser frequencies.
The shell model explains, reasonably well, the magnetic

moments of the light Fr isotopes near N ¼ 126 [39]. We
consider only the dominant orbitals of single nucleons in the
shell model to calculate hyperfine anomaly differences for the
7S1=2 and 7P1=2 electronic states [7,27]. The total anomaly
combining the proton and the neutron is given by [7]

ϵS − ϵP ¼ ϵπβπ þ ϵνβν; ð3Þ

where βπ;ν are the fractional contributions to the magnetic
moment from the proton and the neutron, respectively.
The calculated anomalies (in %) for a valence proton (ϵπ)
or neutron (ϵν) for πh9=2, νp1=2, νf5=2, and νp3=2 orbitals are
−0.57, −3.13, −2.75, and −1.75, respectively. The total
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FIG. 2 (color online). Sample of experimental data. Top:
Fluorescence counts as a function of sideband frequency for
213Fr with separate Lorentzian fits to each of the resonances.
The hyperfine splitting is the difference of the frequency position
of the two peaks and it gives 5739.60� 0.030 MHz. Bottom:
Normalized residuals of the fits.

TABLE I. Isotope, spin (I), 7P1=2 HFS in MHz and ratio
RHFSðAÞ of 7S1=2 and 7P1=2 splittings for 206–213;221Fr. We
illustrate the neutron orbital configuration (ν orbital) and its spin
alignment with respect to the total nuclear spin (ν spin).

Isotope I
HFS (7P1=2)

[MHz] RHFSðAÞ ν orbital ν spin

206g 3 6009.14(55) 7.6022(14)b ap3=2 þ bf5=2 ↓ν↑I
206m 7 6521.56(57) 7.6086(10)c f5=2 ↑ν↑I
207 4.5 5559.04(55) 7.6308(12)d

208 7 6561.0(2.3)a 7.6053(30)c,d f5=2 ↑ν↑I
209 4.5 5639.5(1.0)a 7.6307(16)d

209 4.5 5638.36(56) 7.6323(13)d

210 6 6150.9(1.3)a 7.6035(17)d f5=2 ↑ν↑I
211 4.5 5710.5(1.0)a 7.6297(15)d

212 5 6556.0(1.0)a 7.6042(17)d p1=2 ↑ν↑I
213 4.5 5739.43(55) 7.6292(18)e

221 2.5 2431.0(55) 7.6581(26)d

221 2.5 2433.0(3.9)f 7.652(12) d

aRef. [20].
bThe 7S1=2 values come from Ref. [28]
cRef. [29]
dRef. [30]
eRef. [31]. For 208Fr, the HFSð7S1=2Þ is the weighted average and
scaled uncertainty of the two measurements following Ref. [37].
fRef. [38].
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anomaly is represented by the green circles in Fig. 3. Even
though the single particle neutron anomalies are a few
times larger than that of the proton, the neutron fractional
contribution βν is typically only 15%, depending on the
orbitals, yielding a contribution from the valence neutron of
about the same size as the calculated proton anomaly.
Our data show that the even-odd staggering trend

is preserved from 213Fr with a closed neutron shell,
down to 206Fr. The neutron-deficient odd-even isotopes
207;209;211;213Fr all have near-constant anomalies, differing
by a small amount consistent with variations due to the
changes in the charge distribution (BR effect) [8–12].
This confirms the previous assumption that the anomaly in
these isotopes is due, primarily, to the single valence
proton in the πh9=2 orbital of the spherical shell [20]. 221Fr
is also odd-even, with the valence proton in the same πh9=2
orbital. However, the eight neutrons above closed shell
create deformation, leading to a rather different anomaly,
which we explain in more detail later. For odd-odd
isotopes (208;210;212Fr), the calculations for the respective
neutron orbitals are in good agreement with the exper-
imental data.
For 206gFr, there are some differences compared to a pure

νp3=2 orbital, which also holds for the magnetic moment
[28,29,40]. However, other nearby orbitals (νf5=2 or νi13=2)
give very different values [41], or even opposite signs with
respect to the normalization. The calculations using different

orbitals for 206gFr are shown in Fig. 3. We note that the odd-
odd isotopes have the same sign and roughly the same value
of the neutron anomaly contribution. This is a coincidence
resulting from the angular momentum coupling, even though
their neutron orbitals and nuclear spins are different. This is
illustrated by the fact the calculation for lower nuclear spin
(I ¼ 3) νf5=2 (206gFr) produces an opposite sign compared
to the higher spin isotopes (206m;208;210Fr), as I ¼ 3 demands
the neutron spin to be antialigned with the total nuclear spin
(see the last column of Table I).
Deviating from the spherical shell model, the Nilsson

picture [42] considers the nuclear energy level changes due
to a deformation. Calculations [43] have shown that the
f5=2 and p3=2 neutron orbitals have a level-crossing of the
[521 1=2] and [503 5=2] substates at a very small (negative)
deformation parameter jϵ2j ≤ 0.05, a range consistent with
the measured quadrupole moment [29]. The valence
neutron of 206Fr can have a mixture of these two orbitals,
which shows effects in the magnetic moment [29]. The
anomaly is more sensitive to this orbital mixture, and could
have a value outside of the range delimited by the two pure
orbital predictions. This is because operator evaluations
such as hf5=2jr2jp3=2i break the orthogonality of the two
eigenfunctions, resulting in a linear dependence of the
anomaly to such mixtures, compared to the quadratic
dependence of the magnetic moment.
The neutron-rich odd-even isotope 221Fr has only the

proton anomaly contribution. Its Nilsson deformation
parameter lies in a positive small to intermediate range,
0.1 ≤ ϵ2 ≤ 0.2 [21], and the valence proton still occupies the
h9=2 orbital. However, its angular momentum projects on to
the nuclear symmetry axis, such that the nuclear spin
becomes I ¼ 5=2 [43]. Calculations in [43] yield more than
95% of the wave function in the πh9=2½523 5=2� state.
Treating 221Fr with this predominant contribution, we obtain
a correct sign of the anomaly with respect to 213Fr, as shown
in Fig. 3, and a magnetic moment ofþ1.85μN , in reasonable
agreement with the value þ1.58ð3ÞμN empirically scaled
from the hyperfine splitting [21]. We note that this is a
considerably simpler picture than the nuclear model used in
Ref. [21]. The Nilsson calculations are parameter dependent,
and the states with lower angular momentum projections
used in Ref. [21] would involve more contributions from
configuration mixing effects.
In conclusion, we present precise measurements of the

7P1=2 hyperfine splitting in several francium isotopes. The
results allow us to study the hyperfine anomaly starting
from a closed neutron shell (213Fr N ¼ 126) with a simple
nuclear distribution, to the boundaries of the single-particle
spherical shell model. We demonstrate high-quality
spectroscopic measurements, both with ground state nuclei
as well as with an isomer. The present results provide the
basis for testing the validity and accuracy of future nuclear
structure calculations, which will be necessary to extract
weak interaction physics from parity nonconservation
measurements in francium.
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