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INTRODUCTION
Waters of different types differentially scatter and absorb down-
welling light, affecting their spectral bandwidth (color) and intensity
(brightness). Pure natural waters and clear pelagic seas maximally
transmit short wavelength (blue) light, whereas coastal waters are
most deeply penetrated by intermediate (green) wavelengths.
Estuarine and many fresh waters maximally transmit longer
(yellow–red) wavelengths due to increasing concentrations of
phytoplankton, yellow products of vegetative decay (Gelbstoff), and
suspended particulates that scatter, absorb and more rapidly attenuate
light (Lythgoe, 1975; Lythgoe, 1988; Jerlov, 1968). Fishes have
radiated into a wide range of aquatic photohabitats possessing
complex photic properties, exposing their visual systems to a myriad
of selective pressures (Levine and MacNichol, 1979; Collin, 1997).
The visual systems of fishes have thus evolved to generally reflect
the characteristics of aquatic light fields in their specific
microhabitats and macrohabitats (Guthrie and Muntz, 1993).

Estuarine and near-coastal waters represent some of the most
dynamic aquatic photohabitats on Earth. Luminous and chromatic
properties of these waters vary on temporal and spatial scales
ranging from milliseconds to decades, and millimeters to
kilometers (e.g. Schubert et al., 2001; Harding, 1994). This
extensive variability is due to vertical mixing, stratification, wave
activity, clouds and weather, sunrise and sunset, seasonal solar
irradiance, phytoplankton dynamics, as well as anthropogenically

induced processes such as eutrophication and sedimentation
(McFarland and Loew, 1983; Wing et al., 1993; Schubert et al.,
2001; Gallegos et al., 2005; Kemp et al., 2005). Furthermore, at
midday, a fixed point in an estuary can range widely in luminous
and chromatic properties due to tidal and freshwater inputs along
salinity gradients. Flood tides push relatively well-lit green
coastal waters into estuaries, while falling ebb tides draw highly
attenuating, very turbid riverine waters through the estuary and
out to sea (e.g. Bowers and Brubaker, 2004).

The visual systems of fishes inhabiting highly productive and
frequently turbid coastal waters must balance luminous sensitivity,
resolution, contrast perception and rapid adaptation to dynamic light
conditions depending on evolutionary pressures and phylogenetic
constraints (Dartnall, 1975; Levine and MacNichol, 1979). The eyes
of diurnal predatory fishes typically use rod photoreceptors during
scotopic (dim/dark) conditions and cone photoreceptors under
photopic (bright) conditions, the latter potentially differing in
number, the pigments they contain, and their spectral position
depending on phylogeny, species’ lifestyle and optical microhabitat
(Lythgoe, 1979; Crescitelli, 1991; Levine and MacNichol, 1979).
At the cost of acuity, luminous sensitivity can be extended under
dim conditions by widening pupils, increasing spatial and temporal
summation, and even reradiating light through retinal media to
maximize photon capture (Warrant, 1999). However, unavoidable
tradeoffs between luminous sensitivity and resolution limit the
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SUMMARY
Maintaining optimal visual performance is a difficult task in photodynamic coastal and estuarine waters because of the
unavoidable tradeoffs between luminous sensitivity and spatial and temporal resolution, yet the visual systems of coastal
piscivores remain understudied despite differences in their ecomorphology and microhabitat use. We therefore used
electroretinographic techniques to describe the light sensitivities, temporal properties and spectral sensitivities of the visual
systems of four piscivorous fishes common to coastal and estuarine waters of the western North Atlantic: striped bass (Morone
saxatilis), bluefish (Pomatomus saltatrix), summer flounder (Paralichthys dentatus) and cobia (Rachycentron canadum). Benthic
summer flounder exhibited higher luminous sensitivity and broader dynamic range than the three pelagic foragers. The former
were at the more sensitive end of an emerging continuum for coastal fishes. By contrast, pelagic species were comparatively less
sensitive, but showed larger day–night differences, consistent with their use of diel light-variant photic habitats. Flicker fusion
frequency experiments revealed significant interspecific differences at maximum intensities that correlated with lifestyle and
habitat. Spectral responses of most species spanned 400–610nm, with significant day–night differences in striped bass and
bluefish. Anadromous striped bass additionally responded to longer wavelengths, similar to many freshwater fishes. Collectively,
these results suggest that pelagic piscivores are well adapted to bright photoclimates, which may be at odds with the modern
state of eutrified coastal and estuarine waters that they utilize. Recent anthropogenic degradation of water quality in coastal
environments, at a pace faster than the evolution of visual systems, may impede visually foraging piscivores, change selected
prey, and eventually restructure ecosystems.
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plasticity of optical responses to widely ranging photic conditions
(Warrant, 1999).

Many shallow-dwelling piscivores have large, broadly tuned and
highly resolute eyes, foraging visually when light is not limiting
because a wider breadth of information is rapidly available through
this sensory channel relative to other modalities (Hobson et al., 1981;
Guthrie and Muntz, 1993; Rowland, 1999). Paradoxically, many
fishes that inhabit productive but turbid estuaries rely on vision to
detect their predators, prey and mates (Abrahams and Kattenfield,
1997; Engström-Östa and Candolin, 2007). The visual range of
fishes is constrained when the luminous and chromatic properties
of light are limiting due to changing diel light conditions or via
scattering and absorption by suspended materials. Degradation of
optical conditions affects predators and prey asymmetrically. Mild
turbidity may enhance prey contrast, but piscivory is inhibited under
adverse optical conditions via the reduction of ambient light
intensity and contrast degradation, with the ultimate effect of
decreasing effective visual fields and increasing search time (Vogel
and Beauchamp, 1999; Utne-Palm, 2002). Simultaneously, turbidity
enhances cover and foraging opportunities for planktivorous species
that are released from predation by piscivores [i.e. ‘turbidity as cover
hypothesis’ (Gregory and Northcote, 1993)]. Piscivores may
therefore be forced to abandon visual foraging for less-efficient
encounter-rate feeding and to shift from pelagic to benthic prey when
optical conditions are greatly degraded (Grecay and Targett, 1996a;
Grecay and Targett, 1996b; De Robertis et al., 2003). Such foraging
shifts may tip the competitive predatory balance in an ecosystem
from visually feeding piscivores to tactile and chemoreceptive
foragers, with potentially cascading effects (Carpenter and Kitchell,
1993; Aksnes and Utne, 1997). Additionally, degradation of the
chromatic and luminous properties of light fields can affect the
distribution and movements of predatory fishes (McFarland, 1986),
interspecific and intraspecific communication (Siebeck et al., 2006),
reproductive habits and speciation (Seehausen et al., 1997), as well
as vulnerability to fishing gear (Loesch et al., 1982; Walsh, 1991;
Buijse et al., 1992).

In summary, because predation by visually foraging piscivorous
fishes can affect the structure and function of aquatic communities
(Paine, 1966; Northcote, 1988), changes in the visual environment
may thus have far-reaching effects on coastal ecosystems and their
management through light-induced changes in picscivore behavior
(Aksnes, 2007). However, visual function of coastal piscivorous
fishes has received relatively little attention despite their importance
to both commercial and recreational fisheries. We therefore used
corneal electroretinography (ERG) to assess the absolute
sensitivities, temporal properties and chromatic sensitivities of four
piscivores common to coastal waters of the western North Atlantic.
Optical conditions in key mid-Atlantic estuaries such as Chesapeake
Bay have changed dramatically over the past century due to
industrialization, population expansion, eutrophication and
sedimentation (Jackson, 2001; Kemp et al., 2005), with unknown
consequences for predation, mating and other activities involving
vision because so little is known of the visual function of this

estuary’s diverse fish fauna. A previous investigation of fish visual
ecophysiology (Horodysky et al., 2008) applied comparative
methods to assess the visual function in five phylogenetically related
fishes that use different optical microhabitats in Chesapeake Bay.
Using the same experimental setup and methods, we investigated
the converse question, assessing the visual systems of four coastal
western North Atlantic piscivores with different phylogenies that
use similar microhabitats, bear similar trophic ecologies, or both
(Fig.1). We sought mechanistic insights into how biotic and abiotic
processes influence relationships between form, function and the
environment in the visual systems of coastal marine fishes.

MATERIALS AND METHODS
Striped bass (Morone saxatilis Walbaum 1792), bluefish
(Pomatomus saltatrix Linnaeus 1766), summer flounder
(Paralichthys dentatus Linnaeus 1766) and cobia (Rachycentron
canadum Linnaeus 1766) were all captured by standard hook and
line fishing gear (Table 1). Animals were maintained in recirculating
1855l aquaria on natural ambient photoperiods at 20±1°C (winter)
or 25±2°C (summer). Fish were fed a combination of frozen Atlantic
menhaden (Brevoortia tyrannus), squid (Loligo sp.) and
commercially prepared food (AquaTox flakes; Zeigler, Gardners,
PA, USA).

Experimental and animal care protocols were approved by the
College of William & Mary Institutional Animal Care and Use
Committee (protocol no. 0423) and followed all relevant laws of
the United States. Fish were removed from holding tanks, sedated
with an intramuscular (i.m.) dose of ketamine hydrochloride (Butler
Animal Health, Middletown, PA, USA; 30mgkg–1), and
immobilized with an i.m. injection of the neuromuscular blocking
drug gallamine triethiodide (Flaxedil; Sigma, St Louis, MO, USA;
10mgkg–1). Drugs were re-administered during the course of
experiments as required. Following initial drug injections, fish were
moved into a light-tight enclosure and placed in a rectangular
800mm�325mm�180mm Plexiglas tank with only a small portion
of the head and eye receiving the light stimulus remaining above
the water. Subjects were ventilated with filtered and oxygenated
sea water (1lmin–1) that was temperature controlled (20±2°C) to
minimize the potentially confounding effects of temperature on ERG
recordings (Saszik and Bilotta, 1999; Fritsches et al., 2005). Fish
were dark adapted for at least 30min prior to any measurements
(see Horodysky et al., 2008).

Experiments were conducted during both day and night to control
for any circadian rhythms in visual response (McMahon and
Barlow, 1992; Cahill and Hasegawa, 1997; Mangel, 2001). We
defined ‘day’ and ‘night’ following ambient photoperiods. At the
conclusion of each experiment, fish were euthanized via a massive
overdose (~300mgkg–1) of sodium pentobarbital (Beuthanasia-D,
Schering-Plough Animal Health Corp., Union, NJ, USA).

Electroretinography
Whole-animal corneal ERGs were conducted to assess the absolute
sensitivities, temporal properties and spectral sensitivities. Teflon-
coated silver–silver chloride electrodes were used for recording
ERGs. The active electrode was placed on the corneal surface and
a reference electrode was placed subdermally in the dorsal
musculature. ERG recordings and stimulus presentations were
controlled using software developed within the LabVIEW system
(National Instruments, Austin, TX, USA).

Absolute luminous sensitivities were assessed via
intensity–response (V/logI) experiments described previously
(Horodysky et al., 2008). Briefly, six orders of magnitude of stimulus

A. Z. Horodysky and others

Table 1. Species, standard length (SL) and mass of the four
piscivorous fishes investigated in this study

Species SL (mm) Mass (g)

Morone saxatilis 183–358 320–670
Pomatomus saltatrix 183–260 55–95
Rachycentron canadum 91–388 40–820
Paralichthys dentatus 254–510 270–1045
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intensity were presented to subjects using appropriate combinations
of Kodak Wratten 1.0 and 2.0 neutral density filters (Eastman Kodak
Co., Rochester, NY, USA) via an Advanced Illumination SL-2420-
WHI white LED light source that had a working range of roughly
three log10 units, and a maximum output intensity of 1585cdm–2.
Light intensities were calibrated with a research radiometer (model
IL 1700, International Light, Inc., Newburyport, MA, USA). V/logI
experiments progressed from subthreshold to saturation intensity
levels in 0.2log unit steps. At each intensity step, ERG b-waves
were recorded from a train of five 200ms flashes, each separated
by 200ms rest periods. This process was repeated three times,
recorded and normalized to the maximum voltage response (Vmax).
Mean V/logI curves for each species were created by averaging the
V/logI curves of individuals of that species. Interspecific
comparisons of relative luminous sensitivity were made at stimulus
irradiances eliciting 50% of Vmax (referred to as K50). Dynamic
ranges, defined as the log irradiance range between the limits of
5–95% Vmax (sensu Frank, 2003), were calculated separately for day
and night experiments.

The temporal resolution of sciaenid visual systems was assessed
via flicker fusion frequency (FFF) experiments using the white light
LED source described above and methods developed by Fritsches
and colleagues (Fritsches et al., 2005). Sinusoidally modulated white
light stimuli ranging in frequency from 1Hz (0log units) to 100Hz
(2.0log units) were presented to subjects in 0.2log unit frequency
steps, repeated three times at each frequency, and averaged for each
subject. Light stimuli were presented for 5s, followed by 5s of
darkness. Seven total FFF experiments were conducted for each
subject: one at 25% (I25) of maximum stimulus intensity (Imax) from
the V/logI curve, and one at each log10 step interval over six orders
of magnitude of light intensity. A subject’s FFF threshold at a given
intensity was determined by analyzing the power spectrum of the
averaged responses from 1 to 100Hz and comparing the power of
the subject’s response frequency (signal) with the power of a
neighboring range of frequencies (noise). Diel and interspecific
comparisons were conducted on the FFF data at Imax and I25. The
FFF at Imax was considered to be the probable maximum FFF
attainable by the visual system of a given species, and FFF at I25

to be a proxy for ambient environmental light intensity (Horodysky
et al., 2008).

Spectral sensitivity experiments were conducted to assess the
ability of piscivore visual systems to respond to colored light stimuli
that covered the spectral range from UV (300nm) to the near infrared
(800nm) in 10nm steps using methods described previously
(Horodysky et al., 2008). Briefly, the output of a Cermax Xenon
fiberoptic light source (ILC Technology, Sunnydale, CA, USA) was
controlled by a CM110 monochromator, collimated, and passed
through each of two AB301 filter wheels containing quartz neutral

density filters (CVI Laser Spectral Products, Albuquerque, NM,
USA). The first wheel allowed light attenuation from 0 to 1log units
of light intensity in 0.2log unit steps, the second from 0 to 4 log
units in 1log unit steps. In concert, the two wheels allowed the
attenuation of light from 0 to 5log units in 0.2log unit steps. Stimuli
were delivered by a LabVIEW program that controlled a Uniblitz
LS6 electronic shutter (Vincent Associates, Rochester, NY, USA)
using the analog and digital output of the DAQ card and the
computer’s serial RS232 interface. Stimuli were presented through
a 1cm diameter quartz light guide placed within 10mm of a subject’s
eye as five single 40ms stimulus flashes at each experimental
wavelength, each followed by 6s of darkness. The amplitudes of
ERG responses were recorded and averaged to form raw spectral
response curves for each individual. A spectral V/logI recording was
subsequently conducted for each subject at the wavelength (max)
that generated its maximum ERG response (Vmax), which allowed
the subsequent calculation of the subject’s spectral sensitivity
curve. Spectral V/logI experiments exposed the subject to five
individual monochromatic 200ms flashes at each intensity,
increasing in 0.2log unit increments over five orders of magnitude.
To transform spectral response voltages to spectral sensitivities for
each subject, the former were converted to equivalent intensities
and were expressed on a percentage scale, with 100% indicating
maximum sensitivity, following Eqn1:

S  100 � 10–�Imax–In� , (1)

where S is the spectral sensitivity, Imax is the intensity at maximum
response voltage and In is the intensity at response voltage n. Final
spectral sensitivity curves for each species were obtained by
averaging the sensitivity curves of all subjects and normalizing to
the maximum resulting value so that maximum sensitivity equaled
100%.

Data analyses
V/logI and FFF

Piscivore V/logI and FFF data were analyzed separately using two-
way repeated measures ANOVA with Tukey’s post hoc comparisons
to assess whether ERG responses varied among the four species
and between photoperiods. All statistical analyses were conducted
using SAS v 9.1 (SAS Institute, Cary, NC, USA). A general model
for these analyses is given in Eqn2:

Yijk   + i + j + k + ijk , (2)

where Yijk is the value of the response variable (response) for the
ith species, the jth diel period, and the kth level of their interaction,
 is the overall mean of threshold for all combinations of species
and diel periods, i is the species (fixed factor), j is the diel period
(fixed factor), k is the species–diel interaction and ijk is the random

ii

iii

iv

i

Fig.1. Conceptual diagram of the microhabitat specialization
of the four Chesapeake Bay piscivores examined in this
study. Striped bass (i) are schooling anadromous predators of
a variety of fishes, crustaceans and soft-bodied invertebrates.
Bluefish (ii) are voracious schooling pelagic predators of small
fishes, decapods and cephalopods. Cobia (iii) are coastal
migrant predators of a myriad of fishes and crustaceans,
frequently associating with structures and following large
marine vertebrates such as elasmobranchs, seaturtles and
marine mammals. Summer flounder (iv) are benthic predators
of small fishes, crustaceans and soft-bodied invertebrates.
Juveniles of these four species use Chesapeake Bay waters
as nursery and foraging grounds; adults are seasonal
inhabitants.
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error term associated with the observation at each combination of
the ith species, the jth diel period and the kth level of their interaction.

Spectral sensitivity
Intraspecific diel differences in spectral sensitivity curves were
assessed by subtracting the day and night curves and calculating
confidence intervals (CI) of the resulting difference curve. In this
analysis, positive values corresponded to increased day sensitivity;
negative values indicated increased nocturnal sensitivity. Significant
differences in spectral sensitivity were defined where the mean±CI
of difference curves did not encompass zero.

To form hypotheses regarding the number and spectral
distribution of pigments potentially contributing to piscivore
spectral ERG responses, we fitted the SSH (Stavenga et al., 1993)
and GFRKD (Govardovkii et al., 2000) vitamin A1 rhodopsin
absorbance templates separately to the photopic spectral
sensitivity data (Horodysky et al., 2008). A range of possible
conditions was considered: 1–3 -band rhodopsins, 1–3 -band
rhodopsins with a single -band on any pigment, and 1–3 -band
rhodopsins with multiple -bands. For a given species, condition
and template, models of summed curves were created by adding
the products of pigment-specific templates and their respective
weighting factors. Estimates of the unknown model parameters
(max values and their respective weighting proportions) were
derived by fitting the summed curves to the ERG data using
maximum likelihood.

For each species, we objectively selected the appropriate template
(SSH or GFRKD) and number of contributing pigments using an
Information Theoretic approach (Burnham and Anderson, 2002)
following Akaike’s Information Criterion (AIC):

AIC  –2ln(L) + 2p , (3)

where L is the estimated value of the likelihood function at its
maximum and p is the number of estimated parameters. All

parameter optimization, template fitting and model selection were
conducted using the software package R version 2.7.1 (R
Development Core Team 2008, Vienna, Austria).

RESULTS
White light-evoked ERG b-wave responses of the four piscivores
increased non-monotonically with stimulus intensity to maximum
amplitudes (Vmax) of 30–400V, then decreased at intensities above
those at Vmax (Fig.2), presumably due to photoreceptor saturation
and a lack of pigment regeneration. The K50 values of V/logI curves
differed significantly among species (F3,1618.83, P<0.0001) and
between diel periods (F1,1644.23, P<0.0001). The interaction
between species and diel period was also significant because of diel
differences in K50 values of pelagic piscivores but not for benthic
summer flounder (F1,1611.18, P<0.0003). Tukey’s post-hoc
comparisons revealed that the mean photopic K50 values of summer
flounder were significantly left-shifted (0.5–1.8log units, P<0.05)
relative to the other piscivores, indicating higher sensitivity to dim
light. Mean photopic dynamic ranges of the four species, defined
as 5–95% of Vmax, varied between 1.84 and 3.35log units and
scotopic dynamic ranges between 2.34 and 3.32log units. Dynamic
ranges varied significantly among the species (F3,1611.18,
P<0.0003) and diel periods (F3,1636.43, P<0.0001); however, the
significant interaction term (F3,166.57, P<0.005) compromised
interpretation. Pelagic piscivores generally had narrower photopic
dynamic ranges with varying degrees of diel differences, contrasting
with the broader, diel-invariant dynamic range of benthic summer
flounder.

Piscivore FFF values (Fig.3) varied significantly among the four
species (F3,209.82, P<0.003), with benthic summer flounder having
significantly lower values than pelagic piscivores. FFF increased
with increasing intensity (i.e. greater at Imax than at I25;
F1,6775.46.27, P< 0.001). Likewise, FFF values were significantly
higher during the day than at night (F1,6775.46.27, P>0.001). This
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Fig.2. Intensity–response electroretinograms
(ERGs) of striped bass, bluefish, cobia and
summer flounder. Each species’ intensity
response curve is an average from five
individuals. Responses were normalized to the
maximal response voltage (Vmax) for each
individual. Boxes at the top represent each
species’ dynamic range (5–95% Vmax) with
numbers indicating its breadth in log intensity
units. Dashed vertical lines and adjacent
numbers indicate K50 points (illumination at 50%
Vmax). Open symbols, white boxes and gray text
represent day experiments; filled symbols,
shaded boxes and black text represent night
experiments. Light intensities are in log cdm–2.
Error bars are ±1s.e.
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difference was most pronounced in cobia and striped bass.
Interaction terms were not significant.

Piscivore photopic spectral sensitivities generally spanned
400–600nm, with cobia having the narrowest spectral range
(Fig.4). Striped bass were a clear exception, exhibiting a high
sensitivity to longer wavelengths (650nm and above). Striped bass
and bluefish demonstrated a significant nocturnal short wavelength
shift, while cobia and summer flounder exhibited no such shifts
(Fig.4).

Given our data, maximum likelihood estimation using published
SSH and GFRKD rhodopsin templates suggested that most of the
Chesapeake Bay piscivores have multiple pigment mechanisms
(Fig.5). Striped bass (SSH; max542, 612nm) and summer flounder
(GFRKD; max449, 524nm) photopic spectral sensitivities were
consistent with the presence of two -band vitamin A1 pigments
(Table2). In contrast, bluefish were fitted with four rhodopsins
(GFRKD; max433, 438, 507, 547), and the cobia spectral
sensitivity curve was fitted by a single rhodopsin (SSH) centered
at 501nm.

DISCUSSION
The number, properties and distribution of photoreceptor cells in
fish visual systems, their luminous sensitivities, chromatic
sensitivities and photopigments, and correlations to the photic
properties of habitats have received rigorous attention in the
literature (McFarland and Munz, 1975; Dartnall, 1975; Levine and
MacNichol, 1979; Bowmaker, 1990; Parkyn and Hawryshyn, 2000).
The functional characteristics of the visual systems of fishes

generally reflect the aquatic light fields they inhabit, within
ecological and phylogenetic constraints (Guthrie and Muntz, 1993).
Luminous and chromatic sensitivities as well as temporal and spatial
properties of fish visual systems are therefore useful metrics to
describe the functions and tasks of aquatic visual systems (Lythgoe,
1979; Warrant, 1999; Marshall et al., 2003).

The range of light from which visual information can be
obtained is extended in fishes with duplex retinae that use cone
cells under photopic (bright) conditions and rod cells during
scotopic (dim/dark) conditions (Lythgoe, 1979; Crescitelli, 1991).
Piscivore luminous sensitivities, evidenced by the K50 points and
dynamic ranges of V/logI curves, are comparable to those of other
Chesapeake Bay fishes (Horodysky et al., 2008) and a range of
freshwater and marine teleosts (Naka and Rushton, 1966; Kaneko
and Tachibana, 1985; Wang and Mangel, 1996; Brill et al., 2008).
Coastal and estuarine piscivores demonstrated less luminous
sensitivity than deep sea fishes (Warrant, 2000) and mesopelagic
arthropods (Frank, 2003). In fact, striped bass, bluefish and cobia,
which frequently forage in shallow coastal and estuarine waters,
had fairly high K50 values (~1–2logcdm–2) and very narrow
dynamic ranges, similar to those observed in black rockfish
(Sebastes melanops), a coastal Pacific sebastid (2.0logcdm–2)
(Brill et al., 2008). These three pelagic piscivores demonstrated
significant diel shifts in luminous sensitivity, presumably as a
result of retinomotor movements (Ali, 1975). In daylight, the
luminous sensitivities of striped bass, bluefish and cobia were
substantially more right-shifted (i.e. less sensitive), with narrower
dynamic ranges and larger diel shifts, than those of pelagic-
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foraging sciaenid fishes from the same estuary (Fig.6) (Horodysky
et al., 2008). The K50 values of benthic summer flounder
(0.14–0.17logcdm–2), were similar in magnitude and relative diel
invariance to those of demersal Pacific halibut (Hippoglossus
stenolepis: 0.14–0.15logcdm–2) (Brill et al., 2008) and benthic

foraging sciaenids (–0.24–0.30logcdm–2) (Horodysky et al.,
2008) (Fig.7). The luminous sensitivities of coastal flatfishes, and
of other benthic foragers, tend toward the more sensitive end of
an emerging continuum for coastal fishes, consistent with their
use of low light habitats. In contrast, shallow-dwelling diurnal
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piscivores have lower but more plastic luminous sensitivities,
consistent with hunting in extensively variable photic habitats.

Temporal properties of coastal piscivore visual systems are also
comparable to those of a range of diurnal freshwater and marine
fishes, closely matching species-specific visual requirements and
tasks (Warrant, 2004). The FFF of the four piscivores predictably
increased with light intensity (sensu Crozier et al., 1938), as was
observed in sciaenid fishes (Horodysky et al., 2008). The benthic
summer flounder, however, had significantly lower FFF at I25 than
the three pelagic piscivores, consistent with the use of comparatively
deeper and dimmer waters by this flatfish. Daytime FFF at I25 ranged
little among the three pelagic piscivores (47–50Hz), but cobia and
bluefish attained these values at intensities ~1 order of magnitude
lower than striped bass, suggesting that the latter may be more light-
limited or may forage on more active prey in clearer waters that the
former species. Maximum FFFs, which reveal the scope of the visual
system when light is not limiting, were lowest for flounder,
intermediate for bluefish and highest for cobia and striped bass.
Predators that forage on rapidly swimming prey in clear and bright
conditions, such as yellowfin and bigeye tunas (Thunnus albacares
and T. obesus, respectively), have high FFFs and low spatial
summation of photoreceptors [60–100Hz; evoked potentials (EP)
(Bullock et al., 1991); ERGs (Brill et al., 2005)]. In contrast,
nocturnal species and those that forage in dim light, such as broadbill
swordfish and weakfish (Xiphias gladius and Cynoscion regalis,
respectively), have low FFFs and high spatial summation of
photoreceptors [ERGs (Fritsches et al., 2005; Horodysky et al.,
2008)]. Cobia and striped bass maximum FFF were therefore
comparable to those of epipelagic scombrids, those of bluefish were
similar to most sciaenids (~50–60Hz) and freshwater centrarchid
sunfishes (51–53Hz), while those of flounder were analogous to
crepuscular-foraging weakfish (42Hz) [ERGs (Crozier et al., 1936;
Crozier et al., 1938; Horodysky et al., 2008); EP (Bullock et al.,
1991)]. Collectively, maximum FFFs of benthic and nocturnal
species in coastal and estuarine waters are lower than those of
daytime foraging pelagic species (Figs6 and 7). We caution that
the above metanalysis may be limited by differences in ecosystems

as well as experimental and analytical techniques among these many
studies, but consider the collective synthesis to be consistent with
ecologies of the species discussed.

Chromatic properties of the visual systems of piscivores can
likewise be placed in the context of fishes from this and other
ecosystems. Coastal fishes are generally sensitive to a shorter subset
of wavelengths than many freshwater fishes and a longer range of
wavelengths than coral reef, deep sea and oceanic species (Levine
and McNichol, 1979; Marshall et al., 2003). For maximum
sensitivity in an organism’s light microhabitat, scotopic (rod-based)
pigment absorption spectra should match the ambient background
to optimize photon capture [‘Sensitivity Hypothesis’ (Bayliss et al.,
1936; Clark, 1936)]. Maximal contrast between an object and the
visual background is provided by a combination of matched and
offset visual pigments [‘Contrast Hypothesis’ (Lythgoe, 1968)].
Fishes that possess multiple spectrally distinct visual pigments likely
use both mechanisms, depending on the optical constraints of their
specific light niches (McFarland and Munz, 1975). Western North
Atlantic piscivores demonstrated broad, species-specific responses
to wavelengths ranging from the blue (~440nm) to the
yellow–orange (600–650nm) end of the spectrum (Fig.4).
Responses blue-shifted nocturnally in striped bass and bluefish,
whereas cobia and flounder showed no diel shifts. Coastal and
estuarine fishes are commonly dichromats possessing short
wavelength visual pigments with max values ranging from 440 to
460nm and intermediate wavelength pigments with max values of
520 to 540nm (Lythgoe and Partridge, 1991; Lythgoe et al., 1994;
Jokela-Määttä et al., 2007; Horodysky et al., 2008).

Chromatic sensitivities of the four piscivores indicate species-
specific pigment mechanisms based on a comparison of rhodopsin
templates fitted to our ERG data and published
microspectrophotometry (MSP) estimates of pigment max for the
species (Table2). The ERG data of juvenile cobia were consistent
with a single rhodopsin pigment. Although it is unclear whether
this condition remains throughout ontogeny in the species,
monochromacy occurs in other large aquatic predators including
cetaceans, phocids and elasmobranchs such as the sandbar shark

Table 2. Parameter estimates and model rankings of SSH and GFRKD vitamin A1 rhodopsin templates fitted to piscivore photopic spectral
ERG data via maximum likelihood

Species Condition Template max,1 max,2 max,3 max,4 –log(L) p AIC AIC

Striped bass Di GFRKD – 521 611 – –112 5 –214 7
SSH – 542 612 – –115 5 –221 0
MSP1 – 533 611 – – – – –
MSP2 – 542 612 – – – – –

Bluefish Tetra GFRKD 433 438 507 547 –152 7 –286 0
SSH 436 503 540 551 –148 7 –283 3
MSP1 423 447 526 564 – – – –

Cobia Mono GFRKD – 501 – – –69 3 –134 11
SSH – 501 – – –74 3 –145 0

Summer Di GFRKD 449 525 – – –88 5 –167 0
flounder SSH 451 525 – – –82 5 –154 13

MSP3 449 524 – – – – – –

Vitamin A1 rhodopsin templates: SSH, Stavenga et al., 1993; GFRKD, Govardovskii et al., 2000.
MSP, microspectrophotometry estimates of pigment max, from the literature (1Jordan and Howe, 2007; 2Miller and Korenbrot, 1993; 3Levine and MacNichol,

1979).
L, likelihood function; p, number of parameters in a model; AIC, Akaike’s Information Criterion; Mono, monochromatic; Di, dichromatic; Tetra, tetrachromatic. 
Only -bands of pigments were considered. 
The number following max refers to pigment 1, etc. 
Bold type indicates the best-supported pigment and template scenarios based on AIC values (lower is better). 
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(Peichl et al., 2001; Litherland, 2009). Striped bass and summer
flounder appear to have two visual pigments while bluefish appear
to have four (Levine and MacNichol, 1979; Miller and Korenbrot,
1993; Jordan and Howe, 2007). Template fitting procedures may
not extract the exact max values from prior MSP studies due to
potential differences in habitats, experimental error in ERG and/or
MSP experiments, the generally poor performance of rhodopsin
templates at short wavelengths (Govardovskii et al., 2000), or a
combination of these factors. ERG is well suited for comparative
investigations of vision and form–function relationships in fishes
(Ali and Muntz, 1975; Pankhurst and Montgomery, 1989) and
measures summed retinal potentials that account for any filtration
by ocular media, which MSP does not (Brown, 1968; Ali and Muntz,
1975). Selective isolation of individual mechanisms and behavioral
experiments may help determine the functions of multiple cone
mechanisms (Barry and Hawryshyn, 1999; Parkyn and Hawryshyn,
2000); however, cone morphologies, their photopigments and

distributions were beyond the scope of our study. Comparison of
MSP estimates with those resulting from the rhodopsin template
fitting procedures (Horodysky et al., 2008) suggest that the latter
provides useful comparative insights into visual systems with few,
fairly widely spaced visual pigments. The procedure does, however,
risk mischaracterizing max in species with many closely spaced
pigments and/or when underlying data are sparse and fitting
procedures balance optimization and parsimony.

Collectively, the luminous, temporal and chromatic properties of
the visual systems of coastal and estuarine fishes are consistent with
inferences based on ecology and lifestyle (this study) (Horodysky
et al., 2008). The eyes of daytime-active pelagic piscivores, such
as striped bass, bluefish and sciaenid spotted seatrout (Horodysky
et al., 2008) have fast temporal resolution, limited photopic luminous
sensitivity and broadly tuned chromatic sensitivity, consistent with
foraging on fast-moving planktivorous fishes in well-lit waters
(Fig.6). Daytime active pelagic piscivores, such as striped bass and
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spotted seatrout, enhance resolution at the expense of luminous
sensitivity during daylight hours, but increase nocturnal sensitivity,
presumably at the expense of acuity, to match their diurnal light
niches (Horodysky et al., 2008). In contrast, deeper-dwelling
piscivores, such as summer flounder and weakfish, have
comparatively slower, more sensitive vision, higher spatial
summation and reduced acuity (K. Fritsches, personal
communication) (Warrant, 1999; Horodysky et al., 2008). These
species exhibit few diurnal differences in visual properties (Figs6
and 7), presumably because their light niches are consistently dim.

Increasing turbidity asymmetrically affects the distances over
which conspecifics, predators and prey interact. For encounter-rate
feeders (i.e. many larvae and planktivores), turbidity resuspends
forage and may serve as cover, decreasing sighted distances and
increasing escape rates from predatory attacks (Utne-Palm, 2002).
Benthic foragers are typically well adapted to low-light ambient
conditions typical of turbid habitats, and many also feature
enhancement of other sensory modalities to increase prey detection
(Huber and Rylander, 1992). Conversely, reductions in ambient

light intensity and veiling effects impede the ability of low-
sensitivity, high-contrast piscivore visual systems to view fast-
moving planktivorous prey against strongly turbid backgrounds (De
Robertis et al., 2003; Thetmeyer and Kils, 1995; Turesson and
Bronmark, 2007). Moderate turbidity may actually improve the
contrast of prey against estuarine backgrounds (Utne-Palm, 2002),
but the visual systems of striped bass and bluefish require bright
light for optimal function and should thus be frequently
disadvantaged in coastal habitats rendered highly turbid by human
activities. Anthropogenic light pollution in coastal habitats may,
however, extend the duration of photopic vision and thus visual
foraging via general illumination of the night sky in urbanized areas
(sensu Mazur and Beauchamp, 2006), and by constraining nocturnal
foraging arenas to small, highly illuminated point sources such as
dock and bridge lights. Human impacts may thus be ecologically
structuring factors in coastal ecosystems that both benefit and
impede visually feeding piscivores, with turbidity further exerting
contradictory and asymmetric effects on different trophic levels
and life stages (Utne-Palm, 2002).
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Optical conditions in coastal and estuarine waters are complex
and have changed dramatically over the past century due to human
activities (Kemp et al., 2005), with potentially large consequences
for visually foraging piscivores. Characterizing visual function of
nearshore fishes is a first step, but many questions remain on topics
such as ambient light levels in specific light niches (Marshall et al.,
2006) as well as light threshold effects on predator–prey interactions
(Mazur and Beauchamp, 2003; De Robertis et al., 2003),
reproduction (Engström-Östa and Candolin, 2007), and fishery gear
interactions (Buijse et al., 1992). The effects of ambient light fields
on the reflectance of conspecifics, prey and competitors, encounter
and reaction distances, and the manner in which these change in
space and time should also be investigated to gain insight into visual
systems and tasks for a species (Levine and MacNichol, 1979;
Johnsen, 2002). Comparative approaches investigating the
form–function–environment relationships between sensory
ecophysiology, behavioral ecology and ecosystem dynamics are thus
important to mechanistically link processes from the cellular to the
individual to the population level to support better management of
aquatic resources.
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