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Kondo effect and non-Fermi-liquid behavior in Dirac and Weyl semimetals

Alessandro Principi,1,2,* Giovanni Vignale,1 and E. Rossi3
1Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA

2Institute for Molecules and Materials, Radboud University Nijmegen, Heijndaalseweg 135, 6525 AJ Nijmegen, The Netherlands
3Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA

(Received 23 November 2014; revised manuscript received 5 May 2015; published 8 July 2015)

We study the Kondo effect in three-dimensional (3D) Dirac materials and Weyl semimetals. We find the scaling
of the Kondo temperature with respect to the doping n and the coupling J between the moment of the magnetic
impurity and the carriers of the semimetal. We consider the interplay of long-range scalar disorder and Kondo
screening and find that it causes the Kondo effect to be characterized not by a Kondo temperature, but by a
distribution of Kondo temperatures with features that cause the appearance of strong non-Fermi-liquid behavior.
We then consider the effect of Kondo screening, and of the interplay of Kondo screening and long-range scalar
disorder, on the transport properties of Weyl semimetals. Finally, we compare the properties of the Kondo effect
in 3D and 2D Dirac materials such as graphene and topological insulators.

DOI: 10.1103/PhysRevB.92.041107 PACS number(s): 65.80.Ck, 72.20.Pa, 72.80.Vp

In Weyl and Dirac semimetals (SMs) [1–7] the conduction
and valence bands touch at isolated points of the Brillouin
zone (BZ), named “Weyl nodes” in Weyl SMs and “Dirac
points” (DPs) in Dirac SMs. Around these points the elec-
tronic excitations behave as three-dimensional (3D) massless
Dirac fermions characterized by a density-independent Fermi
velocity vF. Weyl SMs are expected to exhibit unique proper-
ties [8–10] and to have surface states forming “Fermi arcs”
[3,4,11–18]. The eigenstates of the bare Hamiltonian are
nondegenerate in the case of Weyl SMs [1,3–5]. Conversely,
in Dirac SMs the eigenstates are doubly degenerate, i.e., each
Dirac point corresponds to two copies of overlapping Weyl
nodes with opposite chiralities [19]. The linear dispersion
around the nodes is expected to give rise to anomalous
transport properties in both 3D Dirac and Weyl SMs [4,20].
Graphene [21–23] and the surface states of 3D topological
insulators (TIs) [24,25] constitute the two-dimensional (2D)
counterpart of 3D SMs [24,25].

At low temperature, magnetic impurities strongly affect the
properties of any electron liquid. The “Kondo effect” [26,27] is
characterized by a temperature scale TK: When the temperature
(T ) is larger than TK, the electrons of the host material are only
weakly scattered by the impurity; for T < TK the (antiferro-
magnetic) coupling grows nonperturbatively and leads to the
formation of a many-body singlet with the electron liquid,
which completely screens the impurity magnetic moment.

In this Rapid Communication we show that the unique
band structure of 3D Dirac and Weyl SMs strongly affects
the nature of the Kondo effect in these systems. We (i) obtain
the dependence of TK on the doping level of the SM and
on the strength of the antiferromagnetic electron-impurity
coupling J , (ii) show that the interplay of linear dispersion
around the nodes, the Kondo effect, and long-range scalar
disorder induces a strong non-Fermi-liquid (NFL) behavior
[28–31] in these systems, and (iii) obtain the effect of the
Kondo screening, and of the interplay of Kondo screening and
long-range scalar disorder, on the transport properties and on
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the magnetic susceptibility of SMs. These quantities can be
used to address experimentally the Kondo effect and the NFL
behavior. Finally, we present a systematic comparison of the
properties of the Kondo effect between 3D and 2D Dirac SMs
[32–45].

In Dirac and Weyl SMs the low-energy states around one
of the DPs are described by the Hamiltonian H0 = ĉ

†
kσ (�vF k ·

τ σσ ′ − μδσσ ′)ĉkσ ′ , where ĉ
†
kσ (ĉkσ ) creates (annihilates) an

electron with momentum k and spin (or pseudospin) σ , and
μ is the chemical potential. Hereafter we set � = 1. For TIs
and Weyl SMs (graphene and 3D Dirac SMs) τ σσ ′ is the vector
formed by the 2 × 2 Pauli matrices in spin (pseudospin) space.
The contribution of Fermi arcs to the Kondo effect in Weyl SMs
is negligible, since it requires a flip of the electron spin, and
consequently a jump between different surfaces of the SM.
Thus, the differences between Weyl and Dirac SMs, besides
the extra spin degeneracy gs = 2 of Dirac eigenstates, turn out
to be inessential for our purposes.

In the presence of diluted magnetic impurities the system
is described by the Hamiltonian H = H0 + HJ , where HJ =
J

∑
r,R ĉ

†
rστ σσ ′ ĉrσ ′ · Sδ(r − R), with S the magnetic moment

of the impurities, {R} their positions, and J the strength of
the (antiferromagnetic) coupling between the impurities and
the carriers. To treat this term we use a large-N expansion
[46,47], by which S is expressed in terms of auxiliary
creation (annihilation) fermionic operators f̂ †

σ (f̂σ ) satisfying
the constraint nf = ∑

σ f̂ †
σ f̂σ = 1, with σ = 1, . . . ,Nσ . We

set Nσ = 2 at the end of the calculation, which corresponds
to the case of a magnetic impurity with |S| = 1/2. In terms
of the f̂ operators, the coupling term HJ takes the form
HJ = J

∑
k,k′,σ ĉ

†
kσ ĉk′σ ′ f̂

†
σ ′ f̂σ .

The large-N expansion allows a mean field treatment of the
Kondo problem [46], and is known to return accurate and reli-
able results for the case of diluted magnetic impurities [46–48].
We decouple the quartic interaction term HJ via a Hubbard-
Stratonovich field s ∼ ∑

k,σ 〈f̂ †
σ ĉkσ 〉, which describes the

hybridization between “localized” (f̂ ) and “itinerant” (ĉ)
electronic states. The constraint nf = 1 is enforced by the
introduction of a Lagrange multiplier μf , which plays the role
of the chemical potential of the f electrons. Approximating s
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and μf as static (mean) fields, we finally obtain the effective
action

Seff = 1

kBT

⎡
⎣ 2

π

∫
dε

arctan
[

π
2

|s|2N (ε+μ)
ε−μf

]
eε/(kBT ) + 1

+ |s|2
J

− μf

⎤
⎦,

(1)

where the integral is bound between −D − μ and D − μ, D

is a cutoff corresponding to half the bandwidth of the SM, and
N (ε) = V Nwε2/(2π2

�
3v3

F) is the density of states (DOS) with
Nw the number of DPs, and V the volume of the system. The
corresponding Seff for the 2D case is obtained by replacing
N (ε) → V Nw|ε|/(2π�

2v2
F). By minimizing Seff within the

saddle point approximation [47], we obtain the self-consistent
equations for |s|2 and μf .

We identify TK as the highest temperature for which the
self-consistent equations have a nontrivial solution. Depending
on the value of μ, we can have two distinct situations. For
μ = 0, i.e., when the chemical potential of the 3D SM lies
exactly at the DP, we obtain

TK = D

√
3

π

√
1 − 2

N (D)J
, μ = 0. (2)

Equation (2) is valid only for J larger than the critical
value Jcr = 2/N (D); TK vanishes when this condition is not
met. A similar result is found in 2D, for which one obtains
TK = D{1 − 1/[N (D)J ]}/ ln(4) [32,33,37,43,49]. In the 2D
case, Jcr = 1/N (D). Numerical renormalization group (NRG)
calculations [34] show that, for N (ε) ∼ |ε|a (with a > 1/2)
and in the presence of perfect particle-hole symmetry, the
Kondo effect cannot be realized for any value of J . The
previous results should be intended to describe 2D and 3D
SMs close to, but not exactly at, a particle-hole symmetric
situation. This is likely the most realistic condition given that
in real systems typically there is no particle-hole symmetry.
Local fluctuations take the local μ away from the Dirac point
almost everywhere in the sample. Moreover, in many systems
such as graphene and TIs (in 2D) or the Weyl SM Cd2As3 [50]
(in 3D), the Fermi velocities of the conduction and valence
bands are different.

When μ �= 0, in the limit kBTK 	 μ 	 D and J � Jcr, we
obtain

TK = D exp

[
1 − 2/[JN (D)]

2μ2/D2

]
, μ �= 0. (3)

In 2D [39] and for J � Jcr we have instead TK =
κ(μ)e{1−1/[N (D)J ]}/|μ/D|, where κ(μ) = μ2/D [κ(μ) = D] for
μ > 0 (μ < 0). For J � Jcr, TK can be obtained numerically.
Figure 1 shows TK for 3D and 2D SMs as a function of J (both
smaller and larger than Jc) and for different values of μ > 0.

We now investigate the effect of long-range scalar disorder
on the Kondo effect. In Dirac SMs, differently from “standard”
metals, charged impurities induce [51–53] long-range carrier
density inhomogeneities [54,55]. Such inhomogeneities have
been observed in direct imaging experiments in graphene
[56–58] and TIs [24,59,60]. Since the DOS of 3D Dirac SMs
scales with the density, as ∼n2/3 in 3D and ∼n1/2 in 2D,
the long-range fluctuations of the carrier density reflect on
the DOS and therefore on TK, Eq. (3). The Kondo effect is

FIG. 1. (Color online) TK as a function of Ĵ = JN (D) for
different values of μ/D for a (a) 3D and (b) 2D Dirac SM.

not characterized anymore by a single value of TK, but by
a distribution of Kondo temperatures P (TK) [44]. A similar
situation was predicted to occur in metals close to a metal-
insulator transition (MIT) [28].

We consider a Gaussian density distribution Pn(n) cen-
tered around the average doping n̄, with standard deviation
σn (proportional to the number of dopants), i.e., Pn(n) =
exp [−(n − n̄)2/(2σ 2

n )]/(
√

2πσn). This assumption for Pn(n)
has been shown to be well justified for the case of 2D graphene
[61–63] and we expect it to be a reasonable model also for
3D SMs. Using this expression for Pn(n) and the fact that
μ ∼ n1/3, from Eq. (3) we obtain

P (3D)(TK) = 3D3T −1
K

8
√

πσ 3
μ

√
(1 − Jc/J )3

ln5(kBTK/D)

∑
λ=±1

e
− (μ3−λμ̄3)2

2σ6
μ , (4)

where μ̄ = vF(6π2n̄/Nw)
1/3

, σμ = vF(6π2σn/Nw)
1/3

, and
μ ≡ μ(TK ) is obtained by inverting Eq. (3). In so doing, we
neglected the change of the local DOS due to the scalar part of
the potential of the magnetic impurity, which is significant only
when μ ∼ 0. Due to the strong carrier density inhomogeneities
induced by the long-range disorder, even when n̄ = 0, the area
of the sample where μ ∼ 0 has measure zero. Therefore, the
change of the DOS can be neglected.

We recall that, in 2D, |μ| ∼ n1/2. The major complication
in inverting the relation TK(μ) in this case is due to the
asymmetric prefactor κ(μ), which we approximate as κ(μ) =
D. In this way we obtain a lower bound for P (2D)(TK),

P (2D)(TK) =
√

2D2

√
πσ 2

μTK

(1 − Jc/J )2

| ln3(kBTK/D)|
∑
λ=±1

e
− (μ2−λμ̄2)2

2σ4
μ , (5)

where μ ≡ μ2D(TK). Equations (4) and (5) show explicitly
that, in the limit TK → 0,

P (3D)(TK) ∝ T −1
K | ln(TK)|−5/2e−μ̄6/(2σ 6

μ), (6)

P (2D)(TK) ∝ T −1
K | ln(TK)|−3e−μ̄4/(2σ 4

μ). (7)

Our approach is valid as long as the size of the Kondo cloud for
TK � T is smaller than the correlation length of the disorder
potential. Figure 2 shows the profile of P (TK) for different
values of n̄ in 3D and 2D, Figs. 2(a) and 2(b), respectively.
It is interesting to notice that the scaling for TK → 0 that we
find for the 2D case, Eq. (7), is effectively indistinguishable
from the scaling P (TK ) ∝ T α−1

K with α = 0.2 that was found
by fitting NRG results in Ref. [44]. This result shows the good
agreement in 2D between the NRG and large-N expansion and
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FIG. 2. (Color online) T̄KP (T̄K), T̄K ≡ kBTK/D, for a (a) 3D and
(b) 2D SM with vF = 108 cm/s, D = 0.5 eV, J = 0.6Jcr, Nw = 2,
and different values of n̄ [in units of cm−3 in (a) and cm−2 in (b)].
In (a), σn = 1016 cm−3 and gs = 1, and in (b), σn = 1011 cm−2 and
gs = 2.

therefore confirms the reliability of the two approaches even
in the delicate regime induced in 2D Dirac semimetals by the
presence of carrier density inhomogeneities. This agreement
also suggests that even in 3D, the large-N expansion should
provide reasonably accurate results for P (TK).

Equations (6) and (7) show that in the presence of long-
range disorder there is always a large fraction of the sample
whose TK is extremely small. As a consequence, at any finite T ,
a significant fraction of carriers is not “bound” to the magnetic
impurities. From Eqs. (4) and (5) we determine the number of
free spins as nfr(T ) = ∫ T

0 dTKP (TK) and in the limit of T → 0
we find

nfr(T ) ∝ | ln(T )|−3/2e−n̄2/(2σ 2
n ) in 3D, (8)

nfr(T ) ∝ | ln(T )|−2e−n̄2/(2σ 2
n ) in 2D. (9)

Note that the number of free spins goes to zero loga-
rithmically as T → 0. Therefore, the magnetic susceptibility
χm(T ) ∝ nfr(T )/T diverges at low temperature. At odds with
the magnetic susceptibility of a normal Fermi liquid, χm(T )
does not converge to any finite value for T = 0 and, away
from T = 0, does not scale with T as ∼1/T (Curie-Weiss
law) [64]. This is a clear signature of the development of a
NFL behavior. We observe that in Dirac SMs the divergence
of χm(T ) is stronger than what was found for metals close to
a MIT [28]. Note also that both the distribution P (TK) and the
number of free spins contain the factor exp [−n̄2/(2σ 2

n )], which
encodes the effects of both doping and disorder. If the system
is strongly doped (i.e., if n̄ � σn), the exponential factor
strongly suppresses the NFL behavior. The density fluctuations
are indeed too small and the Kondo effect is completely
controlled by the average Kondo temperature. In this situation,
χm diverges only at extremely small temperatures. On the
contrary, when σn � n̄, the exponential factor is of order of
the unity, and nfr can be quite large.

We now discuss the effect of our results on the transport
properties of 3D and 2D Dirac materials. The coupling term HJ

induces a self-energy correction 
(ε) for the SM quasiparticles
(QPs). The imaginary part of 
(ε) gives the relaxation rate
1/τ (ε) of the QPs due their hybridization with the f electrons.
We find 1/τ (ε) = 4nimp/[πN (ε + μ)], where nimp is the
density of magnetic impurities.

Notice that τ (ε) does not depend on the hybridization |s|2.
The factor |s|2 due to the interaction vertices between electrons

and impurity states is canceled by the opposite factor ∼1/|s|2
stemming from the spectral weight of impurity states at the
Fermi energy. Using the Boltzmann-transport theory and the
expression of τ (ε), we can estimate the Kondo resistivity ρK

for the 3D case at T = 0,

ρK(T = 0) = h

e2

(
32gs

3π2N2
w

)1/3
nimp

n4/3
. (10)

It is interesting to compare the scaling given by Eq. (10) to
that of the resistivity due to scalar disorder (ρ). For short-
range scalar disorder ρ is independent of n [4]. For long-range
disorder (due to charged impurities) ρ [4] has the same scaling
with respect to nimp and n as ρK(T = 0). The same happens in
the 2D case, for which ρK = (h/e2)[4nimp/(πNw)]n−1 [38].

To obtain ρK(T ) at finite T it is necessary to keep higher
order terms [27] in the coupling J and to take into account
electron-phonon scattering events. We find that, in general,
within the Bloch-Grüneisen regime for the electron-phonon
contribution and for T > TK, ρK(T ) is given by the following
expression:

ρK

ρ0
=

[
1 + 1

4

(d − 1)π2S(S + 1)

ln2(T/TK ) + π2[S(S + 1)]/4
+ AphT

2+d

]
,

(11)

where d is the dimensionality of the system (2 or 3), ρ0 ≡
ρK(T = 0), and ρ0AphT

2+d is the phonon contribution to the
resistivity. This expression is equal to that valid for standard
2D and 3D metallic systems. The unique dispersion of Dirac
and Weyl SMs affects ρ(T ) indirectly through the dependence
of TK on n, J , and Nw. Note that, in general, also Aph depends
on n.

The expression of ρK given by Eq. (11) is valid for a
homogeneous system. To take into account the effect of
the scalar disorder on ρK(T ), we use the effective medium
theory (EMT) [63,65,66]. In the EMT the resistivity of the
inhomogeneous system is equal to that of an homogeneous
“effective medium” [ρ(EMT)

K ], and is determined by solving the

integral equation
∫

dTKP (TK ) ρ
(EMT)
K (T )−ρK(T ,TK)

ρ
(EMT)
K (T )+(d−1)ρK(T ,TK)

= 0.

In the remainder, for the 2D case we use parameter values
appropriate for graphene: vF = 108 cm/s, D = 0.5 eV, Nw = 2,
and spin degeneracy gs = 2. In 3D we consider the case of an
isotropic linear dispersion with a Fermi velocity equal to that of
graphene, D = 0.5 eV, Nw = 2, and gs = 1, parameters that
roughly approximate the case of Cd2As3 [7]. We then assume
Ĵ ≡ JN (D) = 0.98 and Aph = 4 × 10−6 meV−4 for the 2D
case, and Ĵ = 0.98 and Aph = 4 × 10−7 meV−5 for the 3D
case.

Figures 3(a) and 3(b) show the results for ρ
(EMT)
K , for

the 2D and 3D case, respectively, when μ̄ = 60 meV (n̄ =
2.647 × 1011 cm−2 in 2D, and n̄ = 2.561 × 1016 cm−3 in 3D)
and Ĵ is set to a value such that for the homogeneous case
we have TK = 6 meV [Eq. (3)], i.e., of the same order of the
values observed experimentally in graphene [67]. We see that
for σn 	 n̄, ρ

(EMT)
K (T ) exhibits the nonmonotonic behavior,

characterized by a minimum for T ∼ TK, that is the signature
of the Kondo effect. However, for σn � n̄, the profile of
ρ

(EMT)
K (T ) changes dramatically: The minimum of ρ

(EMT)
K (T )

first becomes shallower, moving to lower values of T , and
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FIG. 3. (Color online) (a), (b) ρ
(EMT)
K (T ) for the case in which

μ̄ = 60 meV in 2D (Ĵ = 0.98) and 3D (Ĵ = 1.77), respectively.
(c), (d) ρ

(EMT)
K (T ) for the case in which n̄ = 0 (J < Jcr), in 2D and

3D, respectively. In this plot, σn is in units of cm−3 in the 3D case,
and of cm−2 in the 2D one.

then eventually disappears. In both 2D and 3D Dirac SMs, in
the presence of long-range disorder, ρ

(EMT)
K (T ) may not show

any qualitative signatures of the Kondo effect even though in a
large fraction of the sample the magnetic impurities are Kondo
screened.

We now consider the case in which μ̄ = 0. Considering
that we have chosen values of J < Jcr, in the homogeneous
limit TK → 0 and therefore ρ

(EMT)
K (T ) does not exhibit any

minimum at low T . This picture, however, is qualitatively
modified in Dirac materials when long-range scalar disorder
is present, as shown in Figs. 3(c) and 3(d): In the presence
of density inhomogeneities, even for n̄ = 0 and J < Jcr,
ρ

(EMT)
K (T ) can exhibit a minimum, signaling the presence of

Kondo screening in a significant fraction of the sample.

In conclusion, we have studied the Kondo effect in 3D Dirac
and Weyl semimetals. In the absence of long-range, disorder-
induced, carrier density inhomogeneities, the Kondo effect
is characterized by the Kondo temperature TK, the crossover
temperature below which the Kondo screening takes effect.
When the chemical potential μ is at the Dirac point, we find that
no Kondo effect can take place unless the coupling J between
magnetic impurities and conduction electrons is larger than a
critical value Jcr = 2/N (D). In this case TK ∝ √

1 − Jcr/J .
For μ > 0, TK depends exponentially on μ and J .

In the presence of long-range disorder we find that the
Kondo effect is not characterized by a single crossover
temperature TK, but by a distribution of Kondo temperatures
P (TK). In the limit TK → 0, P (TK) ∝ T −1

K | ln(TK)|−5/2 in
3D and P (TK) ∝ T −1

K | ln(TK)|−3 in 2D. This implies that
the magnetic susceptibility diverges slower than ∼1/T for
T → 0, and that it does not converge to any finite value at
zero temperature, a clear signature of a strong NFL behavior
[28].

We have then studied the effect of Kondo screening, and
of the interplay of Kondo screening and long-range scalar
disorder, on the transport properties of Weyl semimetals. We
find that for T = 0, the Kondo resistivity due to the presence
of magnetic impurities scales as ρK ∝ nimp/n4/3. We have then
obtained the expression of ρK for finite T and found that when
the scalar disorder is weak, ρK(T ) exhibit the typical minimum
characteristic of the Kondo effect. However, we find that in
the presence of strong scalar disorder, ρK(T ) might not show
any qualitative signatures of the Kondo effect, even though
in a large fraction of the sample the magnetic impurities are
Kondo screened and vice versa exhibit a minimum even in the
limit, n̄ = 0 and J < Jc, when in the homogeneous system no
Kondo effect is present.

This work was supported by DOE Grant No. DE-FG02-
05ER46203 (A.P. and G.V.), by ONR Grant No. ONR-
N00014-13-1-0321 (E.R.), and by a Research Board Grant
at the University of Missouri (A.P. and G.V.).
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