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Impurity-induced bound states in superconductors with spin-orbit coupling

Younghyun Kim,1 Junhua Zhang,2 E. Rossi,2 and Roman M. Lutchyn3
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2Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA

3Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA
(Dated: May 18, 2015)

We study the effect of strong spin-orbit coupling (SOC) on bound states induced by impurities in supercon-
ductors. The presence of spin-orbit coupling breaks the SU(2)-spin symmetry and causes the superconducting
order parameter to have generically both singlet (s-wave) and triplet (p-wave) components. We find that in the
presence of SOC the spectrum of Yu-Shiba-Rusinov (YSR) states is qualitatively different in s-wave and p-wave
superconductor, a fact that can be used to identify the superconducting pairing symmetry of the host system.
We also predict that in the presence of SOC the spectrum of the impurity-induced bound states depends on the
orientation of the magnetic moment S of the impurity and, in particular, that by changing the orientation of S
the fermion-parity of the lowest energy bound state can be tuned. We then study the case of a dimer of magnetic
impurities and show that in this case the YSR spectrum for a p-wave superconductor is qualitatively very differ-
ent from the one for an s-wave superconductor even in the limit of vanishing SOC. Our predictions can be used
to distinguish the symmetry of the order parameter and have implications for the Majorana proposals based on
chains of magnetic atoms placed on the surface of superconductors with strong spin-orbit coupling [1].

PACS numbers: 73.20.Hb, 74.78.-w, 75.70.Tj,

The presence of impurities is almost always unavoidable in
condensed matter systems. Often impurities are regarded as a
nuisance that spoils the properties of a clean system and com-
plicates the understanding of its properties. However, impuri-
ties are in many instances essential to obtain desirable physi-
cal effects and can be used as unique atomic-scale probes of
the ground state of the host system [2–10]. The study of the
effect of impurities in superconductors has been a very active
field of research [10]. In an s-wave superconductor magnetic
impurities cause the formation of bound states, the Yu-Shiba-
Rusinov (YSR) states [11–13]. There has been a significant
interest in the properties of YSR states due to theoretical pro-
posals suggesting that a chain of magnetic impurities placed
on the surface of a superconductor (SC) would be a very ro-
bust, self-tuning, system that should exhibit non-abelian, Ma-
jorana, states [14–18]. In these proposals the bound states
induced by the chain of magnetic impurities form an impurity
band with non-trivial topological character. More recently it
has been pointed out that the presence of Rashba spin-orbit
coupling (SOC) should facilitate the realization of a topolog-
ical impurity band of YSR states. [1, 19–21]. On the sur-
face, due to the lack of inversion symmetry, some amount of
Rashba SOC will be present. Therefore, for the systems con-
sidered to realize a topological band of YSR states the pres-
ence of Rashba SOC is both unavoidable and beneficial. This
assessment has very recently been confirmed by the experi-
mental results presented in Ref. 1, that show some evidence
of the presence of Majorana modes at the end of a chain of
Fe atoms placed on the surface of a SC with strong SOC, Pb.
The recent developments in the search of systems that can re-
siliently host Majorana fermions [22–45] strongly motivates
the study of the effect of SOC on YSR states. However, so far
the effects of SOC on YSR states have been almost completely
neglected.

In this work we present the general theory of the impurity-

induced bound states in the presence of Rashba SOC. We
show that SOC, which breaks SU(2)-spin symmetry and re-
sults in the mixture of s-wave and p-wave pairing corre-
lations [46] profoundly modifies the spectrum of the YSR
states.Our theory takes into account the fact that the impurity
potential normally has both a scalar and a magnetic compo-
nent. We consider the realistic, and general, case in which
both the scalar and the magnetic part of the impurity poten-
tial has angular momentum components (l) higher than l = 0.
This is also motivated by the fact that partial waves beyond
s-wave have been shown to often be essential to explain ex-
perimental data [47–49]. We find that the presence of SOC,
by mixing YSR states with different l, profoundly changes the
spectrum of the impurity-induced bound states. The presence
of SOC can lead to p-wave pairing. Our results show that the
spectrum of impurity-induced bound states is qualitatively dif-
ferent in p-wave and s-wave superconductors: we find that, in
general, the parity of the particle (or hole)-like subgap bound
states in p-wave SCs is different from that of s-wave SCs. This
qualitative difference can be used to identify the supercon-
ducting pairing symmetry of the host system. Another impor-
tant consequence of the presence of SOC that we find is that
the spectrum of the YSR states becomes dependent on the ori-
entation of the magnetic moment S of the impurity and that in
particular the fermion parity of the lowest energy bound state
can be tuned by changing the direction of S. We then study the
case of a dimer formed by two magnetic impurities and find
that in this case, even in the limit of zero SOC the YSR spec-
trum is qualitatively different between s-wave SCs and p-wave
SCs. Our results provide clear qualitative predictions that can
be tested experimentally and that are directly relevant to recent
scanning-tunneling-spectroscopy (STS) measurements of the
states induced in thin films of Pb by the presence of magnetic
adatoms [48]. By showing that the YSR spectrum can be mod-
ified by changing the orientation of S our results show an ad-
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ditional degree of tunability of the properties of the impurity-
bound states in SCs that could be extremely helpful to realize,
and verify, the conditions necessary to obtain a topological
band of YSR states hosting Majorana zero-energy modes.

Model. We consider a superconductor described by the
mean-field Hamiltonian HSC =

∑
p ψ
†
pHSC(p)ψp where

ψp is the Nambu spinor (cp↑, cp↓, c
†
−p↓,−c

†
−p↑)

T , with c†pσ
(cpσ) the creation (annihilation) operator for an electron with
momentum p = (px, py) and spin σ, and

HSC(p) = τz⊗ (ξp +αlp ·σ) + τx⊗ (∆s +
∆t

pF
lp ·σ). (1)

HSC describes effectively two-dimensional superconducting
thin films, and surfaces of 3D superconductors with strong
Rashba SOC. In (1) ~ = 1, τj , σi are the Pauli matrices in
Nambu and spin space respectively, ξp = p2/2m − εF , with
m the effective mass of the fermionic quasiparticles; εF and
pF =

√
2mεF are the Fermi energy and Fermi momentum,

respectively, lp = (py,−px)[50], α is the strength of the
Rashba SOC, and ∆s, ∆t are the singlet, triplet, pairing or-
der parameters respectively, that, without loss of generality,
we take to be real.

In the presence of impurities the term Himp =
∑
j V̂j(|r−

Rj |) =
∑
j Û(|r−Rj |)τz⊗σ0+ Ĵ(|r−Rj |)τ0⊗Sj ·σ must

be added to HSC. Ris are the positions of the impurities, and
Û and Ĵ are the charge and magnetic potential respectively.
Without loss of generality, we set R = 0 for single impurity
and Ri = xi for dimer. Using the density of states (per spin)
νF = m/2π, and the Fermi velocity vF = pF /m, we can de-
fine the dimensionless potentials U ≡ ÛπνF , J ≡ ĴπνF |S|,
and the dimensionless Rashba SOC α̃ ≡ α/vF which are used
in the remainder of the paper.

To find the spectrum {E} of the impurity-induced states we
have to solve the Schrödinger equation (HSC +Himp)ψ(r) =
Eψ(r). LetG = [E−HSC]−1, then the Schrödinger equation
can be rewritten as [1 − G(E, r)Himp]ψ(r) = 0 [18]. The
spectrum of the impurity bound states is obtained by finding
the values of E such that det[1 − G(E, r)Himp] = 0. In
momentum space the Schrödinger equation takes the form:

ψ(p)=
∑
j

G(E,p)

∫
dp′eixj(p cos θ−p′cos θ′)V̂j(|p−p′|)ψ(p′).

(2)
Following the formalism of Ref. [46], the Green’s func-
tion G can be written as the sum (G(E,p) = [G+(E,p) +
G−(E,p)]/2) of the two spin helical bands

G±(E,p) =

(
E + ξ± ∆±

∆± E − ξ±

)
⊗σ0 ± sin θσx ∓ cos θσy

E2 − ξ2± −∆2
±

.

Here p = |p|, ξ± = p2/2m ± αp − εF and ∆± = ∆s ±
∆tp/pF . Let us define ψj,θ =

∫
pdp
2π e

−ixjp cos θψ(p) and
Gij(E, θ) =

∫
pdp
2π e

−i(xi−xj)p cos θ G(E,p). Assuming that
V̂ (p) at the Fermi surface depends weakly on p and integrat-

ing Eq. (2) with respect to p, we find

ψi(θ) =
∑
j

Ĝij(E, θ)
1

2π

∫
dθ′V̂j(θ − θ′)ψj(θ′). (3)

Rewriting all the functions of angle that enter Eq. (3) in terms
of their angular momentum components: f(θ) =

∑
l fle

ilθ

we find:

ψi,l −
∑
j,n

Gijn (E)V̂ l−nj ψj,l−n = 0, (4)

where

V̂ lj =

(
Ulσ0 + Jl

Sj·σ
|Sj| 0

0 −U−lσ0 + J−l
Sj·σ
|Sj|

)
. (5)

Since Himp is Hermitian and even with respect to θ − θ′,
we require Ul(= U−l) and Jl(= J−l) to be real. The local
term Giin = (G+

n (E) + G−n (E))/2 = 0 for |n| ≥ 2. The
details of the calculation are presented in the supplementary
material[51]. Henceforth, we assume that the impurity poten-
tial has only large l = 0, 1 components and neglect higher
angular momentum channels.

We consider two different phases of a non-centro-
symmetric SC [52–54]: s-wave (|∆s| � |∆t|) and p-wave
(|∆s| � |∆t|) pairing dominating regimes. As we show be-
low, the spectra are qualitatively different in the two regimes.

Single magnetic impurity. The main effect of the presence
of SOC on the YSR spectrum is well exemplified by the case
of purely magnetic impurities. For this reason in the remain-
der we consider only purely magnetic impurities (Ul = 0) and
discuss in the supplementary material the case in which also a
scalar component of the impurity potential is present.

For an s-wave SC, we find that, in the presence of SOC we
have three impurity-induced bound states at E > 0. For the
case when the magnetic moment of the impurity is perpendic-
ular to the surface of the SC, S ‖ ẑ, the energies of these states
are given by the following expressions:

|E1,2|
∆s

=
γ2−J2

0J
2
1±γ

3
2

√
(J2

0−J2
1 )2+(γ−1)(J0−J1)4

γ2(1+(J0−J1)2)+2γJ0J1 + J2
0J

2
1

(6)

|E3|
∆s

=
1− J2

1

1 + J2
1

(7)

where γ = 1 + α̃2. In the limit of no SC, each non-zero angu-
lar momentum component of the magnetic impurity potential,
Jn, creates a bound state [13]. For α̃ = 0, the l = ±1 levels
are degenerate due to the rotational symmetry of the Hamilto-
nian. The presence of SOC, however, causes the l = ±1 levels
to split, see Fig. 1 (a). Interestingly, we find that only two of
the levels disperse with α and one level remains unchanged.

An important consequence of the presence of the SOC
in s-wave SCs is that, by breaking the SU(2) symme-
try of the SC Hamiltonian, it causes the spectrum of the
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FIG. 1. Dependence on SOC strength of the spectrum of bound
states induced in a SC by a purely magnetic impurity with J0 = 3/4,
J1 = 1/2 in s-wave (a, c) and p-wave (b,d) superconductor for S ‖ ẑ
(a,b) and S ‖ x̂ (c,d).

YSR states to strongly depend on the direction of S =
(cosφ sin θ, sinφ sin θ, cos θ). Fig. 2 (a) shows an example of
the evolution of the spectrum of the YSR states with θ for an
s-wave SC. (Due to the remaining U(1) symmetry the spec-
trum does not depend on the in-plane direction, i.e. φ). We
see that, the spectrum for the case in which S ‖ ẑ can be
very different from the spectrum for the case in which S lies
in the plane. In particular the results of Fig. 2 (a) show that
by tuning the direction of S the fermion parity of the bound
states can be changed. This feature could be extremely use-
ful to tune between topological and non-topological regimes
in the YSR-based Majorana proposals [18]. In the limit
α̃ � min{1, |J0 − J1|} we can obtain analytic expression
for the dependence of the YSR energy levels on the direction
of S in an s-wave SC:

|E1|
∆s
≈ 1−J2

0

1+J2
0

+
4α̃2J2

0J1(J0 cos2 θ − J1)

(1 + J2
0 )2(J2

0 − J2
1 )

(8)

|E2,3|
∆s

≈ 1−J2
1

1+J2
1

+
2α̃2J0J

2
1 (J0−J1 cos2 θ ± F (θ))

(1 + J2
1 )2(J2

0 − J2
1 )

where F =
√

(J0 − J1)2 cos2 θ + J2
1 sin4 θ. These expres-

sions, valid as long as the hybridized states are not degenerate,
allow us to identify the effect of the interplay of SOC, relative
strength of the different components of the magnetic impurity
potentials (Jl), and direction of S on the YSR spectrum.

We now study YSR states in a p-wave SC. The energies of
the YSR spectrum, in the presence of small SOC (α̃� 1) for
S ‖ ẑ are given by

|E1,2|
|∆t|

=
1 + J0J1√

(1 + J2
0 )(1 + J2

1 )
± |α̃| (J0 − J1)2

(1 + J2
0 )(1 + J2

1 )
(9)

|E3,4|
|∆t|

=
1√

1 + J2
1

± |α̃| J2
1

1 + J2
1

. (10)

Fig. 1 show the evolution with α̃ of the energies of the YSR
states in a p-wave SC for S ‖ ẑ (b) and S ‖ x̂ (d). In the
absence of SOC α̃ = 0, one can see that the YSR spectrum is

0 Π
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FIG. 2. Bound state spectrum for magnetic impurity in a s-wave(a)
and p-wave(b) SC as a function of the direction of magnetic moment
at J0 = 1, J±1 = 1/3.

isotropic in s-wave case due to the rotational spin symmetry.
In p-wave case, this is not the case as follows from Fig. 1 b)
and d). Since the p-wave pairing term mixes different angular
momentum channels, l is not a good quantum number to label
the states even in the absence of SOC. Furthermore, one can
notice that the states are doubly degenerate at α̃ = 0 due to an
additional symmetry present in the p-wave case. Indeed, the
p-wave Green’s function is invariant under the transformation
U = τz⊗σ0⊗P with P being the momentum inversion opera-
tor p→ −p. Due to this symmetry YSR states appear in pairs
in p-wave superconductor. In contrast, the s-wave Green’s
function does not have above symmetry and, as a result, there
is only one bound state per angular momentum channel (i.e
one state for l = −1, 0, 1 channels). In the presence of per-
turbations not commuting with U such as, for example, SOC,
this degeneracy is lifted and the different parity of the par-
ticle (or hole)-like subgap states in s-wave and p-wave be-
comes visible, see Figs. 1 and 2. This qualitative result opens
the possibility to identify the dominant superconducting pair-
ing of a SC by simply counting the number of particle-like
energy levels induced by a magnetic impurity within the SC
gap. We now discuss the dependence of the YSR spectrum on
the orientation of magnetic impurity moment in p-wave super-
conductors. In contrast to s-wave superconductors, the YSR
spectrum in p-wave case depends on θ even in the absence of
SO coupling since p-wave pairing is characterized by the vec-
tor lp, see Eq.(1). The analytical results for a general angle
θ are not particularly illuminating (see Eq. (S26) in the sup-
plementary information) so we plot the evolution of the YSR
spectrum with θ in Fig. 2 (b). One can notice that the presence
of the SOC enhances the dispersion of YSR states with θ.

Dimer. There is currently a great interest in the properties
of the bound states created by a chain of magnetic impurities
placed on a SC [1, 14–21]. To understand the physics of a
chain of impurities it is very helpful to investigate the simpler
case of a dimer formed by two magnetic impurities. Using
Eq. (4) we have studied the properties of a dimer formed by
two magnetic impurities placed at a distance d from each other
on the surface of the SC assuming ∆/εF � 1. We find that
the wavefunction overlap between the bound states induced
by the two impurities generates level splitting which strongly
depends on the relative direction of the impurity spins, and
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FIG. 3. Bound state spectrum of a magnetic impurity dimer along the
x̂ in a s-wave (a) and p-wave (b) SC. The direction of one impurity
is fixed along ẑ while the other impurity pointing in x− z plane with
angle θ from ẑ. Here J0 = 3/4, kF d = 6 and εF = 1000∆s,t.
(c) dependence of a dimer YSR spectrum on the distance d between
the two impurities aligned along ẑ for an s-wave SC; εF = 1000∆s,
J0 = 3/4. (d) Same as (c) but for a p-wave SC.

that such splitting depends on the strength of the SOC. It is
interesting to note that for the case of a dimer the presence of
SOC, even when the SC is s-wave, modifies the spectrum also
in the limit in which the magnetic part of the single impurity
potential has only one nonzero angular momentum compo-
nent. For this reason, to understand the effect of SOC on the
YSR spectrum of a dimer we consider the case in which only
J0, or J1 are not zero and one impurity has S1 ‖ ẑ and the
other S2 = (sin θ, 0, cos θ). The dependence of the dimer
YSR spectrum on the relative angle θ between the magnetic
moments of the two impurities is shown in Fig. 3 (a, b). We
immediately notice the following qualitative features: (i) Even
in the limit of no SOC, for a p-wave SC the number of energy
levels is twice as large as the number of levels in an s-wave
SC; (ii) In the limit of no SOC for an antiferromagnetic dimer
the spins of two YSR bound states are in the opposite direc-
tions such that their orthogonality leads to a level crossing at
θ = π; (iii) In the presence of Rashba SOC the spatial pro-
jection of a bound state spinor rotates around the y-axis as we
move from one impurity to the other; as a result the crossing
between levels happens at θ 6= π; for an s-wave SC the two
levels cross for a value of θ smaller than π (Fig. 3 (a)), for a
p-wave SC the two lower energy states cross at θ < π whereas
the two higher energy states cross at θ > π.

The qualitative features listed above should be easy to test
experimentally. The first feature should allow to readily iden-
tify the symmetry, s-wave or p-wave, of the superconducting
pairing in the host material, even without any tuning of the
relative angle between the magnetic moments of the two im-
purities. If the relative angle θ between the magnetic moments
of the two impurities is known features (ii) and (iii) allow to
detect the presence of SOC and its strength. Conversely, if the

strength of the SOC is known, features (ii) and (iii) allow the
determination of the relative angle θ.

The properties of the system SC+dimer can be further iden-
tified by studying the dependence of the dimer YSR spectrum
on the distance d between the two impurities. Figures 3 (c), (d)
show the evolution of the energy levels of the YSR spectrum
with d, for the case of an s-wave and p-wave SC respec-
tively. The combination of the results presented in the panels
of Fig. 3 makes possible to obtain experimentally, by measur-
ing the dependence of the dimer spectrum on the experimen-
tally tunable parameters θ and d: (i) the pairing symmetry of
the SC, (ii) the strength of the impurity-host exchange cou-
plings (Jn), (iii) the strength of the SOC.

Conclusions. We have studied the effect of spin-orbit cou-
pling on the impurity-induced resonances in the local density
of states of a 2D superconductor for the case of a single im-
purity and a dimer. Our treatment is general in that: (i) it al-
lows for the presence of s-wave and p-wave superconducting
pairings, (ii) it includes higher (|l| ≥ 1) angular momentum
components of the impurity potential, (iii) it takes into account
both the scalar and the magnetic part of the impurity potential.
We show that SOC mixes YSR states with different angular
momentum and therefore strongly modifies their spectrum. In
particular we find that: (i) In the presence of SOC the parity of
the particle (or hole)-like energy levels of the YSR spectrum
is different in s-wave and p-wave SCs, a fact that should allow
one to identify the dominant superconducting pairing symme-
try of the host material; (ii) By changing the direction of the
magnetic moment of the impurity the fermion-parity of the
lowest YSR state can be modified; (iii) The dimer YSR spec-
trum oscillates as a function of the relative angle between the
magnetic moments of the two impurities and their distance
and that qualitative features of these oscillations depend on
the superconducting pairing symmetry and the strength of the
SOC. These are predictions that can be tested experimentally
using the scanning tunneling microscopy(STM) and have im-
portant implications for STM experiments trying to reveal the
nature of the superconducting pairing in non-centrosymmetric
superconductors. Since Pb has large SO coupling, our results
shed some light on the measurements presented in Ref. 48.

Our findings are also directly relevant to the ongoing efforts
to use magnetic atom chains placed on the surface of a super-
conductor with strong SOC, such as Pb, to realize topological
superconducting phases with Majorana end states [1]. Given
that strong SOC leads to the dependence of the YSR spectrum
on the direction of the atom magnetization, one might be able
to control the fermion parity of the ground states (i.e. drive the
topological quantum phase transition) by changing the direc-
tion of the magnetization. Furthermore, we argue that higher
angular momentum impurity resonances might be important
for the interpretation of the experiment [1] since it is not clear
at the moment what is the dominant angular momentum chan-
nel determining the topological YSR band. Furthermore, we
expect that the scalar potential Un and magnetic Jn potential
would vary at the ends of the chain, and may induce some
additional in-gap states. The latter might give false positive
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signals in tunneling conductance measurements aimed to de-
tect Majorana modes [1].
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