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Abstract
In 2009–2010, the Laser Interferometer Gravitational-Wave Observatory
(LIGO) operated together with international partners Virgo and GEO600 as a
network to search for gravitational waves (GWs) of astrophysical origin. The
sensitivity of these detectors was limited by a combination of noise sources
inherent to the instrumental design and its environment, often localized in time
or frequency, that couple into the GW readout. Here we review the perfor-
mance of the LIGO instruments during this epoch, the work done to char-
acterize the detectors and their data, and the effect that transient and
continuous noise artefacts have on the sensitivity of LIGO to a variety of
astrophysical sources.

Keywords: LIGO, gravitational waves, detector characterization
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1. Introduction

Between July 2009 and October 2010, the Laser Interferometer Gravitational-Wave Obser-
vatory (LIGO) [1] operated two 4 km laser interferometers as part of a global network aiming
to detect and study gravitational waves (GWs) of astrophysical origin. These detectors, at
LIGO Hanford Observatory, WA (LHO), and LIGO Livingston Observatory, LA (LLO)—
dubbed ‘H1’ and ‘L1’, and operating beyond their initial design with greater sensitivity—took
data during Science Run 6 (S6) in collaboration with GEO600 [2] and Virgo [3].

The data from each of these detectors have been searched for GW signals from a number
of sources, including compact binary coalescences (CBCs) [4–6], generic short-duration GW
bursts [5, 7], non-axisymmetric spinning neutron stars [8], and a stochastic GW background
(SGWB) [9]. The performance of each of these analyses is measured by the searched volume
of the Universe multiplied by the searched time duration; however, long and short duration
artefacts in real data, such as narrow-bandwidth noise lines and transient noise events (glit-
ches), further restrict the sensitivity of GW searches.

Searches for transient GW signals including CBCs and GW bursts are sensitive to many
short-duration glitches coming from a number of environmental, mechanical, and electronic
mechanisms that are not fully understood. Each search pipeline employs signal-based
methods to distinguish a GW event from noise based on knowledge of the expected waveform
[10–13], but also relies on careful studies of the detector behaviour to provide information
that leads to improved data quality (DQ) through ‘vetoes’ that remove data likely to contain
noise artefacts. Searches for long-duration continuous waves (CWs) and a SGWB are sen-
sitive to disturbances from spectral lines and other sustained noise artefacts. These effects
cause elevated noise at a given frequency and so impair any search over these data.

This paper describes the work done to characterize the LIGO detectors and their data
during S6, and estimates the increase in sensitivity for analyses resulting from detector
improvements and DQ vetoes. This work follows from previous studies of LIGO DQ during
Science Run 5 (S5) [14, 15] and S6 [16, 17]. Similar studies have also been performed for the
Virgo detector relating to data taking during Virgo Science Runs (VSRs) 2, 3 and 4 [18, 19].

Section 2 details the configuration of the LIGO detectors during S6, and section 3 details
their performance over this period, outlining some of the problems observed and improve-
ments seen. Section 4 describes examples of important noise sources that were identified at
each site and steps taken to mitigate them. In section 5, we present the performance of data-
quality vetoes when applied to each of two astrophysical data searches: the ihope CBC
pipeline [13] and the Coherent WaveBurst (cWB) burst pipeline [10]. A short conclusion is
given in section 6, along with plans for characterization of the next-generation Advanced
LIGO (aLIGO) detectors, currently under construction.

2. Configuration of the LIGO detectors during the sixth science run

The first-generation LIGO instruments were versions of a Michelson interferometer [20] with
Fabry–Perot arm cavities, with which GW amplitude is measured as a strain of the 4 km arm
length, as shown in figure 1 [21]. In this layout, a diode-pumped, power-amplified Nd:YAG
laser generated a carrier beam in a single longitudinal mode at 1064 nm [22]. This beam
passed through an electro-optic modulator which added a pair of radio-frequency (RF)
sidebands used for sensing and control of the test mass positions, before the modulated beam
entered a triangular optical cavity. This cavity (the ‘input mode cleaner’) was configured to
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filter out residual higher-order spatial modes from the main beam before it entered the main
interferometer.

The conceptual Michelson design was enhanced with the addition of input test masses at
the beginning of each arm to form Fabry–Perot optical cavities. These cavities increase the
storage time of light in the arms, effectively increasing the arm length. Additionally, a power-
recycling mirror was added to reflect back light returned towards the input, equivalent to
increasing the input laser power. During S5, the relative lengths of each arm were controlled
to ensure that the light exiting each arm cavity interfered destructively at the output photo-
diode, and all power was returned towards the input. In such ‘dark fringe’ operation, the phase
modulation sidebands induced in the arms by interaction with GWs would interfere con-
structively at the output, recording a GW strain in the demodulated signal. In this config-
uration, the LIGO instruments achieved their design sensitivity goal over the 2 years S5 run.
A thorough description of the initial design is given in [1].

For S6 a number of new systems were implemented to improve sensitivity and to
prototype upgrades for the second-generation aLIGO detectors [21, 23]. The initial input laser
system was upgraded from a 10W output to a maximum of 35W, with the installation of new
master ring oscillator and power amplifier systems [24]. The higher input laser power from
this system improved the sensitivity of the detectors at high frequencies (>150 Hz) and
allowed prototyping of several key components for the aLIGO laser system [25]. Addition-
ally, an improved CO2-laser thermal-compensation system was installed [26, 27] to coun-
teract thermal lensing caused by expansion of the test mass coating substrate due to heat from
absorption of the main beam.

An alternative GW detection system was installed, replacing the initial heterodyne
readout scheme [28]. A special form of homodyne detection, known as DC readout, was
implemented, whereby the interferometer is operated slightly away from the dark fringe [29].
In this system, GW-induced phase modulations would interfere with the main beam to
produce power variations on the output photodiode, without the need for demodulating the
output signal. In order to improve the quality of the light incident on the output photodiode in

Figure 1. Optical layout of the LIGO interferometers during S6 [21]. The layout differs
from that used in S5 with the addition of the output mode cleaner.
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this new readout system, an output mode cleaner (OMC) cavity was installed to filter out the
higher-order mode content of the output beam [30], including the RF sidebands. The OMC
was required to be in-vacuum, but also highly stable, and so a single-stage prototype of the
new aLIGO two-stage seismic isolation system was installed for the output optical platform
[31], from which the OMC was suspended.

Futhermore, controls for seismic feed-forward to a hydraulic actuation system were
improved at LLO to combat the higher level of seismic noise at that site [32]. This system
used signals from seismometers at the Michelson vertex, and at ends of each of the arms, to
suppress the effect of low-frequency (≲10 Hz) seismic motion on the instrument.

3. Detector sensitivity during S6

The maximum sensitivity of any GW search, such as those cited in section 1, is determined by
the amount of coincident multi-detector operation time and astrophysical reach of each
detector. In searches for transient signals these factors determine the number of sources that
could be detected during a science run, while in those for continuous signals they determine
the accumulated signal power over that run.

The S6 run took place between 7 July 2009 and 20 October 2010, with each detector
recording over seven months of data in that period. The data-taking was split into four epochs,
A–D, identifying distinct analysis periods set by changes in detector performance or the
detector network itself. Epochs A and B ran alongside the second Virgo Science Run (VSR2)
before that detector was taken off-line for a major upgrade [19]. S6A ran for ∼2 months
before a month-long instrumental commissioning break, and S6B ran to the end of 2009
before another commissioning break. The final two epochs, C and D, spanned a continuous
period of detector operation, over nine months in all, with the distinction marking the start of
VSR3 and the return of a three-detector network.

Instrumental stability over these epochs was measured by the detector duty factor—the
fraction of the total run time during which science-quality data was recorded. Each continuous
period of operation is known as a science segment, defined as time when the interferometer is
operating in a nominal state and the spectral sensitivity is deemed acceptable by the operator
and scientists on duty. A science segment is typically ended by a critically large noise level in
the instrument at which time interferometer control cannot be maintained by the electronic
control system (known as lock-loss). However, a small number of segments are ended
manually during clean data in order to perform scheduled maintenance, such as a calibration
measurement. Figure 2 shows a histogram of science segment duration over the run. The
majority of segments span several hours, but there are a significant number of shorter seg-
ments, symptomatic of interferometer instability. In particular, for L1 the number of shorter
segments is higher than that for H1, a result of poor detector stability during the early part of
the run, especially during S6B.

Table 1 summarizes the science segments for each site over the four run epochs. Both
sites saw an increase in duty factor, that of H1 increasing by ∼15 percentage points, and L1
by nearly 20 between epochs A and D. Additionally, the median duration of a single science-
quality data segment more than doubled at both sites between the opening epochs (S6A and
S6B) and the end of the run. These increases in stability highlight the developments in
understanding of the critical noise couplings [1] and how they affect operation of the
instruments (see section 4 for some examples), as well as improvements in the control system
used to maintain cavity resonance.
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The sensitivity to GWs of a single detector is typically measured as a strain amplitude
spectral density of the calibrated detector output. This is determined by a combination of
noise components, some fundamental to the design of the instruments, and some from

Figure 2. A histogram of the duration of each science segment for the LIGO detectors
during S6. The distribution is centred around ∼1 h.

Figure 3. Typical strain amplitude sensitivity of the LIGO detectors during S6.

Table 1. Science segment statistics for the LIGO detectors over the four epochs of S6.

Epoch
Median dura-
tion (mins)

Longest duration
(hours)

Total live
time (days)

Duty fac-
tor (%)

(a) H1(LIGO Hanford Observatory)
S6A 54.0 13.4 27.5 49.1
S6B 75.2 19.0 59.2 54.3
S6C 82.0 17.0 82.8 51.4
S6D 123.4 35.2 74.7 63.9

(b) L1(LIGO Livingston Observatory)
S6A 39.3 11.8 25.6 45.7
S6B 17.3 21.3 40.0 38.0
S6C 67.5 21.4 82.3 51.1
S6D 58.2 32.6 75.2 64.3
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additional noise coupling from instrumental and environmental sources. Figure 3 shows the
typical amplitude spectral densities of the LIGO detectors during S6. The dominant con-
tribution below 40 Hz is noise from seismically-driven motion of the key interferometer
optics, and from the servos used to control their alignment. The reduced level of the seismic
wall at L1 relative to H1 can be, in part, attributed to the prototype hydraulic isolation
installed at that observatory [32]. Intermediate frequencies, 50–150 Hz, have significant
contributions from Brownian motion—mechanical excitations of the test masses and their
suspensions due to thermal energy [33, 34]—however, some of the observed limiting noise in
this band was never understood. Above 150 Hz, shot noise due to variation in incident photon
flux at the output port is the dominant fundamental noise source [35]. The sensitivity is also
limited at many frequencies by narrow-band line structures, described in detail in section 4.7.
The spectral sensitivity gives a time-averaged view of detector performance, and so is sen-
sitive to the long-duration noise sources and signals, but rather insensitive to transient events.

A standard measure of a detectorʼs astrophysical reach is the distance to which that
instrument could detect GW emission from the inspiral of a binary neutron star (BNS) system
with a signal-to-noise ratio (SNR) of 8 [36, 37], averaged over source sky locations and
orientations. Figure 4 shows the evolution of this metric over the science run, with each data
point representing an average over 2048 s of data. Over the course of the run, the detection
range of H1 increased from ∼16 to ∼20 Mpc, and of L1 from ∼14 to ∼20 Mpc. The
instability of S6B at L1 can be seen between days 80–190, with a lower duty factor (also seen
in table 1) and low detection range; this period included higher seismic noise from winter
weather, although extensive commissioning of the seismic feed-forward system at LLO [32]
greatly improved isolation.

The combination of increased amplitude sensitivity and improved duty factor over the
course of S6 meant that the searchable volume of the Universe for an astrophysical analysis
was greatly increased.

4. Data-quality problems in S6

While the previous section described the performance of the LIGO detectors over the full
span of the S6 science run, there were a number of isolated problems that had detrimental

Figure 4. The inspiral detection range of the LIGO detectors throughout S6 to a binary
neutron star merger, averaged over sky location and orientation. The rapid
improvements between epochs can be attributed to hardware and control changes
implemented during commissioning periods.
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effects on the performance of each of the observatories at some time. Each of these problems,
some of which are detailed below, introduced excess noise at specific times or frequencies
that hindered astrophysical searches over the data.

Under ideal conditions, all excess noise sources can be quickly identified in the
experimental set-up and corrected, either with a hardware change, or a modification of the
control system. However, not all such fixes can be implemented immediately, or at all, and so
noisy periods in auxiliary data (other data streams not directly associated with GW readout)
must be noted and recorded as likely to adversely affect the GW data. During S6, these DQ
flags and their associated time segments were used by analysis groups to inform decisions on
which data to analyse, or which detection candidates to reject as likely noise artefacts, the
impact of which will be discussed in section 5.

The remainder of this section details a representative set of specific issues that were
present for some time during S6 at LHO or LLO, some of which were fixed at the source,
some which were identified but could not be fixed, and one which was never identified.

4.1. Seismic noise

Throughout the first-generation LIGO experiment, the impact of seismic noise was a fun-
damental limit to the sensitivity to GWs below 40 Hz. However, throughout S6 (and earlier
science runs), seismic noise was also observed to be strongly correlated with transient noise
glitches in the detector output, not only at low frequencies, but also at much higher fre-
quencies (∼ −100 200 Hz).

The top panel of figure 5 shows the seismic ground motion at LHO over a typical day.
The middle panel shows transient noise events in the GW strain data as seen by the
Ω-pipeline GW burst search algorithm [38, 39], while the bottom panel shows the same noise
as seen by a single-interferometer CBC search. Critically, during periods of high seismic
noise, the inspiral analysis ‘daily ihope’ [13] produced candidate event triggers across the full
range of signal templates, severely limiting the sensitivity of that search.

While great efforts were made to reduce the coupling of seismic noise into the inter-
ferometer [32], additional efforts were required to improve the identification of loud transient
seismic events that were likely to couple into the GW readout [40]. Such times were recorded
and used by astrophysical search groups to veto candidate events from analyses, proving
highly effective in reducing the noise background of such searches.

4.2. Seismically-driven length-sensing glitches

While transient seismic noise was a problem throughout the science run, during late 2009 the
presence of such noise proved critically disruptive at LLO. During S6B, the majority of
glitches in L1 were correlated with noise in the length control signals of two short length
degrees of freedom: the power recycling cavity length (PRCL), and the short Michelson
formed by the beam-splitter and the input test masses (MICH). Both of these length controls
were glitching simultaneously, and these glitches were correlated with more than 70% of the
glitches in the GW data.

It was discovered that high microseismic noise was driving large instabilities in the
power recycling cavity that caused significant drops in the circulating power, resulting in
large glitches in both the MICH and PRCL controls. These actuation signals, applied to the
main interferometer optics, then coupled into the detector output.

This issue was eliminated via commissioning of a seismic feed-forward system [32] that
decreased the PRC optic motion by a factor of three. The glitchy data before the fix were
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identified by both the HierarchichalVeto (HVeto) and used percentage veto (UPV) algorithms
[41, 42]—used to rank auxiliary signals according to the statistical significance of glitch
coincidence with the GW data—with those times used by the searches to dismiss noise
artefacts from their results (more in section 5).

4.3. Upconversion of low-frequency noise due to the Barkhausen effect

In earlier science runs, as well as affecting performance below 40 Hz, increased levels of
ground motion below 10 Hz had been associated with increases in noise in the 40–200 Hz
band. This noise, termed seismic upconversion noise, was produced by passing trucks, distant
construction activities, seasonal increases in water flow over dams, high wind, and earth-
quakes [15, 21, 40, 43]. During S6, this noise was often the limiting noise source at these
higher frequencies. Figure 6 shows a reduction in the sensitive range to BNS inspirals,
contemporaneous with the workday increase in anthropogenic seismic noise.

Figure 5. Seismic motion of the laboratory floor at LHO (normalized, top) and its
correlation into GW burst (middle) and inspiral (bottom) analyses.
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Experiments subsequently showed that seismic upconversion noise levels correlated
better with the amplitudes of the currents to the electromagnets that held the test masses in
place as the ground moved than with the actual motion of the test masses or of the ground. An
empirical, frequency-dependent function was developed to estimate upconversion noise from
the low-frequency test mass actuation currents. This function was used to produce flags that
indicated time periods that were expected to have high levels of seismic upconversion noise.

In addition to average reductions in sensitivity, upconverted seismic noise transients
further reduced sensitivity to unmodelled GW bursts. Figure 7 shows that the rate of low-SNR
glitches in the GW data—in a frequency band above that expected from linear seismic noise
coupling—was correlated with the test mass actuation current, suggesting that seismic
upconversion was the source of a low-SNR noise background that limited GW burst
detection.

Investigations found that seismic upconversion noise bursts were clustered in periods of
high slope in the amplitude of the magnetic actuator current. This was evidence that the
seismic upconversion noise was Barkhausen noise [44]: magnetic field fluctuations produced
by avalanches of magnetic domains in ferromagnetic materials that occur when the domains

Figure 6. Sensitive distance to a binary neutron star (top) and ground motion in the
1–3 Hz band (bottom) for a day at LLO. The inverse relationship is believed to be due
to nonlinear upconversion of low frequency seismic ground motions to higher
frequency (∼ −40 200 Hz) noise in the GW output.

Figure 7. Correlation between low SNR glitches in the GW data, and current in the test
mass coil at H1. This correlation is indicative of the Barkhausen effect.
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align with changing magnetic fields. The Barkhausen noise hypothesis was supported by
investigations in which the noise spectrum was reproduced by magnetic fields that were
generated independently of the system.

These investigations also suggested that the putative source of the Barkhausen noise was
near or inside the test mass actuators. It was originally thought that the source of this
upconversion noise was Barkhausen noise from NbFeB magnets, but a swap to less noisy
SmCo magnets did not significantly reduce the noise [45]. However, it was found that
fasteners inside the magnetic actuator, made of grade 303 steel, were ferromagnetic, probably
because they were shaped or cut when cold. For aLIGO, grade 316 steel, which is much less
ferromagnetic after cold working, is being used at the most sensitive locations.

4.4. Beam jitter noise

As described previously, one of the upgrades installed prior to S6 was the OMC, a bow-tie-
shaped cavity designed to filter out higher-order modes of the main laser beam before
detection at the output photodiode. As known from previous experiments at GEO600 [46], the
mode transmission of this cavity is very sensitive to angular fluctuations of the incident beam,
whereby misalignment of the beam would cause nonlinear power fluctuations of the trans-
mitted light [29, 47].

At LIGO, low-frequency seismic noise and vibrations of optical tables were observed to
mix with higher-frequency beam motion (jitter) on the OMC to produce noise sidebands
around the main jitter frequency. The amplitude of these sidebands was unstable, changing
with the amount of alignment offset, resulting in transient noise at these frequencies, the most
sensitive region of the LIGO spectrum, as seen in figure 5 (middle panel). Mitigation of these
glitches involved modifications of the suspension system for the auxiliary optics steering the
beam into the OMC, to minimize the coupling of optical table motion to beam motion.
Additionally, several other methods were used to mitigate and control beam jitter noise
throughout the run: full details are given in [29].

4.5. Mechanical glitching at the reflected port

While the problems described up to this point have been inherent to the design or construction
of either interferometer, the following two issues were both caused by electronics failures
associated with the LHO interferometer.

The first of these was produced by faults in the servo actuators used to stabilize the
pointing of the beam at the reflected port of the interferometer. This position is used to sense
light reflected from the PRC towards the input, and generate control signals to correct for arm-
cavity motion. The resulting glitches coupled strongly into the GW data at ∼37 Hz and
harmonics.

The source of the glitches was identified with the help of HVeto, which discovered that a
number of angular and length sensing channels derived from photodiodes at the reflected port
were strongly coupled with events in the GW data. Figure 8 shows the broad peaks in the
spectra of one length sensing channel and the un-calibrated GW readout compared to a quiet
reference time. On top of this, accelerometer signals from the optical table at the reflected port
were found to be coupling strongly, having weak but coincident glitches.

These accelerometer coincidences indicated that the glitches were likely produced by
mechanical motions of steering mirrors resulting from a faulty piezoelectric actuation system.
Because of this, this servo was decomissioned for the rest of the run, leading to an overall
improvement in DQ.
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4.6. Broadband noise bursts from poor electrical connections

The second of the electronics problems caused repeated, broadband glitching in the LHO GW
readout towards the end of S6. Periods of glitching would last from minutes to hours, and
greatly reduced the instrumental sensitivity over a large frequency range, as shown in figure 9.

The main diagnostic clues were coincident, but louder, glitches in a set of quadrant
photo-diodes (QPDs) sensing beam motion in the OMC. It was unlikely that these sensors
could detect a glitch in the beam more sensitively than the GW readout photo-diode, and so
the prime suspect then became the electronics involved with recording data from these QPDs.

Figure 8. Broad noise peaks centred at 37 Hz and its harmonics in the power recycling
cavity length signal (top) and the GW output error signal (bottom). Each panel shows
the spectrum as a noisy period (red) in comparison with a reference taken from clean
data (green).

Figure 9. Noise events in the GW strain data recorded by the Ω-pipeline over a 60 h
period at LHO. The high SNR events above 100 Hz in hours 7–10, 20–34, and 44–42,
were caused by broadband noise from a faulty electrical connection. The grid-like
nature of these events is due to the discrete tiling in frequency by the trigger generator.
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In the process of isolating the cause, several other electronics boards in the OMC were
inspected, re-soldered, and swapped for spares. The problem was finally solved by re-sol-
dering the connections on the electronics board that provided the high-voltage power supply
to drive a piezoelectric transducer.

4.7. Spectral lines

Just as searches for transient signals are limited by instrumental glitches, so too our searches
for steady signals are limited by a number of instrumental narrow-band peaks representing
specific frequencies at which noise was elevated for a significant amount of time, in many
cases for the entire science run. Many spectral lines are fundamental to the design and
operation of the observatories, including alternating current power lines from the US mains
supply, at 60 Hz; violin modes from core-optic suspensions, around 350 Hz; and various
calibration lines used to measure the interferometer response function.

Each of these features can be seen in figure 3 at their fundamental frequency and a
number of harmonics; however, also seen are a large number of lines from unintended
sources, such as magnetic and vibrational couplings. These noise lines can have a damaging
effect on any search for GWs if the frequencies of the incoming signal and of the lines overlap
for any time; this is especially troublesome for searches for continuous GW emitters.

Throughout S6, series of lines were seen at both observatories as 2 and 16 Hz harmonics.
Figure 10 shows two separate groups of peaks in these harmonic sets found in coherence
between the GW data for L1 and a magnetometer located near the output photo-detector.
These lines were a serious concern for both the CW and SGWB searches due to their
appearance at both observatories [48], leading to contamination of the coincidence-based
searches for CW sources. Investigations indicated that the 2 Hz comb was likely related to
problems with the data acquisition system. However, the mechanism was never fully iden-
tified, and the lines persisted throughout most of the run.

A number of other lines were isolated at either observatory site [48], and while not
discussed in detail here, the cumulative effect of all spectral lines on searches for long-
duration GW sources is discussed in detail in section 5.

Figure 10. The coherence between the L1 GW readout signal and data from a
magnetometer in the central building at LLO over one week of March 2010. 2 and
16 Hz harmonics were seen to be coherent at numerous locations across the operating
band of both interferometers, affecting the sensitivity of long-duration GW searches.
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4.8. The ‘spike’ glitch

The spike glitch was the name given to a class of very loud transients seen in the L1
instrument. They were characterized by a distinctive shape in the time series of the signal on
the GW output photodiode, beginning with a rapid but smooth dip (lasting ∼1ms) before a
period of damped oscillation lasting ∼3milliseconds, as shown in figure 11. The amplitude of
these glitches was extremely large, often visible in the raw time-series (which is normally
dominated by low-frequency seismic motion), with the Ω-pipeline typically resolving these
events with SNRs ranging from 200 to well over 20 000.

The size and rapidity of the initial glitch suggested that the source was after the beams
had re-combined at the beam-splitter before detection at the readout photodiode. The damped
oscillations after the initial dip, however, were likely due to the response of the length control
loop of the interferometer, meaning an actual or apparent sudden dip in the light on the output
photodiode could explain the entire shape of the spike glitch. To investigate this possibility,
the interferometer was run in a configuration where the light did not enter the arm cavities, but
went almost directly into the OMC, removing the length and angular control servos from
consideration. Sharp downward dips in the light were seen during this test, although they
were 0.2 milliseconds wide, much narrower than the initial dips of the spike glitches.

Despite this investigation and many others, the cause of the spike glitch was never
determined. However, these glitches were clearly not of astrophysical origin, and were not
coherent with similar events in H1, allowing the CBC signal search to excise them from
analyses by vetoing time around glitches detected in L1 with unreasonably high SNR. For
future science runs, aLIGO will consist of almost entirely new hardware, so whether the spike
glitch or something very similar will be seen in new data remains to be seen.

5. The impact of DQ on GW searches

The impact of non-Gaussian, non-stationary noise in the LIGO detectors on searches for GWs
is significant. Loud glitches, such as the spike glitch, can mask or greatly disrupt transient
GW signals present in the data at the same time, while high rates of lower SNR glitches can
significantly increase the background in searches for these sources. Additionally, spectral

Figure 11.A spike glitch in the raw GW photodiode signal for L1. The top panel shows
the glitch in context with 10 s of data, while the bottom shows the glitch profile as
described in the text.

Class. Quantum Grav. 32 (2015) 115012 J Aasi et al

20



lines and continued glitching in a given frequency range reduces the sensitivity of searches for
long-duration signals at those frequencies. Both long- and short-duration noise sources have a
notable effect on astrophysical sensitivity if not mitigated.

Non-Gaussian noise in the detector outputs that can be correlated with auxiliary signals
that have negligible sensitivity to GWs can be used to create flags for noisy data; these flags
can then be used in astrophysical searches to remove artefacts and improve sensitivity. With
transient noise, the flags are used to identify time segments in which the data may contain
glitches.

5.1. DQ vetoes for transient searches

In this section, the impact of noisy data is measured by its effect on the primary analyses of
the LIGO–Virgo transient search groups [4, 7]:

• the low-mass CBC search ‘ihope’ [13] is a coincidence-based analysis in which data from
each detector are filtered against a bank of binary inspiral template signals, producing an
SNR time-series for each. Peaks in SNR across multiple detectors are considered
coincident if the separation in time and matched template masses are small [49]. This
analysis also uses a χ2-statistic test to down-rank signals with high SNR but a spectral
shape significantly different to that of the matched template [50].

• The all-sky cWB algorithm [10] calculates a multi-detector statistic by clustering time-
frequency pixels with significant energy that are coherent across the detector network.

In both cases, the multi-detector events identified are then subject to a number of con-
sistency tests before being considered detection candidates.

The background of each search is determined by relatively shifting the data from multiple
detectors in time. These time shifts are much greater than the time taken for a GW to travel
between sites, ensuring that any multi-detector events in these data cannot have been pro-
duced by a single astrophysical signal.

Although both searches require signal power in at least two detectors, strong glitches in a
single detector coupled with Gaussian noise in others still contributed significantly to the
search background during S6. Data quality (DQ) flags were highly effective in removing
these noise artefacts from the analyses. The effect of a time-domain DQ flag can be described
by its deadtime, the fraction of analysis time that has been vetoed; and its efficiency, the
fractional number of GW candidate events removed by a veto in the corresponding deadtime.

Flag performances are determined by their efficiency-to-deadtime ratio (EDR); random
flagging and vetoing of data gives EDR ≃1, whereas effective removal of glitches gives a
much higher value. Additionally, the used percentage—the fraction of auxiliary channel
glitches which coincide with a GW candidate event—allows a measure of the strength of the
correlation between the auxiliary and GW channel data.

Each search group chose to apply a unique set of DQ flags in order to minimize deadtime
while maximizing search sensitivity; for example, the CBC search teams did not use a number
of flags correlated with very short, high-frequency disturbances, as these do not trigger their
search algorithm, while these flags were used in searches for unmodelled GW bursts.

We present the effect of three categories of veto on each of the above searches in terms of
reduction in analysable time and removal of noise artefacts from the search backgrounds.
Only brief category definitions are given, for full descriptions see [15].
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5.1.1. Category 1 vetoes. The most egregious interferometer performance problems are
flagged as category 1. These flags denote times during data taking when the instrument was
not running under the designed configuration, and so should not be included in any analysis.

The data monitoring tool (DMT) automatically identified certain problems in real time,
including losses of cavity resonance, and errors in the h t( ) calibration. Additionally, scientists
monitoring detector operation in the control room at each observatory manually flagged
individual time segments that contained observed instrumental issues and errors.

All LIGO-Virgo search groups used category 1 vetoes to omit unusable segments of data;
as a result their primary effect was in the reduction in analysable time over which searches
were performed. This impact is magnified by search requirements on the duration for analysed
segments, with the cWB and ihope searches requiring a minimum of 316 and 2064 s of
contiguous data respectively. Table 2 outlines the absolute deadtime (fraction of science-
quality data removed) and the search deadtime (fractional reduction in analysable time after
category 1 vetoes and segment selection). At both sites the amount of science-quality time
flagged as category 1 is less than half of one percent, highlighting the stability of the
instrument and its calibration. However, the deadtime introduced by segment selection is
significantly higher, especially for the CBC analysis. The long segment duration requirement
imposed by the ihope pipeline results in an order of magnitude increase in search deadtime
relative to absolute deadtime.

5.1.2. Categories 2 and 3. The higher category flags were used to identify likely noise
artefacts. Category 2 veto segments were generated from auxiliary data whose correlation
with the GW readout has been firmly demonstrated by instrumental commissioning and
investigations. Category 3 includes veto segments from less well understood statistical
correlations between noisy data in an auxiliary channel and the GW readout. Both the ihope
and cWB search pipelines produce a first set of candidate event triggers after application of
category 2 vetoes, and a reduced set after application of category 3.

The majority of category 2 veto segments were generated in low-latency by the DMT and
include things like photodiode saturations, digital overflows, and high seismic and other
environmental noise. At category 3, the HVeto [41], UPV [42], and bilinear-coupling veto
[51] algorithms were used, by the burst and CBC analyses respectively, to identify coupling
between auxiliary data and the GW readout.

Table 3 gives the absolute, relative, and cumulative deadtimes of these categories after
applying category 1 vetoes and segment selection criteria, outlining the amount of analysed
time during which event triggers were removed. As with category 1, category 2 vetoes have
deadtime  (1)%, but with significantly higher application at L1 compared to H1. This is
largely due to one flag used to veto the final 30 s before any lock loss, due to observed
instrumental instability, combined with the relative abundance of short data-taking segments

Table 2. Summary of the reduction in all time and analysable time by category 1 veto
segments during S6.

Absolute deadtime % (seconds) Search deadtime % (seconds)

Instrument cWB ihope cWB ihope

H1 0.3% (53318) 0.4% (176079) 0.4% (77617) 3.8% (786284)
L1 0.4% (75016) 0.1% (20915) 0.7% (137115) 6.2% (1180976)
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for L1. Additionally, photodiode saturations and computational timing errors were more
prevalent at the LLO site than at LHO and so contribute to higher relative deadtime.

Category 3 flags contributed  (10)% deadtime for each instrument. While this level of
deadtime is relatively high, as we shall see, the efficiency of these flags in removing
background noise events makes such cuts acceptable to the search groups.

Figure 12 shows the effect of category 3 vetoes on the background events from the cWB
pipeline; these events were identified in the background from time time-slides and are plotted
using the SNR reconstructed at each detector. This search applies category 2 vetoes in
memory, and does not record any events before this step, so efficiency statements are only
available for category 3. The results are shown after the application of a number of network-
and signal-consistency checks internal to the pipeline that reject a large number of the loud
events. As a result, the background is dominated by low SNR events, with a small number of
loud outliers. At both sites, DQ vetoes applied to this search have cumulative EDR⩾5 at SNR
3, with those at L1 removing the tail above SNR 20. However, despite the reduction, this
search was still severely limited by the remaining tail in the multi-detector background
distribution [7].

Figure 13 shows the effect of category 2 and 3 vetoes on the background from the CBC
ihope pipeline; this search sees a background extending to higher SNR. As shown, the
background is highly suppressed by DQ vetoes, with an efficiency of 50% above SNR 8, and
80% above ∼100 at both sites. The re-weighted SNR statistic, as defined in [13], is highly
effective in down-ranking the majority of outliers with high matched-filter SNR, but a non-
Gaussian tail was still present at both sites. Category 3 vetoes successfully removed this tail,

Figure 12. The effect of category 3 vetoes on the cWB pipeline for (a) H1 and (b) L1.
The left panels show the reduction in event rate, while the right panels show the
cumulative veto efficiency, both as a function of single-detector SNR.
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reducing the loudest event at H1 (L1) from a re-weighted SNR of 16.0 (15.3) to 11.1 (11.2).
Search sensitive distance was roughly inversely proportional to the χ2-weighted SNR of the
loudest event, and so reducing the loudest event by ∼30% with ∼10% deadtime can be
estimated as a factor of ∼2.5 increase in detectable event rate.

5.2. DQ in searches for long-duration signals

In searches for both continuous GWs and a SGWB, the duration and stationarity of data from
each detector were the key factors in search sensitivity. These analyses integrate over the
entire science run in order to maximize the SNR of a low-amplitude source. Accordingly, they

Table 3. Summary of the absolute, relative, and cumulative deadtimes introduced by
category 2 and 3 veto segments during S6. The relative deadtime is the additional time
removed by category 3 not vetoed by category 2, and cumulative deadtime gives the
total time removed from the analysis.

H1 L1

Deadtime type Cat. cWB ihope cWB ihope

Absolute % (s) 2 0.26% 0.77% 1.59% 1.53%
3 7.90% 9.26% 8.54% 7.03%

Relative % (s) 3 7.73% 9.00% 7.06% 6.10%
Cumulative % (s) 3 7.97% 9.71% 8.54% 7.54%

Figure 13. The effect of category 2 and jointly of category 2 and 3 vetoes on the CBC
ihope pipeline for (a) H1 and (b) L1. The left panels show the reduction in event rate as
a function of SNR, the centre panels show the reduction in event rate as a function of
the χ 2-weighted SNR, and the right panels show the cumulative efficiency as a
function of SNR.
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were impacted only very little by infrequent glitches, but were adversely affected by spectral
lines and long periods of glitching in a given frequency band.

5.2.1. Searches for continuous GWs. The PowerFlux pipeline [52, 53] is one method used to
conduct an all-sky search for GW signals from pulsars. This search, currently in progress, has
chosen the final seven months of the S6 dataset in order to minimize the impact of poor
detector performance from the earlier epochs.

A preliminary analysis of the data has shown instrumental features at high frequency
causing the search sensitivity to drop towards that observed during S5. In all, ∼20% of
frequency bands, each a few hundred mHz wide, have been identified as non-Gaussian,
compared to almost zero in S5. This increase can be attributed to problems with the data
acquisition system, which is thought to have produced the comb of 2 Hz lines described in
section 4.7, and increased sensitivity to beam jitter introduced by the OMC along with the
new DC readout scheme (section 4.4).

5.2.2. Searches for a SGWB. For the S6 search for a SGWB, DQ cuts were made to
eliminate data in H1 and L1 that were too noisy, too non-stationary, or that had apparent
correlated noise between detectors127. The analyses ran over times when both LIGO detectors
were taking science-quality data, excluding times flagged as category 1 and those including
hardware injections [54]. The category 1 segments chosen for this search caused a 2%
reduction in coincident data for the LIGO detector pair.

In addition, up to 5.5% of data segments deviate from the stationary noise assumption,
depending on frequency. These were removed from the analysis by identifying segments
whose standard deviation, σ, varies from neighbouring segments by greater than 20%. After
applying all of the DQ cuts, ∼117 days of coincident live time for the LIGO network
remained.

Spectral noise lines are also a problem for the SGWB search. It is improbable to have a
spectral noise line present in the same frequency bin (0.25 Hz) in both H1 and L1, but it is
possible. In addition, a loud line in one detector can couple with a noise fluctuation in the
other and produce an excess when the correlation is calculated between the two data streams.
In order to examine frequency bins for contamination, the coherence between two
interferometers was calculated,

Γ =
( )

( ) ( )
f

P f

P f P f
( ) , (1)

12
2

1 2

where 〈 〉P f( )12 is the average cross-spectral density and 〈 〉P f( )i is the power spectral density
for the ith interferometer. This was used to identify high coherence bins, searching at
resolutions of 1 Hz and 100 mHz, using the method in [9]. This identified power line
harmonics, 16 Hz harmonics from data acquisition, violin modes of the interferometer mirror
suspension, and injected calibration signals. These frequencies were excluded from the
analysis, as were some frequency bins where a clear association with an environmentally
produced noise line in either the H1 or L1 data could be made. In total, 87 frequency bins
(each 0.25 Hz wide, in the range from 40–1000 Hz) were removed from the S6 LIGO SGWB
search. The study of the coherence also revealed a small amount (0.2%) of additional non-
stationary time series data, and these were excluded.

127 In the absence of a signal model, correlated noise and a GW signal are indistinguishable in a stochastic search.
However, a stochastic isotropic search assumes that the signal is broadband, and so narrow-band line features can be
considered to be of instrumental, usually electronic, origin.
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In addition, the SGWB search pipeline was run over LIGO data after a non-physical
time-shift had been applied. The inspection of these data revealed further frequency bins
where the SNR was greater than 4.25. If frequency bins met this condition for at least two of
the time shifted runs, they were removed from the final foreground analysis. This removed
seven more frequency bins.

Preliminary results from the S6 CW and SGWB searches indicate that these steps have
cleaned the data set, allowing more sensitive searches. However, the increased non-
stationarity and noise lines during S6 relative to S5 have produced a further detrimental effect
on the data. The S6 CW searches can be expected to set better upper limits on GW amplitudes
than the S5 searches, nevertheless, spectral lines will appear as potential sources for all-sky
CW signal searches, and much work remains to explain the source of these presumed noise
lines. On the SGWB side, the S6 data will provide a better upper limit as compared to the S5
results [9, 55].

It should also be noted that correlated magnetic field noise, from the Schumann
resonances, was observed in correlations between magnetometers at H1, L1 and Virgo.
However it was determined that the level of correlated noise did not effect the S5 or S6
stochastic searches [56].

6. Conclusions and outlook for aLIGO

The LIGO instruments, at both Hanford and Livingston, are regularly affected by both non-
Gaussian noise transients and long-duration spectral features. Throughout S6 a number of
problems were identified as detrimental to stable and sensitive data-taking at the observa-
tories, as well as to the astrophysical searches performed on the data.

Instrumental fixes employed throughout the science run resulted in increasingly stable
and sensitive instruments. Median segment duration and overall duty factor improved from
epoch to epoch (table 1) and the detection range to the canonical BNS inspiral increased by a
significant factor (figure 4). DQ flags, used to identify known correlations between noise in
auxiliary systems and the GW data, figures allowed for a significant reduction in the event
background of both core transient searches, ihope and cWB (figures 12, 13). An EDR above 5
for both searches, at both sites, allowed for a significant increase in the sensitivity of the
search, improving the upper limits on event rate for both CBC and generic GW burst sources.

However, a tail of high SNR events was still present in the cWB search for GW bursts,
requiring deeper study of the glitch morphology and improved identification methods.
Additionally, the presence of noise lines outside the instrumental design had a detrimental,
but not debilitating, effect on searches for long-duration signals. A large number of these
remaining transient and long-duration noise sources are still undiagnosed, meaning a large
effort must be undertaken to mitigate similar effects in the second-generation instruments.

The first-generation LIGO instruments were decommissioned shortly following the end
of the science run (although immediately after S6 shot noise reduction was demonstrated in
the H1 interferometer by using squeezed states of light [57]), and installation and early testing
of aLIGO systems is now under way [23]. With the next data-taking run scheduled for 2015
[58], many methods and tools developed during the last run are set to be upgraded to further
improve instrument and DQ. Improvements are in place for each of the noise event detection
algorithms, allowing for more accurate detection of transient noise in all channels, and work
is ongoing for the HVeto and Used Percentage Veto (UPV) statistical veto generators [59] to
enable more efficient identification of sources of noise in the GW data. In addition, multi-
variate statistical classifiers are being developed for use in glitch identification [60], using
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more information produced from event triggers to improve veto efficiency and identification
of false alarms with minimal deadtime.

One of the major goals of the aLIGO project is to contribute to multi-messenger
astronomy—the collaboration between GW observatories and electromagnetic (EM) and
neutrino observatories [61, 62]. Both the burst and CBC search working groups are devel-
oping low-latency analyses from which to trigger followup with partner EM telescopes,
requiring a much greater effort in low-latency characterization of the data. With this in mind,
a large part of the development in detector characterization in the LIGO Scientific Colla-
boration is now being devoted to real-time characterization of instrumental data, including the
GW output and all auxiliary channels. An online detector characterization system is being
developed for aLIGO that summarizes the status of all instrumental and environmental sys-
tems in real-time to allow fast identification of false alarms in these on-line analyses, and
reduce the latency of EM follow-up requests.

Best estimates predict ∼40 detections of GWs from BNS mergers per year at design
sensitivity [63], assuming stationary, Gaussian noise. A great effort will be required in
commissioning the new instruments to achieve these goals, including detailed characteriza-
tion of their performance before the start of the first advanced observing run.
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