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Locally smeared operator product expansions in scalar field theory

Christopher Monahan*

Physics Department, College of William and Mary, Williamsburg, Virginia 23187, USA

Kostas Orginos
Physics Department, College of William and Mary, Williamsburg, Virginia 23187, USA

and Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
(Received 27 January 2015; published 20 April 2015)

We propose a new locally smeared operator product expansion to decompose nonlocal operators in terms
of a basis of smeared operators. The smeared operator product expansion formally connects non-
perturbative matrix elements determined numerically using lattice field theory to matrix elements of
nonlocal operators in the continuum. These nonperturbative matrix elements do not suffer from power-
divergent mixing on the lattice, which significantly complicates calculations of quantities such as the
moments of parton distribution functions, provided the smearing scale is kept fixed in the continuum limit.
The presence of this smearing scale complicates the connection to the Wilson coefficients of the standard
operator product expansion and requires the construction of a suitable formalism. We demonstrate the
feasibility of our approach with examples in real scalar field theory.

DOI: 10.1103/PhysRevD.91.074513 PACS numbers: 11.15.Ha, 12.38.Gc, 14.20.Dh

I. INTRODUCTION

QCD connects hadronic matter to its fundamental
constituents, quarks, and gluons. Many aspects of QCD
are poorly understood, in spite of four decades of intense
experimental and theoretical effort. As part of this effort,
deep inelastic scattering (DIS) of leptons from nucleons has
played a central role in establishing QCD as the reigning
theory of the strong interaction and continues to serve as a
mainstay for attempts to unravel QCD’s mysteries (for
complete reviews see, for example, Refs. [1] and [2]).
Theoretically, inclusive DIS cross sections are separated

into leptonic and hadronic tensors, which capture the
electroweak and strong dynamics of the scattering process,
respectively. The hadronic tensor factorizes into a con-
volution of infrared-safe perturbative coefficients and
parton distribution functions (PDFs), which incorporate
the low-energy QCD physics and therefore must be
determined nonperturbatively. PDFs are independent of
the scattering process but depend on the target nucleon,
while the perturbative coefficients are independent of the
external scattering states.
PDFs are important for two reasons. First, they furnish

direct knowledge of the constituents of hadronic states—
the dominant form of visible matter in the Universe—in
terms of the fundamental theory of the strong force.
Second, they provide constraints on hadronic backgrounds
at collider experiments, such as the Large Hadron Collider.
These backgrounds affect the sensitivity of a variety of high
energy experiments, including studies of the properties of

the Higgs boson [3–5] and searches for heavy W0 and Z0
boson production [6].
PDFs cannot currently be calculated directly from QCD

using ab initio lattice QCD because they are defined in
terms of light-cone matrix elements that are not directly
accessible on Euclidean lattices. Hence, PDFs are usually
extracted from global analyses of different experiments
[7–15].
Naturally a direct nonperturbative computation of PDFs

is desirable: with sufficient precision, such a calculation
would further constrain global fits in regions that may be
experimentally inaccessible.
Until recently, lattice calculations have focused on

determining the Mellin moments of PDFs, which are
related to matrix elements of twist-2 operators that can
be determined on the lattice [16–18]. The lattice regulator
breaks Lorentz symmetry, which induces radiative mixing
between operators of different mass dimensions. The
resulting power divergences in the lattice spacing com-
pletely obscure the continuum limit. Moments up to the
fourth moment can be extracted by carefully choosing the
external momenta and operators, but this significantly
limits the precision with which one can extract meaningful
results for PDFs [19,20]. Beyond the fourth moment, power
divergent mixing is inevitable, and this method cannot
provide reliable calculations.
Ji recently proposed a new approach to directly extract

PDFs from lattice calculations [21,22], based on a large-
momentum effective theory [23]. Preliminary results first
appeared in Ref. [24], but a number of issues remain,
including a complete understanding of the renormalization
of the relevant lattice matrix elements and the practical
ability to resolve sufficiently large momenta on the lattice.
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Here we propose a new formalism that removes mixing
in the continuum limit and, in principle, enables the
extraction of higher moments of PDFs from lattice
QCD. We call this formalism the “smeared operator
product expansion” (sOPE). We expand continuum matrix
elements in a basis of locally smeared lattice degrees of
freedom. The resulting matrix elements are functions of
two scales, the smearing scale and the renormalization
scale. The sOPE provides the framework necessary to relate
these matrix elements, via Wilson coefficients, to phenom-
enologically useful quantities, such as the hadronic tensor
of DIS.
Smearing has been widely used in lattice QCD to reduce

ultraviolet fluctuations, partially restore rotational sym-
metry and thereby systematically improve the precision of
lattice calculations [25–28]. For a pedagogical overview of
smearing in lattice calculations, see, for example, Ref. [29].
In the sOPE, we implement smearing via the gradient flow,
a classical evolution of the fields in a new dimension,
the flow time, toward the stationary points of the action
[30–34]. Matrix elements determined nonperturbatively on
the lattice require no further renormalization, up to a
fermionic wave function renormalization [30], and remain
finite, provided the smearing scale is kept fixed in physical
units in the continuum limit [31,35]. There are two further
advantages: the gradient flow allows one to use smearing
lengths of only one or two lattice spacings, much smaller
than hadronic length scales on typical lattices, and therefore
does not distort the low energy physics [36], and also the
gradient flow is computationally very cheap.
The gradient flow is now well established as a tool to

study lattice gauge theories, with applications from scale
setting, i.e. determining the lattice spacing in physical units
[37–41], to studying renormalization in lattice gauge
theories. For example, the gradient flow has been used
to define finite-volume renormalization schemes for the
strong coupling constant [42–46], for operator renormal-
ization [47], and to understand the nonperturbative scale
dependence of renormalized matrix elements [48]. Related
work has used Ward identities to study chiral fermions on
the lattice [49] and the energy-momentum tensor [50–52].
In this paper we introduce the gradient flow for a single

real scalar field with quartic interactions and outline some
of the properties of the sOPE applied to real scalar field
theory. Scalar field theories describe some important
critical phenomena in nature, such as the antiferromagnetic
phase transition, and have a long history as a testing ground
for fundamental ideas in quantum field theory in four
dimensions. For our purposes, the chief advantage is the
simplicity of Euclidean scalar field theory, which lays bare
the structure of the sOPE and highlights the points of
similarity and contrast with the local operator product
expansion (OPE).
In the next section, we review Wilson’s OPE and

introduce the sOPE. We then apply the sOPE to scalar

field theory in Sec. III, illustrate how the gradient flow
removes power-divergent mixing in Sec. IV, and calculate
the perturbative Wilson coefficients to two loops in Sec. V.
Finally, in Sec. VI, we study the scale dependence of the
sOPE through renormalization group equations for the
Wilson coefficients.

II. OPERATOR PRODUCT EXPANSION

Wilson’s approach to the OPE for a nonlocal operator is
widely known—see, for example, Ref. [53]—and here we
review some notation necessary for our discussion.
We write the OPE for a nonlocal operator, QðxÞ, as

QðxÞ ∼x→0
X
k

ckðx; μÞ½OðkÞð0Þ�R: ð1Þ

The Wilson coefficients ckðx; μÞ are complex functions of
the spacetime separation, x, and renormalization scale,
μ, that capture the short-distance physics associated with
the renormalized local operator ½OðkÞð0Þ�R. We represent
renormalized operators by ½…�R and suppress their depend-
ence on the renormalization scale, μ, for notational
simplicity. The free-field mass dimension of the local
operator determines the leading spacetime dependence of
the corresponding Wilson coefficient.
As an example, let us consider the time-ordered two-

point function of two scalar fields with spacetime separa-
tion x: T fϕðxÞϕð0Þg. In free scalar field theory, the OPE is
a Laurent expansion. Interactions generate subleading
dependence on the spacetime separation in the Wilson
coefficients, which become functions of the spacetime
separation, the (renormalized) mass mR, and the renorm-
alization scale, μ:

T fϕðxÞϕð0Þg ¼ cIðμx;mRxÞ
4π2x2

Iþ cϕ2ðμx;mRxÞ½ϕ2ð0Þ�R
þOðxÞ: ð2Þ

Here we have factored out the leading spacetime depend-
ence from the Wilson coefficients. The OðxÞ indicates
terms of order x, up to logarithmic corrections generated by
interactions.
We propose replacing the set of local operators in the

OPE by their locally smeared counterparts

QðxÞ ∼x→0
X
k

dkðτ; x; μÞSðkÞðτ; 0Þ: ð3Þ

The Wilson coefficients, dkðτ; x; μÞ, and the smeared
operators, SðkÞðτ; 0Þ, are now functions of an extra scale,
the flow time, τ. Nevertheless, the leading spacetime
dependence of the Wilson coefficients is dictated by the
canonical mass dimension of the corresponding smeared
operator and is therefore just that of the standard OPE.
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Just as the OPE is only valid for small spacetime
separations, the sOPE requires small flow times. We will
see that we require that τ ∝ x2, where x is assumed to be
small, to ensure that the Wilson coefficients are indepen-
dent of the external states.
For example, returning to the time-ordered two-point

function, the sOPE is

T fϕðxÞϕð0Þg ¼ dIðμx; μ2τ; mRxÞ
4π2x2

I

þ dρ2ðμx; μ2τ; mRxÞρ2ðτ; 0Þ þOðx; τÞ;
ð4Þ

where we denote smeared fields at flow time τ by ρðτ; xÞ.
In the following sections, we will observe four features

of the smeared Wilson coefficients in the sOPE:
(1) The logarithmic spacetime dependence of the origi-

nal OPE is preserved in the sOPE.
(2) The flow time serves as an ultraviolet regulator for

the smeared Wilson coefficients, to leading order in
perturbation theory.

(3) Beyond leading order the flow time cannot regular-
ize the Wilson coefficients because the flow
evolution is classical. We can, however, absorb
renormalization scale dependence into the renorm-
alization parameters of the original theory.

(4) For any OPE to be meaningful, the Wilson coef-
ficients must be independent of the external states.
We can ensure this for the sOPE by choosing
srms < x; i.e., the mean smearing radius must be
smaller than the spacetime extent of the nonlocal
operator. This ensures that the sOPE remains an
expansion in approximately local operators. In other
words, if the gradient flow probes length scales on
the order of the nonlocal operator, then the sOPE
becomes a poor expansion for the original operator.

Although we refer to this expansion as the smearedOPE,
we really have in mind that the smearing is implemented
via the gradient flow. The gradient flow acts as a smoothing
operation that drives the degrees of freedom of the theory to
the stationary points of the action. In QCD, the gradient
flow corresponds to a continuous stout-smearing pro-
cedure, an analytic method for constructing lattice gauge
fields with damped ultraviolet fluctuations [25]. The direct
comparison of the gradient flow to other smearing schemes
was first undertaken in Ref. [54].
Many studies of the gradient flow have incorporated a

small flow-time expansion of fields at nonvanishing flow
time in terms of local fields at zero flow time [48–52,55].
We can view such an expansion as an OPE in the flow time
and thereby relate renormalized quantities calculated at
nonzero flow time to the corresponding quantities in the
original theory at vanishing flow time, which would
otherwise be difficult to compute.

In this work, we take a different approach. We do not
expand the flowed fields in terms of original fields at
nonzero flow time but rather take as the fundamental
objects of study the (matrix elements of) fields at positive
flow time. Both approaches reflect the physically motivated
expectation that smearing scales much smaller than the
physical scales of the system should not distort the physics
in question. The small flow-time expansion quantifies any
deviations from this expectation and, furthermore, decou-
ples analytic calculations of Wilson coefficients in the
continuum from lattice calculations with smeared degrees
of freedom. The sOPE incorporates the smearing scale as
an inherent scale of the system, which requires new Wilson
coefficients to be determined. Thus, both the small flow-
time expansion and the sOPE are shaped by the role of the
smearing scale as ultraviolet regulator and are related, but
distinct, conceptual approaches to the same physics:
partially restoring rotational symmetry on the lattice.
Smearing, in general, is a tool that partially restores

rotational symmetry [36] and thereby improves the con-
tinuum limit of lattice calculations. Smearing via the
gradient flow has a number of advantages. In particular,
matrix elements determined nonperturbatively on the lattice
using smeared degrees of freedom require no further
renormalization [32], up to fermionic wave function
renormalization [30], and remain finite, provided the
smearing scale is kept fixed in physical units as the
continuum limit is taken.
We now turn to a more complete study of the sOPE

applied to ϕ4 scalar field theory, a particularly straightfor-
ward theory in which to examine the sOPE. We can solve
the flow-time equations exactly because the flow-time
evolution is linear in the scalar field. We do not need to
consider the complications associated with gauge fixing
[31,32] nor the extra renormalization of fermions [30].
Furthermore, for scalar fields the sOPE can be understood
to be simply a resummation of the original OPE. Although
it is not necessary for our work, it is also interesting to note
that the OPE is known to converge for Euclidean ϕ4 theory
in four dimensions, at a fixed but arbitrary order in the
perturbative expansion [56]. This result holds at arbitrary
spacetime separations, provided the external states are of
compact support.
Looking toward future calculations in QCD, we antici-

pate that the technical issues associated with a flow
equation that incorporates gauge field interactions will
slightly complicate the perturbative calculations by increas-
ing the number of diagrams at a given order in perturbation
theory but will not alter our conclusions. Within the gauge
sector, there are no loops of flowed fields because renor-
malized correlation functions remain finite at nonzero flow
time [31]. Therefore, at leading order in perturbation
theory, the flow time regulates ultraviolet divergences;
beyond leading order an appropriate renormalization pro-
cedure must be incorporated. With fermionic fields there is
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an extra fermion renormalization parameter, calculated in
Ref. [30], but this can be removed by considering renorm-
alization group invariant quantities [30]. We also note that
all perturbative calculations for the sOPE can be carried out
in the continuum and do not require lattice perturbation
theory, which is generally more involved [57,58].

III. GRADIENT FLOW FOR SCALAR
FIELD THEORY

We work in four-dimensional Euclidean scalar field
theory with quartic self-interactions and bare mass m,
defined by the action

Sϕ½ϕ� ¼
1

2

Z
d4x

�
ð∂νϕÞ2 þm2ϕ2 þ λ

12
ϕ4

�
: ð5Þ

To study the sOPE, we introduce the scalar gradient flow,
which we define through the flow-time evolution equation

∂ρðτ; xÞ
∂τ ¼ ∂2ρ; ð6Þ

where ρ is a scalar field at nonzero flow time, τ, and ∂2 is
the Euclidean, four-dimensional Laplacian operator. Note
that the flow time has units ½τ� ¼ ½x�2.
Imposing the Dirichlet boundary condition ρð0; xÞ ¼

ϕðxÞ, we may write the exact solution of the flow-time
equation as

ρðτ; xÞ ¼ eτ∂2ϕðxÞ ð7Þ

or, in the momentum representation, as

~ρðτ; pÞ ¼ e−τp
2 ~ϕðpÞ: ð8Þ

The full solution is

ρðτ; xÞ ¼
Z

d4y
Z

d4p
ð2πÞ4 e

ip·ðx−yÞe−τp2

ϕðyÞ

¼ 1

16π2τ2

Z
d4ye−ðx−yÞ2=4τϕðyÞ; ð9Þ

which demonstrates explicitly the “smearing” effect of the
gradient flow: the flow time exponentially suppresses
ultraviolet modes. We parametrize the smearing radius
via the root-mean-square smearing length, srms ¼

ffiffiffiffiffi
8τ

p
.

The (Euclidean) smeared scalar propagator, for two
fields at flow times τ1 and τ2, is given by

~Gρðτ1; τ2; kÞ ¼
e−ðτ1þτ2Þk2

k2 þm2
: ð10Þ

The flow-time evolution is classical, so any interactions
must occur at zero flow time. The corresponding Feynman

rule for the four-point vertex is just that of the standard
(Euclidean) four-point vertex, Vð4Þ ¼ −λ=24.

IV. MIXING ON THE LATTICE

Before we examine the sOPE in detail, we demonstrate
how the gradient flow removes power-divergent mixing on
the lattice. We consider the example of twist-2 operators in
scalar field theory, which are symmetric and traceless and
given by

Tμ1…μnðxÞ ¼ ϕðxÞ∂μ1…∂μnϕðxÞ − traces: ð11Þ

On the lattice, we replace the partial derivatives with
discrete difference operators

T latt
μ1…μnðxÞ ¼ ϕðxÞΔμ1…ΔμnϕðxÞ − traces: ð12Þ

The spacetime point x is now a node in the lattice,
xμ ¼ anμ, where a is the lattice spacing and nμ is a
four-component lattice vector. The discrete difference
operators can be improved to remove discretization effects,
but the simplest such symmetric operator acts on a scalar
field as

ΔμϕðxÞ ¼
1

2a
ðϕðxþ μ̂Þ − ϕðx − μ̂ÞÞ; ð13Þ

where μ̂ is the unit vector in the μth direction.
The lattice regulator breaks rotational symmetry, which

induces mixing between twist-2 operators of different mass
dimension. On dimensional grounds, the mixing coeffi-
cients scale with inverse powers of the lattice spacing, and
these coefficients diverge in the continuum limit. This is the
problem of power-divergent mixing on the lattice. For
example, the simple bilinear T lattðxÞ ¼ ϕðxÞϕðxÞ mixes
with the operator T latt

μν ðxÞ with a coefficient that scales as
1=a2. More generally, the mixing between T lattðxÞ and any
twist-2 operator with an even number of derivatives,
T latt
μ1…μ2nðxÞ, scales as 1=a2n.
The smeared counterparts of these operators, which are

given by

Slattμ1…μnðxÞ ¼ ρðτ; xÞΔμ1…Δμnρðτ; xÞ − traces; ð14Þ

do not suffer from this problem. The mixing coefficient
between SlattðxÞ ¼ ρðτ; xÞρðτ; xÞ and Slattμ1…μ2nðxÞ scales as
1=τn, where τ is the flow time in physical units. Provided
we keep the dimensionful scale τ ¼ ~τa2 fixed, where ~τ is
dimensionless, then as the lattice spacing a decreases,
the mixing coefficient remains finite, because matrix
elements at nonzero flow time cannot contain any addi-
tional divergences [31,35].
As a simple illustration of this behavior, let us consider

the matrix element of two twist-2 operators of different
mass dimension:
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Mcont ¼ hΩjϕð0Þϕð0Þϕð0Þ∂μ∂νϕð0ÞjΩi: ð15Þ

This matrix element vanishes for massless scalar fields. On
the lattice, however, the corresponding matrix element,

Mlatt ¼ hΩjϕð0Þϕð0Þϕð0ÞΔμΔνϕð0ÞjΩi; ð16Þ

is nonzero.
We show the Feynman diagram for the leading contri-

bution to this matrix element in the left-hand diagram of
Fig. 1, which is given by

Mð0Þ
latt ¼

1

a4

Z
π=a

−π=a

d4ðakÞ
ð2πÞ4

k̂μk̂ν
ðk̂2 þm2

0Þ2
; ð17Þ

where k̂μ ¼ ð2=aÞ sinðakμ=2Þ. We have included a bare
mass m0 to remove spurious infrared divergences, but the
integral is finite, and we can take the massless limit,
m0 → 0, to match to the continuum massless theory. We
expand this in powers of the lattice spacing to obtain

Mð0Þ
latt ¼ −

δμν
4

Z
π=a

−π=a

d4k
ð2πÞ4

k2

ðk2 þm2
0Þ2

þOða2Þ

¼ −
δμν
48a2

þOða0Þ ð18Þ

in the massless limit. This result signals the appearance of
power-divergent mixing: the 1=a2 term diverges in the
continuum limit. Although this calculation is only leading
order in perturbation theory, higher-order contributions do
not modify this power-divergent dependence on the lattice
spacing [36].
If we calculate this matrix element with smeared degrees

of freedom (which we depict in the right-hand diagram of
Fig. 1), however, we find

Mð0Þ
lattðτÞ ¼ hΩjρðτ; 0Þρðτ; 0Þρðτ; 0ÞΔμΔνρðτ; 0ÞjΩi

¼ −
δμν
4

Z
π=a

−π=a

d4k
ð2πÞ4

k2e−4τk
2

ðk2 þm2
0Þ2

þOða2Þ

¼ δμν
e−4π

2τ=a2 − 1

256π2τ
þOða0Þ: ð19Þ

Once again we have taken the massless limit. In the
continuum limit, keeping the flow time τ fixed in physical
units, this matrix element tends to a constant, signaling
the suppression of power-divergent mixing for smeared
degrees of freedom.

V. WILSON COEFFICIENTS FOR THE SOPE

The procedure for calculating smeared Wilson coeffi-
cients parallels that for the OPE, discussed in, for example,
Ref. [53]. With the Feynman rules of Sec. III in hand, the
calculation of smeared Wilson coefficients up to next-to-
leading order in perturbation theory is straightforward. We
determine the smeared Wilson coefficients for the leading
connected and disconnected operators, starting with the
disconnected contribution.

A. Disconnected contributions

1. Leading order

We illustrate the leading-order (tree-level) and next-to-
leading-order (one-loop) contributions to the smeared
Wilson coefficient for the disconnected operator, I, in
Fig. 2. As we will see, the leading-order contribution is
independent of the renormalization scale, μ, because at this
order the flow time serves as the ultraviolet regulator.
Beyond leading order, however, the smeared Wilson
coefficient will have a renormalization scale dependence.
We extract the disconnected smeared Wilson coefficient

by considering matrix elements of each of the operators in
the sOPE in the vacuum, which removes any connected
contributions. To OðxÞ we have

FIG. 1 (color online). Diagrams representing the leading con-
tributions to the mixing matrix elements with unsmeared fields,

Mð0Þ
latt , and smeared fields, Mð0Þ

lattðτÞ. The black solid lines in the
left-hand diagram represent unsmeared propagators, and the
black solid square and diamond are the operators ϕ2ð0Þ and
ϕð0ÞΔμΔνϕð0Þ. The blue dashed lines in the right-hand diagram
are smeared propagators, and the two different blue blobs, filled
and unfilled, represent the smeared operators ρ2ðτ; 0Þ and
ρðτ; 0ÞΔμΔνρðτ; 0Þ.

FIG. 2 (color online). Diagrams representing the contributions
to the Wilson coefficient dI at leading order (left two diagrams)
and next-to-leading order (right two diagrams). Solid black and
dashed blue lines are propagators at vanishing and nonvanishing
flow times, respectively. The black squares are unsmeared fields
ϕð0Þ, black dots are interaction vertices at vanishing flow time,
and the blue blob represents the smeared operator ρ2ðτ; 0Þ.
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hΩjT fϕðxÞϕð0ÞgjΩi

¼ dIðμx; μ2τ; mxÞ
4π2x2

hΩjIjΩi
þ dρ2ðμx; μ2τ; mxÞhΩj½ρ2ðτ; 0Þ�RjΩi þOðxÞ; ð20Þ

Here we have chosen the normalization of dI so that at
leading order in the free theory dI is unity. We expand each
quantity in this expression to one loop according to

f ¼ fð0Þ − λfð1Þ þOðλ2Þ; ð21Þ

where f stands for either a matrix element or Wilson
coefficient. We have chosen the sign of the one-loop
contribution to factor out the sign of the coupling constant
arising from the Feynman rule for the four-point vertex
Vð4Þ ¼ −λ=24.
The tree-level Wilson coefficient is then given by the

small spacetime behavior of

dð0ÞI

4π2x2
¼x∼0fhΩjT fϕðxÞϕð0ÞgjΩi

− hΩjρ2ðτ; 0ÞjΩigð0ÞOðm2Þ; ð22Þ

where we have neglected the arguments of the coefficient
for clarity and used the fact that the tree-level connected

coefficient is dð0Þ
ρ2

¼ 1. The subscript indicates that

we must expand the result to Oðm2Þ. For more details
about the calculation of Wilson coefficients see, for
example, Ref. [53]. The corresponding Feynman integral
representation is

dð0ÞI ¼x∼04π2x2
�Z

k

eik·x − e−2k
2τ

k2 þm2

�
Oðm2Þ

¼ 4π2x2
Z
k
ðeik·x − e−2k

2τÞ
�
1

k2
−

m2

ðk2Þ2
�
; ð23Þ

where

Z
k
≡
Z

d4k
ð2πÞ4 : ð24Þ

The smeared Wilson coefficient is

dð0ÞI ¼ 1 −
x2

8τ
þm2x2

4

�
γE − 1þ log

�
x2

8τ

��
; ð25Þ

with γE ≃ 0.577216 the Euler–Mascheroni constant.
We can compare this result with the Wilson coefficient

for the OPE for d ¼ 4 − 2ϵ dimensions [53]:

c̄ð0ÞI ¼ 1þm2x2

4

�
1

ϵ
þ 1þ γE þ log

�
πμ2x2

4

��
: ð26Þ

Then in the MS scheme, this becomes

c̄ð0ÞI ¼ 1þm2x2

4

�
1þ 2γE þ log

�
μ2x2

16

��
: ð27Þ

Although the finite contribution to these expressions
cannot be directly compared, because we have expressed
the Wilson coefficients in two different renormalization
schemes, we note three important features. First, the
logarithmic dependence on the spacetime separation is
identical. Second, the flow time τ plays the role of the
renormalization scale at leading order. Third, we see
that for small spacetime separations we require a small
flow-time parameter. If we do not choose the flow-time
parameter appropriately, we generate large logarithmic
contributions to the smeared Wilson coefficients, and the
sOPE exhibits poor convergence properties, even at small
spacetime separations.

2. Next-to-leading order

At one loop, the smeared Wilson coefficient is given by

−λ
dð1ÞI

4π2x2
¼ fhΩjT fϕðxÞϕð0ÞgjΩi

− hΩjρ2ðτ; 0ÞjΩigð1ÞOðm2Þ: ð28Þ

The four-point interaction in this diagram, which we
show in Fig. 2, appears at zero flow time. Therefore, the
flow time cannot act as a regulator for the momentum
integral over k2, and we must introduce a renormalization
procedure. We use dimensional regularization and the MS
scheme. The double integral is straightforward, however,
because the two integrals can be carried out separately:

dð1ÞI

4π2x2
¼

�Z
k1

eik1·x − e−2k
2
1
τ

ðk21 þm2Þ2
1

2

Z
k2

1

k22 þm2

�
Oðm2Þ

: ð29Þ

We find, for m > 0,

dð1ÞI ¼ −
m2x2

128π2

�
γE − 1þ log

�
x2

8τ

���
1þ log

�
μ2

m2

��
:

ð30Þ

Here we see that the second term, which is a function of
the new renormalization scale, μ, and the bare mass, m, is
nothing other than the one-loop contribution to the mass
renormalization of the original theory, in the MS scheme
[59]. Moreover, the factor containing the flow time
is identical to the Oðm2Þ term from the leading-order

contribution, dð0ÞI , in Eq. (25).
Therefore, we can simply combine the leading-order and

next-to-leading-order terms to give
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dI ¼ 1 −
x2

8τ
þm2

Rx
2

4

�
γE − 1þ log

�
x2

8τ

��
þOðλ2Þ; ð31Þ

where mR is the renormalized mass in the MS scheme,
given by m2

R ¼ Z−1
m m2 and Zm is the mass renormalization

[59]:

Zm ¼ 1þ λ

16π2

�
1þ log

�
μ2

m2

��
þOðλ2Þ: ð32Þ

This is a clear, next-to-leading-order example of how the
divergences of the theory at nonzero flow time are absorbed
by the renormalization parameters of the original theory at
zero flow time. In other words, the renormalized theory
at zero flow time remains ultraviolet finite at nonzero
flow time.

B. Connected contribution

We illustrate the leading- and next-to-leading-order
contributions to the connected Wilson coefficient
dρ2ðμx; μ2τ; mxÞ of Eq. (4) in Figs. 3 and 4, respectively.
Throughout this section, we neglect diagrams that are
trivially incorporated as part of the wave function renorm-
alization of the external fields, such as the one-loop
examples illustrated in Fig. 5. Provided the original theory
at zero flow time is renormalized, counterterms cancel these
contributions completely.

1. Leading order

We extract the leading-order connected Wilson coeffi-
cient by considering matrix elements of each of the
operators in the sOPE coupled to two external fields,
which removes any disconnected contributions. We can
then read off the one-loop contribution to the Wilson
coefficient, dð1Þ

ρ2
, by matching terms at OðλÞ. This contri-

bution is given by the small spacetime behavior of

− λdð1Þ
ρ2

¼x∼0fhΩjT fϕðxÞϕð0Þg ~ϕðp1Þ ~ϕðp2ÞjΩið1Þ

− hΩjρ2ðτ; 0Þ ~ϕðp1Þ ~ϕðp2ÞjΩið1ÞgOðm0Þ: ð33Þ

The corresponding Feynman integral is

1

ðp2
1 þm2Þðp2

2 þm2Þ
�
1

2

Z
k

eik·x − e−ðk2þq2Þτ

ðk2 þm2Þðq2 þm2Þ
�
; ð34Þ

where q ¼ k − p1 − p2. We extract the smeared Wilson
coefficient by examining the small spacetime behavior of
the integral in curly braces, expanded to Oðm0Þ:

dð1Þ
ρ2

¼x∼0
�
1

2

Z
k

eik·x − e−ðk2þq2Þτ

ðk2 þm2Þðq2 þm2Þ
�

Oðm0Þ
: ð35Þ

The smeared Wilson coefficients must be independent of
the external states to ensure that the sOPE is truly an
operator expansion. In this particular case, we require that

dð1Þ
ρ2

is independent of the external momenta p1 and p2 and

the mass. By taking a derivative with respect to one of the
external momenta,

d
dpi

dð1Þ
ρ2

¼
Z
k

qi½eik·x − e−ðk2þq2Þτð1þ ðq2 þm2ÞτÞ�
ðk2 þm2Þðq2 þm2Þ2 ;

ð36Þ

we obtain a convergent integral. The x → 0 limit of this
integral is now well defined and only vanishes if the flow
time is related to the spacetime separation. An analogous
result holds if we take a derivative with respect to the
external mass, m. On dimensional grounds, then, we

FIG. 3 (color online). Diagrams representing the leading-order
(one-loop) contributions to the Wilson coefficient dρ2 . Details of
the Feynman diagrams are provided in the caption of Fig. 2.

FIG. 4 (color online). Diagrams representing the contributions
to the next-to-leading-order (two-loop) contributions to the
Wilson coefficients dρ2 . For details of the Feynman diagrams,
see the caption of Fig. 2.

FIG. 5 (color online). Example diagrams that are naturally
incorporated in the renormalized external propagators. We do not
include these contributions in our explicit calculations of the
Wilson coefficients. For details of the Feynman diagrams, see the
caption of Fig. 2.
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guarantee that the smeared Wilson coefficient is indepen-
dent of the external states by choosing τ ∝ x2.
On physical grounds, however, we require that the

smearing radius is smaller than the spacetime extent of
the nonlocal operator: srms < x. This choice ensures that the
sOPE remains an expansion in local operators. Physically
speaking, if the gradient flow probes length scales on the
order of the nonlocal operator, which we represent in Fig. 6,
then smeared operators would cease to be (approximately)
local. In other words, the sOPE would be a poor expansion
for the original operator. This is the physical origin of the
third feature that we saw in the leading-order disconnected
contribution, Eq. (25): small spacetime separations require
small flow times to ensure convergence. The OPE requires
small spacetime separations for good convergence, so it
follows that the sOPE requires small flow times as well.
There is a complementary viewpoint that elucidates the

small flow-time requirement more quantitatively: the small
flow-time expansion [31,50,52]. In this case we see that the
derivative of Eq. (36) is independent of the external
momenta in the x → 0 limit, up to terms linear in the flow
time:

d
dpi

dð1Þ
ρ2

¼
Z
k

qiðeik·x − 1Þ
ðk2 þm2Þðq2 þm2Þ2 þOðτÞ: ð37Þ

From this, it is clear that the Wilson coefficients will be
independent of the external states, up to terms linear in the
flow time. Therefore, provided the flow time is small
relative to the spacetime separation, the sOPE is an
expansion in approximately local operators, in a quantifi-
able sense. Moreover, the flow-time dependence will cancel
in the product of the Wilson coefficient and its associated
matrix element, to the desired order in the flow time.
We are free to set p1 ¼ p2 ¼ 0 in Eq. (35) because the

smeared Wilson coefficient is independent of the external
momenta and the mass to the order at which we are working
[53]. Expanding in the mass, we obtain

dð1Þ
ρ2

¼ 1

2

Z
k

eik·x − e−2k
2τ

ðk2Þ2

¼ −
1

32π2

�
γE − 1þ log

�
x2

8τ

��
: ð38Þ

Combining this with the leading-order contribution, which
is just unity, we have

dρ2 ¼ 1þ λ

32π2

�
γE − 1þ log

�
x2

8τ

��
þOðλ2Þ: ð39Þ

In contrast, the Wilson coefficient for the OPE in theMS
scheme, denoted by c̄, is

c̄ϕ2 ¼ 1þ λ

32π2

�
1þ 2γE þ log

�
μ2x2

16

��
þOðλ2Þ: ð40Þ

We note the occurrence of the three features we observed
for the leading-order disconnected contribution: the same
spacetime dependence for both smeared and unsmeared
coefficients, the appearance of the flow time as a leading-
order regulator, and the need to choose a small flow time for
small spacetime separations to avoid large logarithmic
contributions. From the small flow-time expansion view-
point, we can confirm that the flow-time dependence
ultimately cancels to the desired order. For example, the
matrix element of ρ2ðτ; 0Þ coupled to two external fields is

hΩjρ2ðτ; 0Þ ~ϕðp1Þ ~ϕðp2ÞjΩi

¼ 1þ λ

32π2
½1þ γE þ log ð2m2τÞ� þOðτ; λ2Þ ð41Þ

for sufficiently small flow times. Here we have dropped the
external fields, which we take to be on shell, for simplicity.
The product of this matrix element with the Wilson
coefficient is independent of the flow time to one loop
and OðτÞ, as we would expect:

dρ2hΩjρ2ðτ; 0Þ ~ϕðp1Þ ~ϕðp2ÞjΩi

¼ 1þ λ

32π2

�
2γE þ log

�
m2x2

4

��
þOðτ; λ2Þ: ð42Þ

2. Next-to-leading order

To determine the next-to-leading-order contribution to
the connected Wilson coefficient, we must incorporate the
Feynman diagrams of Fig. 4. The two-loop diagrams of
Fig. 7 do not contribute to the Wilson coefficient dρ2
because they appear at Oðm2Þ.
Looking at the Feynman diagrams of Fig. 4, and bearing

in mind our experience of the next-to-leading-order con-
tribution to dI, we immediately observe that these diagrams
are simply the product of the one-loop Wilson coefficient,

FIG. 6 (color online). At small flow times (left-hand diagram),
the smeared operators are localized relative to the spacetime
separation of the nonlocal operator. At large flow-time values
(right-hand diagram), however, the smearing radius probes the
scale of the nonlocal, and the sOPE is a poor approximation to the
original nonlocal operator. For details of the Feynman diagrams,
see the caption of Fig. 2.
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dð1Þ
ρ2
, and the next-to-leading-order renormalized four-point

vertex. This contribution to the vertex is, of course, nothing
other than the next-to-leading-order contribution to the
renormalized coupling constant. Thus, we write the Wilson
coefficient quite simply as

dρ2 ¼ 1þ λR
32π2

�
γE − 1þ log

�
x2

8τ

��
þOðλ3Þ; ð43Þ

where λR is the renormalized coupling. In the MS scheme,
the renormalized coupling is given by

λR ¼ λ −
3λ2

2ð16π2Þ log
�
μ2

m2

�
þOðλ3Þ: ð44Þ

For a calculation of this to five loops, see Ref. [59].
As we move beyond the leading-order Wilson coeffi-

cients, i.e., dð0ÞI and dð1Þ
ρ2
, divergent radiative corrections

appear in our calculations because all field interaction
vertices appear at zero flow time. These divergences can be
removed by the renormalization parameters of the original
theory, and the renormalization scale dependence of the
smeared operators is completely contained in the renorm-
alization parameters of the original theory. This is to be
expected: it follows from the fact that renormalized matrix
elements at zero flow time remain finite at nonzero flow
time and require no further renormalization [31,35].
Ultimately, for realistic calculations in lattice QCD, the

perturbative calculation of smeared Wilson coefficients
must be combined with nonperturbative determinations
of matrix elements at hadronic energy scales. Scalar ϕ4

theory is not asymptotically free in four dimensions, but we
can understand the mathematical features of the sOPE
in more detail by studying the renormalization group
equations for the simple example of scalar fields.

VI. RENORMALIZATION GROUP EQUATIONS

We consider the matrix elements of scalar operators
coupled to N external, unsmeared scalar fields. We can
derive renormalization group equations for the Wilson
coefficients of the OPE by considering the scale depend-
ence of suitably chosen Green functions [53]. The Green
function for N þ 2 external scalar fields obeys the renorm-
alization group equation

�
μ
d
dμ

þ ðN þ 2Þγ
�
hΩj ~ϕðp1Þ… ~ϕðpNþ2ÞjΩi ¼ 0; ð45Þ

while the Green function of the renormalized operator
ϕ2
Rð0Þ coupled to N external scalar fields satisfies

�
μ
d
dμ

− γm þ Nγ

�
hΩjϕ2

Rð0Þ ~ϕðp1Þ… ~ϕðpNÞjΩi ¼ 0:

ð46Þ

Here the renormalization group operator for scalar field
theory is

μ
d
dμ

¼ μ
∂
∂μ

				
λ;mR

þ β
∂
∂λ

				
μ;mR

− γmmR
∂

∂mR

				
μ;λ
; ð47Þ

and the coefficients are [59]

βMSðλÞ ¼ μ
dλ
dμ

¼ 3λ2

ð16π2Þ2 þOðλ3Þ; ð48Þ

γMS
m ðλÞ ¼ −

μ

2

d logðmRÞ
dμ

¼ −
λ

2ð16π2Þ þ
5λ2

12ð16π2Þ2 þOðλ3Þ; ð49Þ

γMSðλÞ ¼ μ

2

d logðZϕÞ
dμ

¼ λ2

12ð16π2Þ2 þOðλ3Þ: ð50Þ

In general these coefficients depend on the mass, the
renormalization scale, and the renormalized coupling
constant, but in a mass independent renormalization
scheme, such as the MS scheme, they depend on the
renormalization scale only through the renormalized cou-
pling constant. These functions are known to five loops for
the OðNÞ-symmetric theory, given by the N-multiplet Φ ¼
fϕ1;…;ϕNg [59,60].
Returning again to our example of the OPE for the two-

point function, Eq. (2), we can derive a renormalization
group equation for the Wilson coefficient cϕ2 by coupling
these operators to two external scalar fields and using
Eqs. (45) and (46) (for further details, see, for example,
Ref. [53]):

�
μ
d
dμ

þ 2ðγ þ γmÞ
�
cϕ2 ¼ 0: ð51Þ

Just as we might expect, the anomalous dimension of the
Wilson coefficient cϕ2 is equal to the difference between the
anomalous dimension of ϕðxÞϕð0Þ and that of ½ϕ2ð0Þ�R.

FIG. 7 (color online). Two-loop diagrams that appear at Oðm2Þ
and therefore do not contribute to dρ2 . For details of the Feynman
diagrams, see the caption of Fig. 2.
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A. Renormalization group equations for the
sOPE Wilson coefficients

The flow time, τ, introduces a new scale into the
problem. In principle one can view the flow time as just
another external scale, unrelated to the renormalization
scale μ. In this case, it is natural to modify the renorm-
alization group equations to account for the change in the
Green functions as we change both μ and τ:

μ
d
dμ

→ μ
d
dμ

− 2τ
d
dτ

: ð52Þ

Our choice of differential operator is constrained by the
mass dimension of each scale, μ and τ, but is not unique. In
particular, one could choose the operator μd=dμþ τd=dτ.
This freedom does not affect the logic of our discussion nor
our conclusion because alternative conventions can be
absorbed into the definition of the renormalization param-
eters and anomalous dimensions in, for example, Eq. (58).
At this stage it is worth commenting on the two scales in

the problem, μ and τ. In DIS, the spacetime separation of
the corresponding OPE, x, and renormalization scale, μ,
are, in principle, two distinct scales. The spacetime sep-
aration is provided by the inverse momentum transfer of a
particular DIS experiment or set of experiments. The
renormalization scale, however, is a theoretical choice,
and ultimately physical quantities should not depend on the
renormalization scale. It is generally convenient to choose
μ ¼ 1=x, but it is not strictly necessary.
The relationship between the flow time and the renorm-

alization scale is analogous, and these two scales are
distinct. For the sOPE, the flow time can be considered
as simply an external scale, imposed by some particular
lattice “experiment,” and the renormalization scale is a
convenient theoretical choice. We will see that it is helpful
to tie these scales together, to reduce the two-scale problem
to a single scale, but this is not formally necessary.
Therefore, in the following analysis, the flow and renorm-
alization scale should be understood as completely inde-
pendent scales.
Considering again the sOPE for the two-point function,

Eq. (4), we determine the renormalization group equation
for the smeared Wilson coefficient, dρ2 , by following a
procedure analogous to that outlined above.
We assume that we are working in the small flow-time

regime, which allows us to relate operators at vanishing and
nonvanishing flow time [31,50,52]:

½ϕ2ð0Þ�R ¼ Zρ2ðτ; μÞρ2ðτ; 0Þ þOðτÞ: ð53Þ

This coefficient satisfies

μ
d
dμ

logðZρ2ðτ; μ2ÞÞ ¼ 2γm ð54Þ

and to one loop is given by

Zρ2ðτ; μ2Þ ¼ 1 −
λ

32π2
½1þ γE þ logð2τμ2Þ� þOðλ2; τÞ:

ð55Þ

We apply the renormalization group operator

μ
d
dμ

− 2τ
d
dτ

þ ðN þ 2Þγ ð56Þ

to matrix elements of the operators in Eq. (53) coupled to N
external scalar fields to obtain

�
μ
d
dμ

− 2τ
d
dτ

þ 2ðζρ2 − γÞ
�
dρ2 ¼ OðτÞ: ð57Þ

Here

ζρ2 ¼ τ
d
dτ

logðZρ2ðτ; μ2ÞÞ ð58Þ

is an anomalous dimension associated with the flow-time
dependence of the operator ρ2ðτ; 0Þ. The renormalization
group equation for the corresponding matrix element of
ρ2ðτ; 0Þ coupled to N external fields is given by

�
μ
d
dμ

− 2τ
d
dτ

þ 2ζρ2 þ Nγ

�

× hΩjρ2ðτ; 0Þ ~ϕðp1Þ… ~ϕðpNÞjΩi ¼ OðτÞ: ð59Þ

We note that this equation only holds provided the flow
time is small compared with the momenta of the external
particles, which for DIS would be of the order of hadronic
scales.
If we now demand that the smearing scale, τ, and the

inverse of the renormalization scale, μ, are proportional to
each other, i.e., τ ¼ b=μ2 with b real, then the renormal-
ization group equation becomes

�
2μ

d
dμ

þ 2ζρ2 þ Nγ

�

× hΩjρ2ðb=μ2; 0Þ ~ϕðp1Þ… ~ϕðpNÞjΩi ¼ OðbÞ: ð60Þ

This renormalization group equation provides the starting
point for a nonperturbative step-scaling method [47,61] that
evolves nonperturbative matrix elements to a high scale,
where they can be combined with perturbative smeared
Wilson coefficients. Here the renormalization group equa-
tion holds in the small flow-time limit, or, in other words,
provided b ≪ 1. This constraint automatically ensures that
the flow time is also smaller than any hadronic length
scales, ΛQCD ≪ μ2 ≪ 1=τ, and is generally true for
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practical step-scaling methods [47,61]. We are currently
investigating this approach in QCD.

VII. CONCLUSION

We have proposed a new method, the smeared operator
product expansion, to extract matrix elements from numeri-
cal nonperturbative calculations without power divergent
mixing. The smeared operator product expansion is a
general framework relevant to any asymptotically free
theory with nonperturbative matrix elements that suffer
from power divergent mixing. Within QCD, the most
obvious application is to deep inelastic scattering, but
other applications include nonperturbative determinations
of K → ππ decays [62,63] and B-meson mixing [64].
Beyond QCD, applications include nonperturbative studies
of critical phenomena in the Heisenberg model, spin
systems, and other condensed matter systems.
In the sOPE, we expand nonlocal operators in a basis of

smeared operators, the matrix elements of which can be
determined on the lattice. We implement the smearing
via the gradient flow, a classical evolution of the theory
in a new dimension that smooths ultraviolet fluctuations.

The continuum limit of these matrix elements is free of
power divergent mixing, provided the localization scale,
the smearing length, is kept fixed in the continuum limit.
The resulting matrix elements are functions of two scales,
the renormalization scale and the smearing length. The
sOPE systematically relates these matrix elements to
smeared Wilson coefficients, which can be calculated
in perturbation theory, thereby providing a complete
determination of the nonlocal operators.

ACKNOWLEDGMENTS

The authors would like to thank Martin Lüscher for
helpful discussions during the course of this work and
Andrea Shindler for discussions regarding related work.
This project was supported in part by the U.S. Department
of Energy, Grant No. DE-FG02-04ER41302. K. O. was
also supported by the U.S. Department of Energy through
Grant No. DE-AC05-06OR23177, under which JSA oper-
ates the Thomas Jefferson National Accelerator Facility.
C. J. M. was supported in part by the U.S. National Science
Foundation under Grant No. NSF PHY10-034278.

[1] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86,
010001 (2012).

[2] J. Collins, Foundations of Perturbative QCD (Cambridge
University Press, Cambridge, England, 2011).

[3] R. Thorne and G. Watt, J. High Energy Phys. 08 (2011) 100.
[4] S. Alekhin, J. Blumlein, P. Jimenez-Delgado, S. Moch, and

E. Reya, Phys. Lett. B 697, 127 (2011).
[5] S. Alekhin, J. Blumlein, and S. Moch, Eur. Phys. J. C 71,

1723 (2011).
[6] L. Brady, A. Accardi, W. Melnitchouk, and J. Owens,

J. High Energy Phys. 06 (2012) 019.
[7] P. Jimenez-Delgado, H. Avakian, and W. Melnitchouk

(Jefferson Lab Angular Momentum [JAM] Collaboration),
Phys. Lett. B 738, 263 (2014).

[8] P. Jimenez-Delgado, A. Accardi, andW.Melnitchouk, Phys.
Rev. D 89, 034025 (2014).

[9] R. D. Ball, S. Forte, A. Guffanti, E. R. Nocera, G. Ridolfi,
and J. Rojo (The NNPDF Collaboration), Nucl. Phys. B874,
36 (2013).

[10] F. Arbabifar, A. N. Khorramian, and M. Soleymaninia,
Phys. Rev. D 89, 034006 (2014).

[11] J. Owens, A. Accardi, and W. Melnitchouk, Phys. Rev. D
87, 094012 (2013).

[12] A. Accardi, W. Melnitchouk, J. Owens, M. Christy,
C. Keppel, L. Zhu, and J. G. Morfin, Phys. Rev. D 84,
014008 (2011).

[13] E. Leader, A. V. Sidorov, and D. B. Stamenov, Phys. Rev. D
82, 114018 (2010).

[14] J. Blumlein and H. Bottcher, Nucl. Phys. B841, 205 (2010).

[15] M. Hirai and S. Kumano (Asymmetry Analysis Collabora-
tion), Nucl. Phys. B813, 106 (2009).

[16] Gunnar S. Bali, S. Collins, M. Deka, B. Gläßle, M.
Göckeler, J. Najjar, A. Nobile, D. Pleiter, A. Schäfer, and
A. Sternbeck, Phys. Rev. D 86, 054504 (2012).

[17] V. M. Braun et al. (QCDSF Collaboration), Phys. Rev. D 79,
034504 (2009).

[18] M. Guagnelli, K. Jansen, F. Palombi, R. Petronzio,
A. Shindler, and I. Wetzorke (Zeuthen-Rome [ZeRo]
Collaboration), Eur. Phys. J. C 40, 69 (2005).

[19] W. Detmold, W. Melnitchouk, and A.W. Thomas, Mod.
Phys. Lett. A 18, 2681 (2003).

[20] W. Detmold, W. Melnitchouk, and A.W. Thomas, Eur.
Phys. J. direct C 3, 1 (2001).

[21] Y.-Q. Ma and J.-W. Qiu, arXiv:1404.6860.
[22] X. Ji, Phys. Rev. Lett. 110, 262002 (2013).
[23] X. Ji, Sci. China Phys. Mech. Astron. 57, 1407 (2014).
[24] H.-W. Lin, J.-W. Chen, S. D. Cohen, and X. Ji, Phys. Rev. D

91, 054510 (2015).
[25] C. Morningstar and M. J. Peardon, Phys. Rev. D 69, 054501

(2004).
[26] A. Hasenfratz and F. Knechtli, Phys. Rev. D 64, 034504

(2001).
[27] C. W. Bernard and T. A. DeGrand, Nucl. Phys. B, Proc.

Suppl. 83, 845 (2000).
[28] M. Albanese et al., Phys. Lett. B 192, 163 (1987).
[29] C. Gattringer and C. B. Lang, Quantum Chromodynamics

on the Lattice (Springer, Berlin, 2010).
[30] M. Lüscher, J. High Energy Phys. 04 (2013) 123.

LOCALLY SMEARED OPERATOR PRODUCT EXPANSIONS … PHYSICAL REVIEW D 91, 074513 (2015)

074513-11

http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1007/JHEP08(2011)100
http://dx.doi.org/10.1016/j.physletb.2011.01.034
http://dx.doi.org/10.1140/epjc/s10052-011-1723-1
http://dx.doi.org/10.1140/epjc/s10052-011-1723-1
http://dx.doi.org/10.1007/JHEP06(2012)019
http://dx.doi.org/10.1016/j.physletb.2014.09.049
http://dx.doi.org/10.1103/PhysRevD.89.034025
http://dx.doi.org/10.1103/PhysRevD.89.034025
http://dx.doi.org/10.1016/j.nuclphysb.2013.05.007
http://dx.doi.org/10.1016/j.nuclphysb.2013.05.007
http://dx.doi.org/10.1103/PhysRevD.89.034006
http://dx.doi.org/10.1103/PhysRevD.87.094012
http://dx.doi.org/10.1103/PhysRevD.87.094012
http://dx.doi.org/10.1103/PhysRevD.84.014008
http://dx.doi.org/10.1103/PhysRevD.84.014008
http://dx.doi.org/10.1103/PhysRevD.82.114018
http://dx.doi.org/10.1103/PhysRevD.82.114018
http://dx.doi.org/10.1016/j.nuclphysb.2010.08.005
http://dx.doi.org/10.1016/j.nuclphysb.2008.12.026
http://dx.doi.org/10.1103/PhysRevD.86.054504
http://dx.doi.org/10.1103/PhysRevD.79.034504
http://dx.doi.org/10.1103/PhysRevD.79.034504
http://dx.doi.org/10.1140/epjc/s2005-02121-5
http://dx.doi.org/10.1142/S0217732303012209
http://dx.doi.org/10.1142/S0217732303012209
http://dx.doi.org/10.1007/s1010501c0013
http://dx.doi.org/10.1007/s1010501c0013
http://arXiv.org/abs/1404.6860
http://dx.doi.org/10.1103/PhysRevLett.110.262002
http://dx.doi.org/10.1007/s11433-014-5492-3
http://dx.doi.org/10.1103/PhysRevD.91.054510
http://dx.doi.org/10.1103/PhysRevD.91.054510
http://dx.doi.org/10.1103/PhysRevD.69.054501
http://dx.doi.org/10.1103/PhysRevD.69.054501
http://dx.doi.org/10.1103/PhysRevD.64.034504
http://dx.doi.org/10.1103/PhysRevD.64.034504
http://dx.doi.org/10.1016/S0920-5632(00)00449-7
http://dx.doi.org/10.1016/S0920-5632(00)00449-7
http://dx.doi.org/10.1016/0370-2693(87)91160-9
http://dx.doi.org/10.1007/JHEP04(2013)123


[31] M. Lüscher and P.Weisz, J. High Energy Phys. 02 (2011) 051.
[32] M. Lüscher, J. High Energy Phys. 08 (2010) 071.
[33] R. Narayanan and H. Neuberger, J. High Energy Phys. 03

(2006) 064.
[34] R. Lohmayer and H. Neuberger, Proc. Sci., LATTICE 2011,

249 (2011).
[35] H. Makino and H. Suzuki, Prog. Theor. Exp. Phys. 2015,

33B08 (2015).
[36] Z. Davoudi and M. J. Savage, Phys. Rev. D 86, 054505

(2012).
[37] S. Borsanyi, S. Durr, Z. Fodor, S. D. Katz, S. Krieg, T.

Kurth, S. Mages, A. Schafer, and K. K. Szabo, arXiv:
1205.0781.

[38] S. Borsanyi, S. Durr, Z. Fodor, C. Hoelbling, S. D. Katz,
T. Kurth, L. Lellouch, T. Lippert, and C. McNeile, J. High
Energy Phys. 09 (2012) 010.

[39] A. Bazavov et al. (MILC Collaboration), Proc. Sci.,
LATTICE 2013, 269 (2013).

[40] Z. Fodor, K. Holland, J. Kuti, S. Mondal, D. Nogradi, and
C. H. Wong, J. High Energy Phys. 09 (2014) 018.

[41] A. Cheng, A. Hasenfratz, Y. Liu, G. Petropoulos, and D.
Schaich, J. High Energy Phys. 05 (2014) 137.

[42] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. H. Wong,
J. High Energy Phys. 11 (2012) 007.

[43] P. Fritzsch, A. Ramos, and F. Stollenwerk, Proc. Sci.,
LATTICE 2013, 461 (2013).

[44] P. Fritzsch and A. Ramos, Proc. Sci., LATTICE 2013, 319
(2013).

[45] A. Ramos, Proc. Sci., LATTICE 2013, 053 (2013).
[46] J. Rantaharju, Proc. Sci., LATTICE 2013, 084 (2013).
[47] C. Monahan and K. Orginos, Proc. Sci., LATTICE 2013,

443 (2013).

[48] M. Lüscher, J. High Energy Phys. 06 (2014) 105.
[49] A. Shindler, Nucl. Phys. B881, 71 (2014).
[50] H. Suzuki, Prog. Theor. Exp. Phys. 2013, 83B03 (2013).
[51] L. Del Debbio, A. Patella, and A. Rago, J. High Energy

Phys. 11 (2013) 212.
[52] H. Makino and H. Suzuki, Prog. Theor. Exp. Phys. 2014,

63B02 (2014).
[53] J. Collins, Renormalization: An Introduction to Renormal-

ization, the Renormalization Group and the Operator-
Product Expansion (Cambridge University Press,
Cambridge, England, 1984).

[54] C. Bonati and M. D’Elia, Phys. Rev. D 89, 105005 (2014).
[55] M. Asakawa, T. Hatsuda, E. Itou, M. Kitazawa, and H.

Suzuki (FlowQCD Collaboration), Phys. Rev. D 90, 011501
(2014).

[56] S. Hollands and C. Kopper, Commun. Math. Phys. 313, 257
(2012).

[57] C. Monahan, Proc. Sci., LATTICE 2013, 021 (2013).
[58] S. Capitani, Phys. Rep. 382, 113 (2003).
[59] H. Kleinert and V. Schulte-Frohlinde, Critical Properties of

ϕ4-Theories (World Scientific, Singapore, 2001).
[60] S. E. Derkachov, J. Gracey, and A. Manashov, Eur. Phys. J.

C 2, 569 (1998).
[61] M. Lüscher, P. Weisz, and U. Wolff, Nucl. Phys. B359, 221

(1991).
[62] C. Dawson, G. Martinelli, G. Rossi, C. T. Sachrajda, S. R.

Sharpe, M. Talevi, and M. Testa, Nucl. Phys. B514, 313
(1998).

[63] W. Detmold and C. D. Lin, Phys. Rev. D 73, 014501 (2006).
[64] C. Monahan, E. Gamiz, R. Horgan, and J. Shigemitsu, Phys.

Rev. D 90, 054015 (2014).

CHRISTOPHER MONAHAN AND KOSTAS ORGINOS PHYSICAL REVIEW D 91, 074513 (2015)

074513-12

http://dx.doi.org/10.1007/JHEP02(2011)051
http://dx.doi.org/10.1007/JHEP08(2010)071
http://dx.doi.org/10.1088/1126-6708/2006/03/064
http://dx.doi.org/10.1088/1126-6708/2006/03/064
http://dx.doi.org/10.1093/ptep/ptv028
http://dx.doi.org/10.1093/ptep/ptv028
http://dx.doi.org/10.1103/PhysRevD.86.054505
http://dx.doi.org/10.1103/PhysRevD.86.054505
http://arXiv.org/abs/1205.0781
http://arXiv.org/abs/1205.0781
http://dx.doi.org/10.1007/JHEP09(2012)010
http://dx.doi.org/10.1007/JHEP09(2012)010
http://dx.doi.org/10.1007/JHEP09(2014)018
http://dx.doi.org/10.1007/JHEP05(2014)137
http://dx.doi.org/10.1007/JHEP11(2012)007
http://dx.doi.org/10.1007/JHEP06(2014)105
http://dx.doi.org/10.1016/j.nuclphysb.2014.01.022
http://dx.doi.org/10.1093/ptep/ptt059
http://dx.doi.org/10.1007/JHEP11(2013)212
http://dx.doi.org/10.1007/JHEP11(2013)212
http://dx.doi.org/10.1093/ptep/ptu070
http://dx.doi.org/10.1093/ptep/ptu070
http://dx.doi.org/10.1103/PhysRevD.89.105005
http://dx.doi.org/10.1103/PhysRevD.90.011501
http://dx.doi.org/10.1103/PhysRevD.90.011501
http://dx.doi.org/10.1007/s00220-012-1457-4
http://dx.doi.org/10.1007/s00220-012-1457-4
http://dx.doi.org/10.1016/S0370-1573(03)00211-4
http://dx.doi.org/10.1007/s100529800706
http://dx.doi.org/10.1007/s100529800706
http://dx.doi.org/10.1016/0550-3213(91)90298-C
http://dx.doi.org/10.1016/0550-3213(91)90298-C
http://dx.doi.org/10.1016/S0550-3213(97)00756-6
http://dx.doi.org/10.1016/S0550-3213(97)00756-6
http://dx.doi.org/10.1103/PhysRevD.73.014501
http://dx.doi.org/10.1103/PhysRevD.90.054015
http://dx.doi.org/10.1103/PhysRevD.90.054015

	Locally smeared operator product expansions in scalar field theory
	Recommended Citation

	untitled

