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Background: The cognitive neuropsychological model states that antidepressant treatment alters
emotional biases early in treatment, and after this initial change in emotional processing, environmental
and social interactions allow for long-term/sustained changes in mood and behavior.

Objective: Changes in negative self-bias after chronic subcallosal cingulate (SCC) deep brain stimulation
(DBS) were investigated with the hypothesis that treatment would lead to changes in emotional biases
followed by changes in symptom severity.

Methods: Patients (N = 7) with treatment-resistant depression were assessed at three time points: pre-
treatment; after one month stimulation; and after six months stimulation. The P1, P2, P3, and LPP (late
positive potential) components of the event-related potential elicited by positive and negative trait
adjectives were recorded in both a self-referential task and a general emotion recognition task.
Results: Results indicate that DBS reduced automatic attentional bias toward negative words early in
treatment, as indexed by the P1 component, and controlled processing of negative words later in
treatment, as indexed by the P3 component. Reduction in negative words endorsed as self-descriptive
after six months DBS was associated with reduced depression severity after six months DBS. Change
in emotional processing may be restricted to the self-referential task.

Conclusions: Together, these results suggest that the cognitive neuropsychological model, developed to
explain the time-course of monoamine antidepressant treatment, may also be used as a framework to
interpret the antidepressant effects of SCC DBS.
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Introduction depression symptoms. The cognitive neuropsychological model of

depression holds that monoamine antidepressant treatment causes

According to cognitive models, negative self-bias is a defining
characteristic of depression [1-5]. Negative self-bias refers to an
emotion-by-depression interaction; depressed individuals may have
increased negative emotional processing [6], reduced positive
emotional processing [7], or a combination of the two. The relation-
ship between negative self-bias and the mood disturbances charac-
teristic of depression has recently attracted considerable interest.

Effective antidepressant treatment alters emotional processing
biases, often in advance of detectable improvement in other
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early alterations of emotional biases independently from changes in
mood [8—11]. After the initial change in emotional processing,
environmental and social interactions allow for changes in mood
and behavior following, and dependent on, change in emotional
biases [9]. According to the model, this explains why monoamine
antidepressant treatment may take weeks or months before clini-
cally significant reduction in symptoms occurs.

Changes in negative emotional bias with antidepressant
treatment could be due to a reduction in processing negative
stimuli or an enhancement in processing positive stimuli. For
example, administration of the selective serotonin reuptake in-
hibitor citalopram for one week reduced the identification of
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fearful, angry, and disgusted facial expressions [12]. By contrast,
administration of a single dose of the norepinephrine reuptake
inhibitor reboxetine increased recognition of happy facial ex-
pressions [13]. Thus, a full accounting of the influence of antide-
pressant treatment on emotional biases requires an exploration of
processing of both negative and positive stimuli.

Self-bias can be quantified using an emotional self-referential
task in which participants are asked to indicate whether adjec-
tives describing positive and negative personality traits are self-
descriptive [14—16]. Emotional self-referential processing involves
activation within a network of brain areas including medial pre-
frontal cortex (MPFC) and subcallosal cingulate (SCC) [17—21].
Yoshimura and colleagues [22] found that depressed participants
had hyperactivity in MPFC and SCC when processing negative
words in a self-referential task compared to non-depressed con-
trols. Further, Yoshimura and colleagues [23] found that twelve
weeks of cognitive behavioral therapy reduced functional activa-
tion of the MPFC and SCC in response to negative words, and
increased activation for positive words. Lemogne and colleagues
[24] suggested that hyperactivity in the ventral MPFC reflects
increased automatic attention to self-referential information in
depression, and hyperactivity in the dorsal MPFC reflects strategic
control processes such as the comparison of self-referential infor-
mation to negative internal models of the self in depression. Thus,
antidepressant treatment may modulate both automatic and
controlled processes; and may both reduce processing of negative
self-referential information, and enhance processing of positive
self-referential information.

The cognitive neuropsychological model suggests that changes
in emotional bias early in monoamine antidepressant treatment are
due to alterations in bottom-up, automatic processing biases rather
than strategic control processes. In contrast, cognitive therapy
directly targets top-down, strategic control processes [9,25]. The
temporal resolution of event-related potentials (ERPs) allows an
examination of whether antidepressant treatment affects auto-
matic processes and/or strategic control processes. In an emotional
self-referential task, Shestyuk and Deldin [26] found that non-
depressed controls had greater P2 amplitude for positive words,
whereas currently depressed and remitted depressed had greater
P2 amplitude for negative words. In addition, they found that non-
depressed and remitted depressed groups had greater late positive
potential (LPP) amplitude for positive words, whereas the currently
depressed group had greater amplitude for negative words. These
results suggest that both currently and remitted depressed patients
have automatic attentional biases toward negative self-referential
information as revealed by the P2, but only currently depressed
patients show a bias toward negative self-referential information
during controlled processing as revealed by the LPP. Thus, effective
antidepressant treatment evidently altered controlled but not
automatic processing biases.

In the current study, longitudinal changes in emotional self-
referential processing associated with chronic SCC deep brain
stimulation (DBS) were investigated in patients with treatment-
resistant depression (TRD). Sustained antidepressant effects have
been demonstrated with chronic SCC DBS in patients with TRD
[27—30]. Previous studies of SCC DBS have identified cerebral blood
flow and glucose metabolic changes with antidepressant response
to DBS, including changes in MPFC and dorsal lateral PFC, as well as
SCC and dorsal anterior cingulate [29,30]. Changes with DBS over-
lap areas of regional change also seen with antidepressant response
to other treatments including medications and cognitive behavioral
therapy [25,28,31]. These studies suggest that depression and al-
terations in self-bias are associated with abnormal activity in a
network of areas including MFC and SCC, and that DBS of the SCC
can normalize the activity in these brain regions. Therefore, it

seems likely that DBS of the SCC may alter emotional self-
referential processing.

To examine changes in negative self-bias after DBS treatment,
TRD patients were assessed at three time points (pre-treatment,
after one month stimulation, and after six months stimulation) to
examine both early and late effects of DBS treatment. The P1, P2, P3,
and LPP components of the event-related potential (ERP) elicited by
positive and negative trait adjectives were recorded in both a self-
referential task and a general emotion recognition task. In the self-
referential task, participants indicated whether the words were
self-descriptive. In the general emotion recognition task, partici-
pants indicated whether the words described a socially desirable
trait. The ERP components analyzed reflect dissociable aspects of
emotional stimulus processing. Modulation of the P1 reflects
attention to emotional words [32]. The P2 component reflects
automatic monitoring of semantic meaning [26]. In this context,
modulation of the P3 has been shown to correspond to the moti-
vational relevance of emotional stimuli [33], and likely reflects
controlled processing of the stimuli. The early and late LPP also
reflect controlled cognitive processing of the emotional words [26],
but the early LPP (<600 ms) may also be sensitive to changes in the
stimulus [37]. Thus, this series of ERP components captures the
temporal dynamics of emotional self-referential processing, and
allows assessment of both bottom-up, automatic processes and top-
down, strategic control processes.

This study investigated whether predictions from the cognitive
neuropsychological model, developed to explain monoamine anti-
depressant effects, might also hold for SCC DBS antidepressant
treatment. Specifically, five questions were addressed: (1) Does SCC
DBS alter processing of positive and/or negative self-referential
information? (2) Do changes in negative self-bias occur early
(after one month SCC DBS) and/or later (after six months SCC DBS)
in treatment? (3) Does SCC DBS alter automatic and/or strategic
processes? (4) Are changes in negative self-bias after SCC DBS
associated with changes in other depression symptomology as
assessed by the Hamilton Depression Rating Scale [34]? (5) Are any
changes in emotional bias related to SCC DBS restricted to the self-
referential task or do they also occur in the general emotion
recognition task?

Methods
Participants and SCC DBS intervention

Seven patients with TRD participating in a clinical research trial
of DBS for depression (three men/four women, five unipolar/two
bipolar, mean age = 39.6 years, SD = 10.2 years) were included in
this study. Inclusion and exclusion criteria for this study have been
previously described [27]. Patients remained on stable medications
for four weeks prior to surgery and through the first six months of
chronic DBS treatment. The 17-item HDRS was rated weekly at
clinical follow-up visits and used as the primary outcome measure
of treatment efficacy in the clinical trial [27] and for correlative
analyses (see below). All patients gave written informed consent
and the study was approved by the Institutional Review Boards of
Emory University and Georgia Institute of Technology.

Behavioral and neurophysiological paradigm

Behavioral testing and electrophysiological recording occurred
at three time points during the DBS study: at baseline prior to
implantation of DBS electrodes; after one month of active SCC
DBS; and after six months of active SCC DBS. Stimulation was
turned off during the experiment to avoid EEG artifacts due to the
stimulator. As previously reported, following initiation of chronic
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stimulation, SCC DBS is not associated with acute perceived or
observed changes in behavior with acute on versus off stimulation
[27,35].

During the emotional self-referential task, participants were
presented with a set of 80 adjectives that pertain to personality
traits. Of these, 40 were positive words (e.g., sincere, careful,
warm) and 40 were negative words (e.g., unlikeable, moody,
tense). All 80 words were presented within one continuous block,
with order of word presentation randomized during each testing
session. For each trial, a fixation cross appeared at the center of
the screen for 1 s, which was then replaced by a word that
remained on screen until the participant responded. Participants
indicated whether the word was self-descriptive by pressing one
of two keys on a standard keyboard (‘1’ for yes; ‘2’ for no). After
each response, a new trial began with the presentation of the
fixation cross. The proportion of ‘yes’ responses and the response
time to make the decision were recorded for the positive and
negative words.

After the self-referential task, participants performed a gen-
eral emotion recognition task. The general emotion recognition
task was identical to the self-referential task except that partici-
pants indicated whether the words described a socially desirable
trait.

Electrophysiological recording and offline data preparation

Electrophysiological data were recorded using the Active-Two
amplifier system (BioSemi, Amsterdam, Netherlands) and data
were digitized at 512 Hz. Electrode locations included: FP1/2, F7/8,
F3/4,Fz, C3/4, Cz, P7/8, P3/4, Pz, T7/8, 01/2, Oz, AF3/4, FC1/2, CP1/2,
PO3/4, FC5/6, and CP5/6. The BioSemi system requires the place-
ment of two additional electrodes, the common mode sense (CMS)
and driven right leg (DRL).

EEG data were processed using BrainVision Analyzer (Brain
Products, Gilching, Germany). Vertical electrooculogram (EOG) was
calculated offline as the difference between electrodes positioned
above and below the left eye. Horizontal EOG was calculated offline
as the difference between electrodes positioned on the outer
canthi of the left and right eyes. Offline, scalp channels were
re-referenced to the average of all channels. Digital filtering was
performed offline using a band-pass .1-30 Hz zero phase shift
Butterworth filter (12 dB/oct).

Continuous EEG was segmented into 1700 ms epochs starting
200 ms before the presentation of the emotional words. Ocular
artifacts were corrected using standard regressive methods [36].
The segments were baseline corrected relative to the 200 ms
baseline. Artifact correction was conducted by rejecting segments if
the voltage step exceeded 50 pV/ms, the difference between
maximum and minimum voltage exceeded 300 pV, or there was
low activity below .5 uV. The trials were then averaged separately
for each condition for each participant.

P1 (150—170 ms), P2 (255—275 ms), and P3 (310—360 ms)
amplitudes were quantified as the mean activity in the indicated
time windows. These time windows were chosen based on the
peaks in the grand average waveform across all participants and
conditions. “Early” late positive potential (LPP; 400—600 ms) and
“late” LPP (600—800 ms) amplitude were quantified as the
average activity in the indicated time windows, and these win-
dows were chosen based on prior studies [26,37]. We used the
two separate LPP intervals because early and late LPP may reflect
distinct processes [37]. Voltage was averaged across electrodes P3,
Pz, and P4 to obtain the dependent measure as preliminary ana-
lyses did not show any hemispheric differences. These electrode
sites were chosen because the components of interest (P1, P2, P3,
LPP) were maximal at these sites.

Statistical analysis

To assess changes in behavior and electrophysiology after DBS,
non-parametric Wilcoxon Signed Ranks tests were used due to
small sample size. For each dependent measure, we assessed
whether there was a change for negative words or positive words
after one month or six months DBS relative to baseline.

To assess relationships between change in emotional bias and
change in depression symptomology, percent change measures
were calculated for behavioral and electrophysiological responses to
negative words and positive words after one month and six month
DBS relative to baseline. Percent change was also calculated for
depression severity as measured by HDRS after one month and six
month DBS relative to baseline. Correlations between each of these
percent change measures were examined using Spearman’s rho.

Results
Self-referential task

Behavioral results

Overall, the results indicate a reduction in negative words
endorsed as self-descriptive after one month and six months DBS
(see Fig. 1). After one month DBS, there was a statistically significant
decrease in the proportion of negative words endorsed as self-
descriptive (M = .49, SD = .27) compared to baseline (M = .72,
SD = .09), z = 2.20, P =.028. The change in proportion of positive
words endorsed was not statistically significant after one month
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Figure 1. Behavioral results from the self-referential task as a function of word
valence (positive vs. negative) and time point (baseline vs. one month DBS vs. six
months DBS). (A) The proportion of words endorsed as self-descriptive. (B) Reaction
time to endorse words as self-descriptive. *denotes statistically significant changes
relative to baseline at « = .05.
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DBS (M = .63, SD = .32) compared to baseline (M = .53, SD = .19),
z = 1.36, P = .176. After six months DBS, there was a statistically
significant decrease in the proportion of negative words endorsed
as self-descriptive (M = .39, SD = .29) compared to baseline,
z = 2.37, P = .018, but the increase in the proportion of positive
words endorsed as self-descriptive (M = .69, SD = .32) compared to
baseline, z = 1.69, P = .091, was not statistically significant. There
were no statistically significant effects of DBS on response times
(zs < 1.01, Ps > .310).

Electrophysiological results

The results indicate a reduction in P1 amplitude for negative
words after one month DBS, and a reduction in P1 and P3 amplitude
for negative words after six months DBS (Fig. 2), relative to baseline.

P1 component. After one month DBS, there was a significant
reduction in P1 amplitude for negative words, z = 2.37, P =.018, but
there was not a significant change in P1 amplitude for positive
words, z = .51, P=.612. After six months DBS, there was a significant
reduction in P1 amplitude for negative words, z = 2.20, P=.028, but
there was not a significant change in P1 amplitude for positive
words, z =.00, P = 1.0.

P2 component. There were no significant changes in P2 amplitude
with either one month or six months DBS (zs < .68, Ps > .499).

P3 component. For negative words, the decrease in P3 amplitude
after one month DBS, z = 1.69, P = .091, was not statistically sig-
nificant, but there was a statistically significant decrease after six
months DBS, z = 2.37, P =.018. There were no statistically significant
changes in P3 amplitude for positive words (zs < .85, Ps > .398).

Early LPP (400—600 ms). There were no statistically significant
changes in early LPP amplitude (zs < 1.86, Ps > .063).

Late LPP (600—800 ms). There were no statistically significant
changes in late LPP amplitude (zs < 1.18, Ps > .237).

Self-Referential Task

Negative Words
*

Voltage (puV)

Time (ms)

10 + Positive Words

Correlations

The correlation between the percent change in negative words
endorsed as self-descriptive after one month DBS (M = 32.4%,
SD = 34.4%) and percent change in depression severity after one
month DBS (M = 26.4%, SD = 15.2%) was not statistically significant,
rs = .36, P = .432. In contrast, percent change in negative words
endorsed as self-descriptive after six months DBS (M = 45.5%,
SD = 38.5%) was strongly correlated with percent change in
depression after six months DBS (M = 54.9%, SD = 25.7%), rs = .96,
P = .0005 (Fig. 3). No other correlations were statistically
significant.

General emotion recognition task

Analyses replicating those for the self-referential task were
conducted, but no statistically significant differences in the
behavioral or ERP measures (Fig. 2, right panels) were found after
one month or six months DBS.

Discussion

As hypothesized and predicted by the cognitive neuropsycho-
logical model, patients with TRD undergoing SCC DBS experienced
behavioral and physiological changes in emotional self-bias, which
was associated with subsequent clinical improvement. Specifically,
after one month of chronic DBS, TRD patients had a reduction in
negative self-bias which was most evident in the reduction of
negative words endorsed as self-descriptive, and reduction in P1
amplitude elicited by negative words relative to baseline. After six
months DBS, TRD patients maintained the reduction in negative
self-bias which again was most evident in the reduction of negative
words endorsed as self-descriptive, and in reduction of P1 and P3
amplitude elicited by negative words relative to baseline. In addi-
tion, percent change in proportion of negative words endorsed as
self-descriptive was highly correlated with the percent change in
depression severity after six months (but not one month) DBS.
There were no statistically significant changes in behavioral or

General Task
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=6 Months DBS
10 Positive Words
8
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-200 > 200 400 600 800
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Figure 2. Event-related potentials elicited by positive and negative words at the three time points (baseline — black lines, one month DBS — red lines, and six months DBS — blue
lines) in the self-referential task and general emotion recognition task at electrode Pz. *denotes statistically significant changes in ERP component amplitude relative to baseline at
o = .05. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Figure 3. Relationship between percent change in proportion of negative words
endorsed as self-descriptive and percent change in depression severity. (A) After one
month DBS, the relationship between change in negative self-bias and depression
severity was not statistically significant. (B) After six months DBS, there was a strong
positive correlation between reduction in negative self-bias and reduced depression
severity.

electrophysiology in the general emotion recognition task, sug-
gesting that changes in emotional processing may be specific to the
self-referential task.

The results suggest that SCC DBS alters negative self-bias early in
treatment (i.e., after one month of active stimulation) by reducing
automatic processing biases toward negative self-referential infor-
mation as indexed by the P1 component. At baseline, the P1
component elicited by negative words in the TRD patients likely
reflects an automatic attentional bias toward negative self-
referential information [26,32]. Kissler and Herbert [38] have
suggested that emotional processing can occur prior to cognitive
processing because emotional processing needs fewer inferences. In
other words, negative words captured the attention of the TRD
patients even though semantic information about the word may not
have been fully processed. This attentional capture may be a neural
mechanism that contributes to the excessive focus on negative self-
referential information exhibited in depression [26]. The reduction
of P1 amplitude for negative words after one month of DBS suggests
that DBS can attenuate this automatic attentional bias to negative
emotional information relatively early in the time-course of treat-
ment. This early effect is consistent with the self-reported shift in
negative interoceptive sensations with acute stimulation in the
operating room observed in the majority of patient [27,30].

Later in treatment (after six months of active stimulation), the
results indicate that SCC DBS alters negative self-bias by reducing
strategic, controlled processing of negative self-referential infor-
mation as indexed by the P3 component. The P3 component is
thought to reflect controlled processing and has been shown to

correspond to the motivational relevance of emotional stimuli [33].
The greater P3 amplitude for negative words at baseline then likely
reflects controlled, sustained attention and elaboration of negative
self-referential information. Reduction in P3 amplitude after six
months DBS may reflect decreased rumination over negative self-
referential information.

Shestyuk and Deldin [26] proposed a model of negative self-bias
that states that persistent rumination over negative self-referential
information helps establish automatic attention biases towards this
type of information. In turn, these automatic attentional biases
continually provide negative self-referential information to rumi-
nate over. Effective antidepressant treatment can break this cycle by
reducing rumination over negative self-referential information.
Furthermore, Yoshimura and colleagues [23]| recently demon-
strated that cognitive behavioral therapy, which directly targets
negative self-biases, results in reduced functional activation of the
MPFC and SCC. The P3 component measured here may also reflect
changes in the MPFC and SCC due to DBS as these are the same brain
areas that show functional changes with SCC DBS treatment [29,30].
Thus, as DBS alters activity in the MPFC and SCC, this may in turn
change negative self-bias by reducing sustained attention and
elaboration to negative self-referential information as indexed by
changes in the P3 component.

Rather than a generalized effect of DBS, the anatomical speci-
ficity of the SCC target may have bearing on these findings. The SCC
fibers impacted in this study include bundles to the MPFC, dorsal
anterior cingulate, nucleus accumbens/thalamus, and brain stem
[39,40]. Detailed tract tracing analyses demonstrate a more specific
pathway from SCC to the dorsal raphe and periaqueductal grey
[41,42]. This anatomical specificity has been directly linked to top-
down control mechanisms in rodent models of depression [43—45],
providing a putative mechanism for the differential impact of SCC
DBS on negative but not positive emotional processing.

Taken together, these results suggest that the cognitive neu-
ropsychological model can be applied to explain SCC DBS as well
as monoamine antidepressant treatment. Early in treatment, SCC
DBS reduces bottom-up, automatic processing of negative self-
referential information. Later in treatment, once negative self-
referential information no longer captures attention, DBS is able
to influence top-down, cognitive control mechanisms. According
to the model, the TRD patients were thus helped to engage in
environmental and social interactions with reduced negative self-
bias, and this ultimately results in improved mood and behavior
[9]. In support of this idea, six months of treatment coincides with
the time-course of observed antidepressant effects in these TRD
patients [27]. Moreover, the change in negative words endorsed as
self-descriptive was highly correlated with the change in
depression severity after six months DBS relative to baseline.
Thus, full clinical response might only occur when controlled
processes begin to normalize so that patients no longer ruminate
over negative self-referential information. Such a process, seen
here in longitudinal changes in both behavior and ERPs elicited in
the self-referential task, might signal renewed capacity for
cognitive and behavioral retraining or other adjunctive rehabili-
tative strategies to maximize patient functional recovery.

Limitations

Limitations of the current study should be considered. The same
words were presented at the three time points for both the self-task
and general emotion task, although they were presented in random
order during each testing session. Thus, it is possible that change in
performance and ERP amplitude in the self-task was due to previous
exposure. However, given that the change was different for positive
and negative words, this explanation is less likely. Another limitation
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was that the self-task was always performed before the general
emotion task. Thus, the lack of change in the general task could be
due to habituation. This limits our ability to make a strong conclusion
regarding the specificity of the effects of DBS on self-referential
emotional processing. However, note that the cognitive neuropsy-
chological model of depression argues that treatment causes early
alterations of emotional biases (not self-referential emotional pro-
cessing per se) independently from changes in mood. After the initial
change in emotional processing, environmental and social in-
teractions allow for changes in mood and behavior following, and
dependent on, change in emotional biases. An additional limitation
was that the sample size was small and multiple-comparison cor-
rections were not performed. This is a unique sample and first
observation, and additional studies with larger samples will be
necessary to confirm the results. Although SCC DBS is not associated
with acute perceived or observed changes in behavior with acute on
versus off stimulation [27,35], it is possible that the results reflect an
effect of acute cessation of stimulation because the stimulator was
turned off prior to each experimental session. In addition, there was
no testing during sham DBS. Furthermore, medications differed
across patients (e.g., some patients were taking benzodiazepines).
However, there were no changes in medication over the course of the
study with medication doses stable for at least four weeks prior to
DBS surgery and for the duration of the study period described here.
Because these data report mainly on changes over time within the
study, the effect of concurrent medications should be minimized
because doses were held steady. Future studies should employ a
larger sample, finer time sampling, evaluate other TRD patient
groups with different treatments, and examine possible interactions
between medication and DBS.

Conclusions

Effects of SCC DBS on negative self-bias in patients with TRD
were investigated. The results demonstrated that: (1) SCC DBS
altered processing of negative self-referential information; (2)
changes in negative self-bias occurred both early (after one month
SCC DBS) and later (after six months SCC DBS) in treatment; (3) SCC
DBS altered automatic processes early in treatment and controlled
processes later in treatment; (4) reduction in negative words
endorsed as self-descriptive was associated with a reduction in
depression severity after six months DBS; (5) and changes in
emotional bias may be restricted to the self-referential task.
Together, these results suggest that the cognitive neuropsycholog-
ical model, developed to explain the time-course of monoamine
antidepressant treatment, may also be used as a framework to
interpret the effects of SCC DBS.
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