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Effect of Resistance Training on
Neuromuscular Junctions of Young and
Aged Muscles Featuring Different
Recruitment Patterns

Michael R. Deschenes,1,2* E. Grace Sherman,1 Mackenzie A. Roby,1

Emily K. Glass,1 and M. Brennan Harris1

1Department of Kinesiology and Health Sciences, The College of William and Mary, Williamsburg,
Virginia
2Program in Neuroscience, The College of William and Mary, Williamsburg, Virginia

To examine the effects of aging on neuromuscular adap-
tations to resistance training (i.e., weight lifting), young (9
months of age) and aged (20 months of age) male rats
either participated in a 7-week ladder climbing protocol
with additional weight attached to their tails or served as
controls (n 5 10/group). At the conclusion, rats were
euthanized and hindlimb muscles were quickly removed
and frozen for later analysis. Longitudinal sections of the
soleus and plantaris muscles were collected, and pre-
and postsynaptic features of neuromuscular junctions
(NMJs) were visualized with immunofluorescence staining
procedures. Cross-sections of the same muscles were
histochemically stained to determine myofiber profiles
(fiber type and size). Statistical analysis was by two-way
ANOVA (main effects of age and treatment) with signifi-
cance set at P�0.05. Results revealed that training-
induced remodeling of NMJs was evident only at the
postsynaptic endplate region of soleus fast-twitch myo-
fibers. In contrast, aging was associated with pre- and
postsynaptic remodeling in fast- and slow-twitch myofib-
ers of the plantaris. Although both the soleus and the
plantaris muscles failed to display either training or aging-
related alterations in myofiber size, aged plantaris
muscles exhibited an increased expression of type I
(slow-twitch) myofibers in conjunction with a reduced per-
centage of type II (fast-twitch) myofibers, suggesting early
stages of sarcopenia. These data demonstrate the high
degree of specificity of synaptic modifications made in
response to exercise and aging and that the sparsely
recruited plantaris is more vulnerable to the effects of
aging than the more frequently recruited soleus muscle.
VC 2014 Wiley Periodicals, Inc.

Key words: synapse; acetylcholine; bungarotoxin; nerve
terminal; exercise

Important national and international health organi-
zations, such as the Centers for Disease Control and Pre-
vention, the American College of Sports Medicine, and
the World Health Organization, have released recom-

mendations for adults and older individuals to participate
in a regular program of exercise training (Pate et al.,
1995; Chodzko-Zajko et al., 2009; World Health Orga-
nization, 2010). These statements and position stands laud
the ability of exercise training to prevent or manage effec-
tively a host of noncommunicable maladies, including
cardiovascular disease, stroke, type II diabetes, obesity,
and arthritis.

In addition to endurance, i.e., aerobic-style, exer-
cise, it is strongly recommended that health-related exer-
cise programs include resistance training, i.e., weight
lifting. Resistance training is especially valuable among
the aged because this mode of exercise has been found to
be successful in treating or preventing chronic health con-
ditions associated with senescence, including sarcopenia
(age-related loss of muscle mass), osteoporosis, insulin
resistance, incidence of accidental falls, bone fracture, and
even cognitive decline (Engelke et al., 2006; Liu-
Ambrose and Donaldson, 2009; Visser, 2011; Westcott,
2012; Anton et al., 2013; Cederholm et al., 2013; Greg-
ory et al., 2013). Resistance training typically results in
positive adaptations of the neuromuscular system, includ-
ing myofibers and neuromuscular junctions (NMJs) that
link the motor nervous system with skeletal muscles that
are activated by those motor neurons (Deschenes et al.,
2000; Folland and Williams, 2007; Andersen and Aagaard,
2010). Clearly, there are distinct advantages to adding
resistance training to the exercise regimens performed by
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the aged. Less clear, however, is whether the neuromus-
cular systems of older individuals respond to the stimulus
of resistance training in a manner similar to the neurons
and myofibers of younger individuals. This is a legitimate
concern because it has recently been reported that adapta-
tions of the NMJ to endurance training (treadmill run-
ning) were different among young and aged animals
(Deschenes et al., 2011). The present investigation seeks
to determine whether aging affects adaptations of the
NMJ and associated myofibers to resistance training.

MATERIALS AND METHODS

Subjects

Twenty young adult (9 months of age) and 20 aged (20
months of age) male Fisher 344 rats were purchased from the
National Institute on Aging colonies and randomly assigned to
either resistance-trained (RT) or control (CTL) treatment
groups, resulting in a total of four groups, with n 5 10/group.
The average life expectancy of male Fisher 344 rats is 25.5
months (Turturro et al., 1999); thus, at 20 months of age the
older rats used in this study had lived 78.5% of their life span.
Relative to the average life span of men in the United States,
which currently is 76 years (United States Census Bureau,
2012), these older rats were the equivalent of 60 years old, the
age considered to be the onset of senescence by some health
organizations and experts (Forman et al., 1992; Bloom et al.,
2011).

Animals were provided standard rat chow and water ad
libitum and were housed at a constant temperature of 21–22�C
under a 12-hour light/dark cycle. All procedures were
approved beforehand by the institutional animal care and use
committee operating in accordance with the NIH Guide for the
care and use of laboratory animals.

Resistance Training

The resistance training protocol that was used consisted
of three sessions per week for 7 weeks. Animals climbed a lad-
der that was 1 meter long and set at an 85� angle, with addi-
tional weights attached to their tails with Velcro strips. Each
training session featured eight repetitions of ladder climbing,
and added resistance was initially set at 50% of body mass with
30 g increments added weekly. When necessary, rats were
motivated to climb the ladder via a cool-water spray. This ani-
mal model of resistance training has been shown to recruit the
hindlimb extensor muscles (i.e., gastrocnemius, plantaris, soleus)
and forelimb muscles (Linderman et al., 1994; Kim et al., 2012)
effectively. Animals assigned to control conditions simply
remained in their tubs throughout the 7-week intervention. At
the end of the intervention period, all animals were euthanized,
and hindlimb muscles were surgically removed, cleared of fat
and connective tissue, and quickly frozen at resting length in
isopentane chilled with liquid nitrogen. Muscles were then
stored at 280� C until analysis. The soleus and plantaris muscles
were selected for analysis because, although both are ankle
extensors, they have vastly different myofiber-type distributions
and recruitment patterns. More specifically, the soleus consists
mainly of slow-twitch, or type I, fibers and as a postural muscle
displays a high duty cycle, whereas the plantaris principally

expresses fast-twitch, or type II, myofibers and is extensively
recruited only during locomotor activity (Laughlin and Arm-
strong, 1982; Delp and Duan, 1996).

Cytofluorescence Staining

To visualize NMJs, 50-mm-thick longitudinal sections of
the middle one-third of the muscle and along its most superfi-
cial region were obtained at 220�C on a cryostat (Cryocut
1800; Reichert-Jung, Nußloch, Germany). To prevent con-
traction of sections, microscope slides were pretreated in a 3%
EDTA solution as previously described by Pearson and Sabarra
(1974). Sections were washed four times for 15 min each in
phosphate-buffered saline (PBS) containing 1% bovine serum
albumin (BSA). Sections were then incubated in a humidified
chamber overnight at 4�C in supernatant of the primary anti-
body RT97 (Developmental Studies Hybridoma Bank, Univer-
sity of Iowa) and diluted 1:20 in PBS with 1% BSA. The RT97
antibody reacts with nonmyelinated constituents of presynaptic
nerve terminals (Anderton et al., 1982). On the next day, sec-
tions were washed four times for 15 each in PBS with 1% BSA
before they were incubated for 2 hr at room temperature in flu-
orescein isothiocyanate-conjugated secondary immunoglobulin
(Sigma, St. Louis, MO) that was diluted 1:150 in PBS with 1%
BSA. Sections were then washed four times for 15 min each in
PBS with 1% BSA. After this, sections were incubated in a
humidified chamber overnight at 4�C in a solution containing
rhodamine-conjugated a-bungarotoxin (Invitrogen, Grand
Island, NY) diluted 1:600 in PBS with either antislow (soleus)
or antifast (plantaris) myosin heavy chain ascites fluid (Sigma)
diluted 1:40. Bungarotoxin recognizes postsynaptic acetylcho-
line (ACh) receptors, whereas the antislow and antifast immu-
nogen allowed us to determine whether the endplate resided
on a fast- or slow-twitch myofiber. On the next day, sections
were washed four times for 15 min each in PBS with 1% BSA
before incubating them for 1 hr at room temperature in Alexa-
Fluor 647 (Invitrogen)-labeled secondary antibody to bind with
the antislow or antifast primary antibody. Sections were given a
final wash (four times for 15 min each) before being lightly
coated with ProLong (Invitrogen) and having coverslips
applied. Slides were then coded with respect to treatment group
to allow for blinded evaluation of NMJ morphology and stored
at 220�C in the dark until analysis. An example of this cyto-
fluorescence staining of pre- and postsynaptic components of
the NMJ is displayed in Figure 1.

Presynaptic variables of NMJs that were assessed included
1) the number of branches identified at the nerve terminal; 2)
the total length of those branches; 3) the average length per
branch; and 4) the branching complexity, which, as described
previously by Tomas et al. (1990), is derived by multiplying the
number of branches by the total length of those branches and
dividing that number by 100. Postsynaptic variables of interest
included 1) total perimeter, or the length encompassing the
entire endplate comprising stained ACh receptor clusters and
nonstained regions interspersed within those clusters; 2) stained
perimeter, or the composite length of tracings around individ-
ual ACh receptor clusters; 3) total area, which includes the
stained receptors along with the nonstained regions interspersed
among receptor clusters; 4) stained area, or the cumulative areas
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occupied by ACh receptor clusters; and 5) dispersion of end-
plates, which was assessed by dividing the endplate’s stained area
by its total area and multiplying by 100. In this study,
presynaptic-to-postsynaptic coupling was quantified by dividing
the NMJ’s postsynaptic stained area by its total length of presyn-
aptic nerve terminal branching. Figure 2 displays how measure-
ments were made of presynaptic branching as well as an example
of how line tracings were either made manually (total) or gener-
ated by software (stained) around postsynaptic ACh receptors.

Histochemical Staining

To quantify myofiber profiles, 10-mm-thick transverse
sections were obtained from the midbelly of the muscle with a
cryostat set at 220�C. Sections were stained for myofibrillar
ATPase activity following preincubation at a pH of either 4.55
(soleus) or 4.40 (plantaris) as described by Nemeth and Pette
(1981). It should be noted that this staining technique allows
identification of the three fiber types found in the soleus (types
I, IIA, and IIX). However, the fourth fiber type included in the
plantaris (type IIB) cannot be distinguished from type IIX
fibers. A representative sample of myofibers stained in this way
can be seen in Figure 3. Slides were coded so that measure-
ments could be conducted in a blinded fashion regarding treat-
ment group.

Microscopy

A Fluoview FV 300 (Olympus America, Melville, NY)
confocal system featuring three lasers and a BX60 (Olympus)
fluorescent microscope were used to collect images of NMJs
and to identify whether they were located on slow- or fast-
twitch myofibers. By using a 3100 oil immersion objective, it
was initially established that the entire NMJ was within the lon-
gitudinal borders of the myofiber and that the area of interest
was not damaged during sectioning. A detailed image of the
entire NMJ was constructed from a z-series of scans taken at

1-mm-thick increments. To ascertain the myofiber type on
which the NMJ resided, a single scan of the fiber was collected
by using the appropriate wavelength to detect AlexaFluor 647.
Digitized, two-dimensional images of NMJs were stored on the
system’s hard drive and later were quantified in Image Pro-Plus
(Media Cybernetics, Silver Spring, MD). In the majority fiber
type within each muscle, 10–12 NMJs were imaged, and meas-
urements were averaged to represent NMJ structure, but,
because of paucity, a minimum of five NMJs on the minority
myofiber type were used to determine average NMJ structural
characteristics for that fiber type.

A BX41 (Olympus) phase-contrast microscope was used
to assess myofiber profiles with a 340 objective. Myofiber

Fig. 2. Representative image of tracings used to quantify morphologi-
cal aspects of the neuromuscular junction. A: Tracings used to quan-
tify presynaptic nerve terminal branches. B: Tracings (both manually
drawn and generated by software) used to quantify postsynaptic ACh
receptors. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

Fig. 1. Representative image of fluorescently stained neuromuscular
junction at 31,000. Presynaptic nerve terminal branches are stained in
green, and postsynaptic ACh receptors are stained in red. [Color fig-
ure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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cross-sectional areas were quantified in Image Pro-Plus. A ran-
dom sample of 125–150 myofibers from each muscle was ana-
lyzed to determine average myofiber size (i.e., cross-sectional
area) and fiber-type composition for that muscle.

Statistical Analysis

All data are reported as mean 6 SE. For each variable of
interest, a two-way ANOVA with main effects of age and treat-
ment was conducted. In the event of a significant main or inter-
active effect, a Fisher PLSD post hoc test was performed to
identify significant pairwise differences. In all analyses, statistical
significance was set at P� 0.05.

RESULTS

Body Mass

Prior to the start of the 7-week intervention pro-
gram, aged animals weighed significantly more than
young animals, but in neither age category were there dif-
ferences in body mass between rats assigned to resistance
training and those assigned to CTL groups. When animals
were weighed again at the conclusion of the experimental
period, it was once again noted that aged rats weighed
significantly more than young rats. Unlike results at prein-
tervention, the postintervention ANOVA results indi-

cated a significant main effect for treatment when the
CTL animals weighed more than the RT group.
However, when post hoc procedures were performed, it
was only among the young rats that the effect of treat-
ment category was found to be significant; i.e., RT rats
weighed less than CTL animals.

Whole-Muscle Wet Weight

Upon euthanization at postintervention, the soleus
and plantaris muscles were surgically removed and
weighed before they were frozen. In the highly recruited
soleus, a significant main effect of age was found
(aged> young), although no effect for treatment was
identified. Post hoc results indicated that, in both treat-
ment groups, aged soleus muscles displayed greater mass
than young ones. Conversely, data collected on the wet
weight of plantaris muscles demonstrated a significant
main effect for treatment (RT>CTL) but not for age.
Post hoc analyses showed that, although resistance train-
ing resulted in heavier plantaris muscles in aged rats, this
was not apparent in young animals. Data regarding
body mass and whole-muscle wet weight can be found in
Table I.

NMJ Morphology

Soleus (slow twitch). When synapses found on
the predominant myofiber type of the soleus (slow
twitch) were examined, it was ascertained that neither
resistance training nor age impacted presynaptic structure.
This was found to be true for each of the variables quanti-
fied regarding nerve terminal branching. However, with
respect to presynaptic-to-postsynaptic coupling, results
indicated a significant effect of aging in which aged NMJs
showed a greater endplate area per total nerve terminal
branch length. More specifically, this greater
postsynaptic-to-presynaptic ratio was established in aged
RT rats compared with young CTL and RT animals.

When postsynaptic endplate dimensions among
slow-twitch NMJs were examined, observation con-
firmed that cumulative or total perimeter length of trac-
ings surrounding stained clusters of ACh receptors in aged
CTL animals exceeded those lengths in young RT rats.
When endplate area was quantified, both total area
(which included stained receptor clusters and unstained
areas interspersed among clusters) and stained area (aggre-
gate area of stained clusters only), it was revealed that
aging had resulted in expanded areas under both CTL and

TABLE I. Effects of Resistance Training and Aging on Body Mass and Whole-Muscle Wet Weight*

Young control Young RT Aged control Aged RT

Body mass (g) 352.7 6 11.1† 315.4 6 6.7† 450.9 6 11.9 442.5 6 8.1

Soleus wet weight (mg) 120.6 6 5.7‡ 111.2 6 4.4† 133.9 6 6.7 136.8 6 3.7

Plantaris wet weight (mg) 286.0 6 18.0 299.0 6 21.1 284.1 6 6.9 336.8 6 15.2§

*Values are mean 6 SE.
†P� 0.05 indicates significant difference from all other groups.
‡P� 0.05 indicates significant difference from aged RT.
§P� 0.05 indicates significant difference from young control and aged control.

Fig. 3. Sample of myofibers stained for myosin ATPase activity fol-
lowing acidic preincubation at 3100. Darkly stained myofibers are
type I, lightly stained fibers are type IIA, and intermediately stained
fibers are type IIX/B. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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RT conditions. When data from total endplate area and
stained endplate area were used to determine dispersion
of ACh receptors, a treatment effect was identified indi-
cating that resistance training resulted in a more compact
(i.e., receptors occupying a greater proportion of total
endplate area), or less dispersed, distribution of postsynap-
tic receptors among young but not aged synapses.

Soleus (fast twitch). Similar to what was
detected among NMJs of the predominant slow-twitch
myofibers, synapses among the minority fast-twitch myo-
fibers of the soleus failed to display significant effects of
age or treatment in nerve terminal branching parameters.
Although the presynaptic-to-postsynaptic coupling ratio
was significantly influenced by age in slow-twitch NMJs,
no such effect was discerned among NMJs residing on
fast-twitch myofibers.

When perimeter lengths surrounding postsynaptic
fast-twitch endplate regions were quantified, neither
aging nor training had modified either total or stained
lengths. However, when total and stained endplate areas
were quantified, there was a significant effect of treatment
(RT>CTL) in both young and aged animals. This dif-
fered from what was found in solei slow-twitch NMJs, in
which there was an effect of aging (aged> young) but no
training effect. Finally, with respect to ACh receptor dis-

persion in fast-twitch NMJs, it was noted that resistance
training resulted in more dispersed receptor clusters but
only among aged endplates. This, too, differed from what
was observed in slow-twitch endplates, in which training
was associated with more compact (i.e., higher percentage
of total endplate area occupied by ACh receptors), or less
dispersed, NMJs but only among young and not aged ani-
mals. All data on soleus NMJ morphology are presented
in Table II.

Plantaris (fast twitch). In the plantaris, it is fast-
twitch myofibers that are predominantly expressed. When
NMJs residing on those fast-twitch myofibers were ana-
lyzed, a significant main effect for aging was detected for
each presynaptic variable assessed. That is, aged synapses
featured greater numbers of nerve terminal branches, total
branch length, average branch length, and branching
complexity relative to young NMJs. In contrast, results
indicated that resistance training failed to alter presynaptic
morphology. Moreover, neither age nor training altered
presynaptic-to-postsynaptic coupling.

When postsynaptic endplates on these fast-twitch
NMJs were examined, statistical analysis again revealed a
main effect of aging in which aged endplates were found
to have significantly longer perimeter lengths, in both
total and stained-only measurements, as well as greater

TABLE II. Effects of Resistance Training and Aging on Slow- and Fast-Twitch NMJs of the Soleus Muscle*

Young control Young RT Aged control Aged RT

Presynaptic (slow twitch)

Branch number 6.6 6 0.6 6.4 6 0.4 5.9 6 0.6 5.8 6 0.4

Total branch length (mm) 99.3 6 3.1 109.6 6 6.5 94.4 6 13.8 104.5 6 7.8

Average branch length (mm) 16.7 6 1.0 15.4 6 1.5 19.5 6 0.9 16.5 6 1.8

Branching complexity 7.7 6 0.9 7.9 6 0.9 7.8 6 1.6 7.2 6 1.0

Presynaptic-to-postsynaptic coupling 2.5 6 0.3† 2.1 6 0.2‡ 2.9 6 0.2 3.4 6 0.4

Postsynaptic (slow twitch)

Total endplate perimeter (mm) 135.9 6 10.7 120.1 6 6.0 137.4 6 9.3 132.3 6 6.4

Stained endplate perimeter (mm) 223.3 6 14.0 213.6 6 15.8§ 264.9 6 19.0 240.8 6 23.2

Total endplate area (mm2) 410.2 6 16.0‡ 383.1 6 40.5‡ 564.3 6 53.7 546.7 6 52.8

Stained endplate area (mm2) 222.6 6 15.8‡ 230.0 6 27.6‡ 323.4 6 32.9 356.0 6 38.3

Endplate dispersion (%) 50.0 6 2.6# 65.6 6 3.4 61.0 6 1.0 62.0 6 2.5

Presynaptic (fast twitch)

Branch number 6.2 6 0.7 6.8 6 0.8 5.8 6 0.9 7.1 6 0.5

Total branch length (mm) 106.9 6 10.9 109.0 6 13.6 101.4 6 20.9 132.7 6 12.4

Average branch length (mm) 16.5 6 0.5 17.2 6 1.2 17.4 6 1.4 19.5 6 1.5

Branching complexity 10.7 6 1.4 8.4 6 1.7 7.3 6 2.8 12.4 6 3.4

Presynaptic-to-postsynaptic coupling 2.4 6 0.1 3.1 6 0.8 2.3 6 0.6 2.7 6 0.5

Postsynaptic (fast twitch)

Total endplate perimeter (mm) 119.4 6 8.2 125.6 6 10.3 123.9 6 28.0 131.2 6 10.8

Stained endplate perimeter (mm) 243.0 6 23.9 246.4 6 9.7 186.2 6 61.5 286.9 6 38.9

Total endplate area (mm2) 315.0 6 48.8¶ 504.2 6 69.7 386.5 6 166.9¶ 557.5 6 74.0

Stained endplate area (mm2) 240.5 6 23.0¶ 326.1 6 82.7 248.8 6 110.6¶ 352.4 6 58.7

Endplate dispersion (%) 61.3 6 1.5 62.5 6 7.5 68.0 6 4.9 58.8 6 4.8§

*Values are mean 6 SE; branching complexity 5 branch number 3 total branch length/100; presynaptic-to-postsynaptic coupling 5 endplate stained

area/total terminal branch length; dispersion 5 stained endplate area/total endplate area 3 100.
†P� 0.05 indicates significant difference from aged RT.
‡P� 0.05 indicates significant difference from aged control and aged RT.
§P� 0.05 indicates significant difference from aged control.
#P� 0.05 indicates significant difference from all other groups.
¶P� 0.05 indicates significant difference from young RT and aged RT.
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endplate areas, again, in both total and stained-only meas-
urements, compared with young animals. However, no
effect of training was identified in endplate morphology.
Finally, dispersion of postsynaptic ACh receptors was
impervious to both resistance training and aging.

Plantaris (slow twitch). In slow-twitch NMJs of
the plantaris, it was once again revealed that aging was
coupled with significantly larger presynaptic nerve termi-
nal branching patterns. This closely paralleled what was
identified in the predominant fast-twitch NMJs. The sole
exception was that average branch length in slow-twitch
NMJs was unaffected by aging, whereas average branch
length in aged fast-twitch NMJs was longer than that in
young fast-twitch synapses. As was discovered among
plantaris fast-twitch NMJs, neither age nor resistance
training altered presynaptic to postsynaptic coupling in
slow-twitch NMJs of the plantaris.

Again, our analysis of postsynaptic slow-twitch plan-
taris NMJs yielded results that mimicked what was found
in endplates of the predominant fast-twitch NMJs of that
muscle. More specifically, aging resulted in significant
enhancement of total and stained perimeter lengths and
significantly expanded total and stained endplate areas.
Resistance training, on the other hand, had no effect on
postsynaptic morphology. As with fast-twitch endplates,
neither age nor training altered the dispersion of ACh
receptors in postsynaptic endplates of slow-twitch myo-

fibers of the plantaris. All data regarding NMJ morphol-
ogy of plantaris muscles can be examined in Table III.

Myofiber Morphology

Soleus. Statistical results from analysis of the heav-
ily recruited, postural soleus muscle indicate that neither
age nor treatment (i.e., resistance training) affected myo-
fiber size when data from all fiber types were pooled.
This was also the case when examining predominant type
I (slow-twitch) fibers exclusively as well as when type IIA
and IIX fibers were quantified by themselves. Similarly,
neither age nor training significantly changed the fiber-
type composition of the soleus.

Plantaris. In contrast to the soleus, the plantaris,
although also an ankle flexor, is mainly comprised of type
II (fast-twitch) myofibers and is only sparsely recruited
under resting conditions, inasmuch as its main function is
to serve in locomotor activity. With data from fiber types
collapsed together, plantaris myofiber size was unaffected
by age or by resistance training. This same resilience to
alterations in size was also observed when myofibers were
quantified by individual fiber type (i.e., types I, IIA, or
IIX/B). However, when fiber-type composition of the
plantaris was assessed, it was found that, although resist-
ance training failed to alter fiber-type distribution, aging
did result in a significant modification. Specifically, it was
found that aging resulted in a significant decrease in the

TABLE III. Effects of Resistance Training and Aging on Slow- and Fast-Twitch NMJs of the Plantaris Muscle*

Young control Young RT Aged control Aged RT

Presynaptic (fast twitch)

Branch number 5.8 6 0.4 5.3 6 0.3† 6.7 6 0.3 6.6 6 0.4

Total branch length (mm) 130.0 6 8.0† 128.7 6 5.3† 172.5 6 7.4 168.3 6 8.8

Average branch length (mm) 23.1 6 0.7† 24.2 6 0.7† 26.4 6 0.6 26.8 6 1.0

Branching complexity 7.5 6 1.0† 6.5 6 0.6† 11.9 6 1.1 11.5 6 1.4

Presynaptic-to-postsynaptic coupling 2.9 6 0.1 3.3 6 0.2 3.3 6 0.1 3.2 6 0.2

Postsynaptic (fast twitch)

Total endplate perimeter (mm) 156.1 6 5.5† 158.8 6 9.5† 200.4 6 7.8 191.4 6 7.6

Stained endplate perimeter (mm) 292.4 6 22.7† 287.1 6 29.9† 434.4 6 28.9 391.0 6 29.4

Total endplate area (mm2) 452.4 6 35.1† 457.7 6 48.3† 666.2 6 50.7 615.5 6 51.6

Stained endplate area (mm2) 385.3 6 26.0† 398.7 6 38.7† 559.5 6 42.9 525.1 6 49.8

Endplate dispersion (%) 71.0 6 2.4 73.3 6 1.7 70.2 6 1.7 70.0 6 2.0

Presynaptic (slow twitch)

Branch number 5.5 6 0.5 5.1 6 0.6† 6.9 6 0.3 6.8 6 0.4

Total branch length (mm) 129.1 6 10.1† 111.4 6 11.4† 167.7 6 7.4 169.5 6 11.6

Average branch length (mm) 25.4 6 4.1 23.3 6 1.2 25.2 6 1.2 25.5 6 1.3

Branching complexity 7.5 6 1.3† 6.5 6 1.7 12.3 6 1.0 12.6 6 1.6

Presynaptic-to-postsynaptic coupling 3.8 6 0.3 3.1 6 0.4 2.6 6 0.4 2.5 6 0.4

Postsynaptic (slow twitch)

Total endplate perimeter (mm) 163.2 6 12.8‡ 144.0 6 15.0† 203.0 6 9.2 191.1 6 10.1

Stained endplate perimeter (mm) 327.5 6 42.7‡ 290.1 6 28.4† 440.2 6 37.2 377.2 6 29.5

Total endplate area (mm2) 492.2 6 65.8 399.3 6 35.0‡ 629.8 6 55.2 525.4 6 53.1

Stained endplate area (mm2) 413.9 6 48.4 341.6 6 29.1‡ 533.4 6 56.6 429.6 6 46.8

Endplate dispersion (%) 68.5 6 2.7 70.6 6 2.3 68.0 6 2.0 66.2 6 3.6

*Values are mean 6 SE; branching complexity 5 branch number 3 total branch length/100; presynaptic-to-postsynaptic coupling 5 endplate stained

area/total nerve terminal branch length; endplate dispersion 5 stained endplate area/total endplate area 3 100.
†P� 0.05 indicates significant difference from aged control and aged RT.
‡P� 0.05 indicates significant difference from aged control.
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expression of type II fibers that was accompanied by a
similar increase in the percentage of type I fibers in the
plantaris. This finding was explained mainly by a decline
in the content of type X/B fibers because no appreciable
variation in the percentage of type IIA fibers was associ-
ated with aging. Myofiber profile results are presented in
Table IV.

DISCUSSION

With the aging segment of populations in virtually all
industrialized nations showing increasing growth, a major
public health effort has been put forth to develop inter-
ventions to maintain good health so that health care costs
associated with aging might be prevented from spiraling
out of control (Pandya et al., 2013; Charness, 2014).
Convincing evidence has accrued demonstrating the suc-
cess of exercise training as a cost-effective method of
maintaining or improving health among senescent indi-
viduals (Allen and Morelli, 2011; Fleg, 2012; Desveaux
et al., 2014). Included among exercise regimens pre-
scribed for the aged is resistance training, or weight lift-
ing. This mode of exercise might confer benefits, such as
greater strength and muscle mass, improved skeletal
health, and better control of blood glucose levels
(Chodzko-Zajko et al., 2009; Gasiorowski and Dutkie-
wicz, 2012). An important component of the neuromus-
cular system that is responsive to resistance exercise is the
NMJ, which functionally and anatomically connects the
motor nervous system to skeletal muscle fibers (myofib-
ers). It is known that aging results in remodeling of the

NMJ (Fahim et al., 1983; Anis and Robbins, 1987;
Andonian and Fahim, 1989; Jang and Van Remmen,
2011) and that it also influences NMJ adaptability to
endurance training (Fahim, 1997; Deschenes et al., 2011).
The present investigation sought to determine whether
aging also impacts the ability of the NMJ to respond to
resistance training. We examined this in two muscles with
vastly different myofiber-type compositions and principal
functions. The soleus is composed mainly of slow-twitch
myofibers, and it is characterized by a high duty cycle,
meaning that it is regularly recruited because of its func-
tion as the main postural muscle. In turn, the plantaris is
primarily comprised of type II (fast-twitch) myofibers and
functions mainly as a locomotor muscle and thus is
recruited far less than the soleus (Laughlin and Armstrong,
1982). One of the unexpected findings of this study was
that, among young rats, RT soleus muscles weighed less
than the soleus muscles of untrained CTLs. This result
mirrored what was found in body mass; that is, young
RT rats weighed significantly less than young CTLs. It is
possible that the training regimen sufficiently increased
physical activity levels such that declines in body mass
were observed. Alternatively, it is possible that regular
exercise curtailed the appetite of young rats such that they
consumed fewer calories during the intervention period,
thus adding on less body mass than those subjected to
control conditions.

More germane to the focus of the current investiga-
tion, our results show that, among the muscles examined,
it was the soleus and not the plantaris that displayed NMJ
adaptations to resistance training, but those adaptations

TABLE IV. Effects of Resistance Training and Aging on Myofiber Profiles of Soleus and Plantaris Muscles*

Young control Young RT Aged control Aged RT

Soleus (cross-sectional area; mm2)

Types combined 2,159 6 101 2,051 6 107 2,243 6 126 2,226 6 69

Type I 2,217 6 110 2,086 6 109 2,285 6 126 2,242 6 75

Type II (A, X) 1,879 6 102 1,815 6 116 2,022 6 180 2,152 6 84

Type IIA 1,939 6 111 1,908 6 118 2,164 6 193 2,189 6 105

Type IIX 1,667 6 135 1,497 6 77 1,796 6 195 1,832 6 167

Soleus (fiber type composition; %)

Type I 85.2 6 2.1 88.2 6 1.2 86.0 6 1.1 84.3 6 1.1

Type II (A, X) 14.8 6 7.5 11.8 6 1.2 14.0 6 1.1 15.7 6 1.1

Type IIA 11.6 6 2.2 8.0 6 1.0 9.0 6 1.2 11.7 6 1.0

Type IIX 3.2 6 0.7 3.8 6 1.1 5.0 6 0.8 4.0 6 0.7

Plantaris (cross-sectional area; mm2)

Types combined 2,218 6 119 2,100 6 114 2,017 6 93 2,106 6 110

Type I 1,359 6 117 1,467 6 202 1,292 6 46 1,427 6 80

Type II (A, X) 2,394 6 119 2,256 6 111 2,209 6 109 2,312 6 120

Type IIA 2,632 6 173 2,543 6 157 2,369 6 112 2,588 6 117

Type IIX/B 1,303 6 159 1,513 6 188 1,249 6 86 1,417 6 99

Plantaris (fiber-type composition; %)

Type I 16.5 6 1.3 20.1 6 3.0 22.3 6 1.8† 25.7 6 3.2‡

Type II (A, X/B) 83.5 6 1.3 79.9 6 3.0 77.7 6 1.8† 74.3 6 3.2‡

Type IIA 67.8 6 6.1 65.9 6 3.7 66.6 6 2.3 64.5 6 6.3

Type IIX/B 15.7 6 5.4 14.0 6 3.7 11.1 6 1.5† 9.8 6 1.8‡

*Values are mean 6 SE
†0.10< P< 0.05 indicates trend for difference from young control.
‡P� 0.05 indicates significant difference from young control.
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were evident only among NMJs that resided on the spar-
ingly expressed fast-twitch myofibers and were assessed as
increased postsynaptic endplate area noted among both
young and aged rats as well as greater ACh receptor dis-
persion among aged NMJs only. Also noted was a main
effect of aging in presynaptic-to-postsynaptic coupling of
NMJs residing on slow-twitch muscle fibers. This could
be explained by expansions of postsynaptic endplate size
among the aged animals without a concomitant increase
in nerve terminal branch length. Furthermore, no presyn-
aptic training-induced adaptations were identified in
either young or aged animals. This was true for nerve ter-
minal branching quantified in both fast- and slow-twitch
myofibers.

In contrast to the effect of resistance training, which
was apparent exclusively on postsynaptic measures of fast-
twitch NMJs, the influence of aging was conferred solely
upon the postsynaptic endplates of the predominant slow-
twitch NMJs of the soleus. As has been documented pre-
viously (Fahim, 1997; Deschenes et al., 2011), aging
resulted in endplate expansion on slow-twitch myofibers
of the soleus.

Unlike postsynaptic parameters, not a single main
effect of aging was detected for any presynaptic variable
measured in either the predominant slow-twitch NMJs or
the minority fast-twitch NMJs found in the soleus. This
absence of an aging effect might well be explained by the
high recruitment patterns exhibited by that postural
muscle.

Conversely, the plantaris, composed mainly of fast-
twitch myofibers and acting mainly as a locomotor mus-
cle, almost uniformly evinced a main effect of aging. This
effect was observed as expansions of all features of presyn-
aptic nerve terminal branching as well as postsynaptic
endplate regions. Such age-related increases in NMJ
parameters were observed in both fast-twitch and slow-
twitch synapses of the plantaris. Because of the pre- and
postsynaptic uniformity of this age-related morphological
growth, presynaptic to postsynaptic coupling was main-
tained in the face of aging, as was the dispersion of ACh
receptors within the endplate region. Given its role as an
ambulatory muscle, it is surprising that the NMJ of the
plantaris remained wholly devoid of training-induced
adaptations. This might be related to the well-known dif-
ficulty in emulating the intensity and volume of resistance
training typified in human weight lifters when using an
animal model (Timson, 1990; Cholewa et al., 2014).
Indeed, myofiber profiles of both the soleus and the plan-
taris did not reveal any of the hypertrophy that would be
expected with an effective resistance training program.
This lack of myofiber hypertrophy is not supported by
whole-muscle wet-weight data showing that plantaris
muscles of trained aged rats were significantly heavier
than those of young animals. We believe that this result
likely was due mainly to inconsistencies during the surgi-
cal removal of those muscles. Unlike the soleus, which
has easily identified points of origin and insertion that are
easily accessible when extracting the muscle, the plantaris
does not so readily present obvious cutting sites during

surgical removal; it is also embedded in the gastrocnemius
muscle. As a result, sometimes smaller or larger sections of
what are intended to be whole muscles are removed that
are then later weighed.

In contrast to myofiber cross-sectional area,
myofiber-type composition was affected by aging, at least
in the plantaris, in that aged rats displayed a higher per-
centage of type I (slow-twitch) myofibers that was con-
comitant with a decreased percentage of type II (fast-
twitch) myofibers. This pattern of fiber-type conversion
(II!I) is a cardinal feature of the sarcopenia observed in
aged muscle. These data suggest that the first sign of sar-
copenia might be fiber-type conversion rather than fiber
atrophy and that sparsely recruited muscles (plantaris)
might be more vulnerable to the effects of sarcopenia
than highly recruited ones (soleus). A caveat might be in
order here, however. It has recently been reported that
various staining procedures used to determine myofiber-
type composition in muscles might yield inaccurate results
resulting from misclassification, especially among aged
muscles (Purves-Smith et al., 2014). Among the numer-
ous staining procedures used to assess fiber-type composi-
tion, the one employed here, ATPase histochemistry, is
particularly vulnerable to such error.

The combination of using different age groups
(young vs. aged) to study the effects of resistance training
on disparate muscles (soleus vs. plantaris) along with dif-
ferent NMJs (fast vs. slow twitch) provided important
new findings regarding the inherent synaptic plasticity of
the peripheral nervous system. A vital finding was that it
was among the NMJs of the highly recruited soleus but
not the lightly recruited plantaris that morphological
adaptations to the resistance training stimulus were appa-
rent. Again, the resistance training paradigm used might
have lacked adequate rigor to recruit the type-II-
predominant, high-threshold plantaris.

It is important to note that these training-induced
NMJ adaptations in the soleus were detected among both
young and older rats, suggesting that aging, at least early-
onset aging, did not impact the sensitivity of synapses to
an exercise stimulus. This bodes well for older people try-
ing to derive the many health benefits associated with
weight training. However, the training-provoked
enhancement of postsynaptic endplate dimensions, i.e.,
perimeter length and area, of the soleus was noted in fast-
twitch but not slow-twitch NMJs. This likely can be
attributed to the fact that under normal conditions fast-
twitch myofibers of the soleus are infrequently recruited,
but during the weight training sessions they would be
expected to be activated. In contrast, significant interac-
tive effects among aging and training were observed in
both fast-twitch and slow-twitch NMJs of the soleus.
More specifically, it was determined that resistance train-
ing increased dispersion of ACh receptors of aged NMJs,
whereas that same stimulus brought about a more com-
pact receptor distribution within the endplates of young
NMJs. Clearly, there is a nuanced, complex relationship
between the influences of exercise training and aging
with respect to NMJ remodeling.
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Unlike the effects of resistance training, which trig-
gered NMJ adaptations only among the small number
(�15%) of fast-twitch myofibers that make up the soleus,
the effects of aging were identified in the more com-
monly expressed slow-twitch myofibers of that muscle. It
was notable that adaptations to both aging and training
occurred only at postsynaptic regions of NMJs identified
in the soleus. However, perhaps the most noteworthy
outcome of this investigation was the fact that age-related
synapse reconfiguration was uniformly evident in the
plantaris. That is, the effects of aging were manifested in
both the predominant fast-twitch myofibers and the spar-
ingly expressed slow-twitch myofibers of the plantaris.
Moreover, this remodeling was revealed both in presyn-
aptic nerve terminal branching and in the postsynaptic
endplate region of the myofiber’s sarcolemma. It appears
that a very pervasive series of NMJ adaptations occurs
during even the earliest stages of aging (recall that the
aged rats used here are the equivalent of 60-year-old
humans, with that age serving as the threshold for the
“youngest” of the aged population [Forman et al., 1992]),
at least among lightly recruited muscles such as the
plantaris.

Altogether, the data gathered in the present investiga-
tion indicate that lightly recruited muscles are more sensi-
tive to aging, even at the very earliest stages of aging, than
those muscles that demonstrate a higher duty cycle. There
is also evidence that the effects of aging first appear in the
postsynaptic region, suggesting that this process might
begin with the myofiber before progressing in a retrograde
fashion up to presynaptic nerve terminals. Additionally,
among muscles such as the plantaris that are particularly
sensitive to the effects of aging because of their modest
habitual activity levels, aging-induced synaptic remodeling
is apparent in the NMJs of both slow- and fast-twitch
myofibers. In all cases, aging resulted in an expansion of
pre- and postsynaptic features even without changes in the
size of the underlying myofibers that are coupled with
NMJ size increments noted during natural growth and
development (Balice-Gordon and Lichtman, 1990).

Although the current study focused mainly on
NMJs, an interesting finding is that sarcopenia might
begin not with myofiber atrophy but rather with myo-
fiber conversion (type II!I). Finally, although the resist-
ance training protocol employed here was not sufficient
to produce myofiber hypertrophy, the NMJs affected by
that training regimen displayed expansions that have also
been exhibited by endurance-trained rats (Deschenes
et al., 1993, 2011; Fahim, 1997). Apparently, physical
training of any kind elicits a sequence of molecular
responses that results in larger pre- and postsynaptic com-
ponents of the NMJ. Presumably, these exercise-induced
adaptations result in improved physiological functioning
of the neuromuscular system inasmuch as previous reports
(Fahim, 1997) indicate that morphological changes of the
NMJ are linked with positive physiological adaptations,
whereas age-related NMJ structural remodeling is associ-
ated with declines in neuromuscular function (Banker
et al., 1983).
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