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Multichannel 1 → 2 transition amplitudes in a finite volume

Raúl A. Briceño,1,* Maxwell T. Hansen,2,† and André Walker-Loud1,3,‡
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Newport News, Virginia 23606, USA
2Department of Physics, University of Washington, Box 351560, Seattle, Washington 98195, USA
3Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795, USA

(Received 30 September 2014; published 3 February 2015)

We perform a model-independent, nonperturbative investigation of two-point and three-point finite-
volume correlation functions in the energy regime where two-particle states can go on shell. We study
three-point functions involving a single incoming particle and an outgoing two-particle state, relevant, for
example, for studies of meson decays (e.g., B0 → K�lþl− → πKlþl−) or meson photo production (e.g.,
πγ� → ππ). We observe that, while the spectrum solely depends on the on-shell scattering amplitude, the
correlation functions also depend on off-shell amplitudes. The main result of this work is a generalization of
the Lellouch-Lüscher formula relating matrix elements of currents in finite and infinite spatial volumes. We
extend that work by considering a theory with multiple, strongly coupled channels and by accommodating
external currents which inject arbitrary four-momentum as well as arbitrary angular momentum. The result
is exact up to exponentially suppressed corrections governed by the pion mass times the box size. We also
apply our master equation to various examples, including the two processes mentioned above as well as
examples where the final state is an admixture of two open channels.

DOI: 10.1103/PhysRevD.91.034501 PACS numbers: 12.38.Gc, 12.38.-t, 13.25.Hw, 13.40.Gp

I. INTRODUCTION

There are a number ofmatrix elements involving hadronic
two-body initial and/or final states for which a direct
calculation with lattice QCD would provide a significant
advancement for nuclear and particle physics. For example,
the calculation of proton-proton fusion through the weak
interactions, pp → deþνe, would allow for a direct theo-
retical prediction of this fundamental process which powers
the sun. The MuSun Collaboration will measure a related
process, muon capture on deuterium [1]. At low energies,
these two processes are described by the same two-nucleon
contact interaction [2], providing an opportunity to over-
constrain these reactions for which there is currently
discrepancy between experimental results [3,4] and
theory calculations [2,5]. Another example of particular
interest is the heavy meson decay B0 → K�lþl− →
πKlþl−. Tentative tension exists between experimental
results [6–10] and Standard Model predictions [11–14] for
this process, so that better constraining the latter would
clearly be valuable.
The opportunity to test the Standard Model with these

decays motivated early quenched lattice QCD calculations
[15–21]. The newly observed tension between theory and
experiment has motivated dynamical lattice QCD calcu-
lations to determine the hadronic transition amplitudes.
These also find evidence for deviations from the Standard

Model [22,23]. There is, however, an important caveat to
these calculations known as the Maiani-Testa no-go theo-
rem. This is the observation that there is no simple relation
between Euclidean-spacetime correlators and the desired
Minkowski-spacetime transition matrix elements, when-
ever the initial or final states contain multiple hadrons [24].
As the K�ð892Þ is a strong resonance of the Kπ scattering
system (for mπ ≲ 400 MeV), this issue cannot be avoided
for lattice QCD calculations of this important quantity.
The formalism to overcome this challenge was first

developed by Lellouch and Lüscher for the K → ππ decay
amplitude and is known as the Lellouch-Lüscher or LL
method [25]. The crucial development was to relate the
lattice QCD calculations in a finite spatial volume to the
infinite-volume matrix element. In a finite volume, the two-
pion spectrum is a set of discrete energy levels. If the size of
the finite-volume box is tuned such that one of the two-pion
energy levels is degenerate with the kaon, then a simple
relation exists between the finite-volume matrix element
and the infinite-volume K → ππ decay amplitude. In
particular, the ratio of the finite- and infinite-volume matrix
elements is a known function, depending on the two-pion
scattering phase shift near the kaon mass as well as the
finite-volume box size and other kinematic variables. The
ratio is commonly referred to as the LL factor. The initial
work by Lellouch and Lüscher was restricted to an S-wave
two-pion state in the center-of-mass (c.m.) frame. This
formalism has been extended for all decays below the
inelastic threshold [26] and for systems with nonzero total
momentum [27,28] (see Refs. [29–32] for applications of
this formalism to lattice QCD calculations of the K → ππ
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decay amplitude1). More recently, the formalism has
been extended to accommodate decays into multiple,
coupled two-particle channels [54] and to describe the
processes π0 → γγ [55], Nγ → Nπ [56],2 as well as 2 → 2
processes [57–60].
In this work, we extend these studies to unambiguously

study 1 → 2 transition amplitudes involving external cur-
rents which insert energy, momentum and angular momen-
tum for systems with any number of two-particle channels
which mix with arbitrary strong couplings. Our formalism
includes all two-particle angular-momentum states, but is
valid only for spin-zero particles and only at energies less
than the lowest-lying multiparticle inelastic threshold. In
order to determine the 1 → 2 transition amplitudes,
both two- and three-point correlation functions are
needed.3 From the two-point correlation functions, one
extracts the finite-volume spectrum and determines the
scattering phase shifts. From appropriate ratios of three- to
two-point correlation functions, one determines the finite-
volume matrix elements of external currents. These matrix
elements can then be related to the corresponding infinite-
volume transition amplitudes.
In Sec. II we review the two-point correlation functions.

The finite-volume corrections to single-particle masses are
exponentially suppressed in mπL, where L is the spatial
extent of the volume and mπ is the pion mass [61]. We
assume spatial extents such that these exponential correc-
tions can be safely neglected. In contrast to the single-
particle states, the finite-volume energy spectrum above the
two-particle threshold cannot be directly identified with
infinite-volume observables. However, the spectrum does
encode information about the infinite-volume on-shell
scattering amplitude. The formalism to relate these observ-
ables to the finite-volume spectrum is known as the Lüscher
method [62,63]. This approach has been investigated and
generalized in various contexts [27,28,54,57,60,64–84]
including, most recently, a method for describing all
2 → 2 systems with arbitrary quantum numbers, open

channels and boundary conditions [85].4 We recover
the well-known quantization condition for a system
with any number of two-scalar channels, with arbitrary
angular momentum as well as total linear momenta. The
result is

det ½KðEnÞ þ ðFVðEnÞÞ−1� ¼ 0; ð1Þ

and was first obtained in Refs. [54,60].K is the two-particle
K matrix [defined in Eq. (39) with a well-known relation to
the scattering amplitude, Eq. (41)] and FV is a volume-
dependent kinematic matrix [defined in Eq. (30)]. Both of
these are matrices over angular momenta as well as all open
two-particle channels, and the determinant is understood to
act on this direct-product space. In the energy regime of
elastic scattering, this formalism has been extensively
implemented in numerical lattice calculations for single-
channel processes (e.g. [90–109]). Until recently, the only
numerical implementation of the coupled-channel formal-
ism was by Guo in an exploratory numerical calculation of
a two-channel system in a 1þ 1-dimensional lattice model
[110]. The first lattice QCD application of this formalism
was recently performed by the Hadron Spectrum
Collaboration in a benchmark calculation of the πK-Kη
system [111].
In Sec. III we generalize the Lellouch-Lüscher result in

several ways. We allow the current to insert arbitrary
momentum and energy to the system, and we include
multiple strongly coupled channels as well as angular-
momentum mixing in all irreps of the relevant finite-
volume symmetry group. We derive a nonperturbative
master equation that relates the finite-volume matrix
elements of currents with the physically relevant infinite-
volume counterpart

jhEΛf;nfPf;Lj ~J ½J;P;jλj�
Λμ ð0;Pi − PfÞjEΛi;0Pi;Lij

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2EΛi;0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½A†

Λf;nf ;Λμ
RΛf;nfAΛf;nf ;Λμ�

q
; ð2Þ

where ~J ½J;P;jλj�
Λμ ð0;Pi − PfÞ is a current whose quantum

numbers and labels are thoroughly defined in Sec. III A.
jEΛi;0Pi;Li and jEΛf;nfPf;Li respectively denote the initial
and final finite-volume states; the former has the energy
and the quantum numbers of a single particle while the
latter has that of two particles. The subscripts Λi;f indicate
that angular-momentum space has been projected onto a
particular finite-volume irrep, and nf is an integer labeling
the finite-volume level considered. Our result relates this
finite-volume matrix element to

1For important theoretical and numerical developments
regarding nonleptonic weak decay on the lattice, see
Refs. [26,33–53].

2During the preparation of this manuscript a similar and
independent work by A. Agadjanov et al. appeared in the
literature [56]. In their work the authors considered pion-photo-
production off a nucleon, Nγ → Nπ in the nonrelativistic limit.
The authors demonstrated how to study transition amplitudes for
systems with nonzero intrinsic spin. In doing so, they restricted
the final two-particle state to be at rest and neglected corrections
due to partial wave mixing, but they did allow for the finite
volume of the systems to have an asymmetry along one of the
Cartesian axes.

3It is often customary to label correlation functions by the total
number of particles in the initial and final states. However, in this
work, we find it more convenient to label all correlation functions
with no insertion of external currents as two-point correlation
functions and those with an external current as three-point
correlation functions.

4There have also been attempts to generalize this formalism for
three-particle systems [86–89], but a general solution for the
three-body system in a finite volume has not been found.
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ha; Pf; JfmJf ;∞j ~J ½J;P;jλj�
Λμ ð0;Q;∞ÞjPi;∞i

¼ ½AΛμ;JfmJf
�
a
ð2πÞ3δ3ðPi − Pf −QÞ; ð3Þ

where a is a channel index denoting the two-particle flavors
in the asymptotic state. In Eq. (2) A is understood as a
column vector (and A† a row) in the combined angular-
momentum/channel space. Finally RΛf;nf, defined in
Eq. (103), is a matrix in the same space that depends only
on the strong interaction as well as the linear extent of the
finite volume. This is the coupled-channel and arbitrary-
angular-momentum generalization of the LL factor.
In order to illuminate this result, we apply it to several

examples for which the expressions are significantly
simplified. In Sec. III D 1 we recover the original K →
ππ matrix element determined with zero-momentum injec-
tion [25–28]. In Sec. III D 2 we consider the slightly more
complex example of πγ� → ππ → ρ. The degeneracy of the
two final-state particles prevents even and odd partial wave
mixing, even in boosted systems. Angular-momentum
conservation and parity requires the final state to be in a
P wave with the leading finite-volume contamination from
an F wave. By neglecting this contamination, we obtain an
explicit expression for the P-wave LL factor for such a
system, and find large volume deviation from the well-
known S-wave result. For final states with nondegenerate
particles, even and odd partial waves will generally mix. In
Sec. III D 3 we apply our master equation to systems with
coupled channels, whether the mixing is physical or
induced by the finite volume. Finally, in Sec. III D 4 we
recover the known result for D → fππ; KK̄g [54].
In this work we also include two appendixes. In

Appendix Awe discuss a technical detail of our derivation,
the cancellation of free poles in integrands of correlation
functions. For complete generality, in Appendix B we
extend the formalism to include effects of twisted boundary
conditions (TBCs) [68,112] and volumes that are arbitrary
rectangular prisms, using the compact notation of Ref. [85].

II. TWO-POINT CORRELATION FUNCTIONS

In this section we derive expressions for the one-particle
and two-particle two-point correlation functions in a finite
volume. To achieve this we must first define appropriate
interpolating operators. These are most conveniently clas-
sified according to the irreducible representations (irreps)
of the relevant symmetry group. For a system at rest in a
finite cubic volume, the symmetry group is the octahedral
group Oh. In order to accommodate systems with half-
integer spin, one has to consider the double cover of the
octahedral group, denoted by OD

h [113]. For systems in
flight with total momentum P, the symmetry is reduced to a
subgroup of Oh or OD

h , defined by the subset of octahedral
transformations which leave P invariant. This is referred to
as a little group and will be labeled LGðPÞ.

Let φΛμðx0;PÞ denote a single-particle interpolating
operator at Euclidean time x0 with momentum P and in
row μ of the Λ irrep of LGðPÞ.5 Because Λμ are good
quantum numbers in finite volume, the one-particle
two-point functions will not mix states in different rows
or irreps,

Cð1Þ
Λ0μ0;Λμðx0 − y0;kÞ≡ h0jφΛ0μ0 ðx0;kÞφ†

Λμðy0;−kÞj0i
∝ δΛ0;Λδμ0;μ: ð4Þ

In this study, we will focus on the scenario where the
single-particle states are either pseudoscalars or scalars.6 In
such cases there is a single one-dimensional irrep that has
overlap with the particle of interest, and the irrep is
exclusively specified by its momentum. For example, as
shown explicitly in Table I, the pseudoscalar mesons are in
the A−

1 irrep of Oh when at rest and in the A2 irrep of
LGðkÞ when in flight. Therefore, it is sufficient to define
the single-particle interpolating operators in terms of their
momenta and we will drop the Λμ subscript. We thus
introduce

Cð1Þðx0 − y0;kÞ≡ h0jφðx0;kÞφ†ðy0;−kÞj0i
¼ e−E

ð1Þ
k ðx0−y0Þjh0jφð0;kÞjEð1Þk;Lij2

þO
�
L3

e−E
ð1Þ
3;thðx0−y0Þ

Eð1Þ
3;th

�
; ð5Þ

where L is the linear extent of the finite cubic spatial
volume and Eð1Þ

k , Eð1Þ
3;th denote the lowest two eigenvalues of

the moving-frame Hamiltonian, in the subspace that has
overlap with h0jφΛμð0;kÞ. We have assumed x0 > y0 to
order the operators before inserting a complete set of states.
As the subscript suggests, in QCD the first excited energy
Eð1Þ
3;th corresponds to a state in the vicinity of the three-

particle threshold for spinless particles.
One can also calculate the correlation function’s leading

time dependence directly from the fully dressed single-
particle propagator [see Fig. 1(c)]

5For details regarding the construction of these operators from
quark and gluonic degrees of freedom, we direct the readers to
Refs. [70,74,114–121] and references therein.

6For QCD near the physical point there are no stable scalar
particles, only pseudoscalar mesons. At unphysical quark masses,
by contrast, one finds stable scalar particles as well. Additionally,
although LQCD is the motivation for this work, this formalism is
model independent and is relevant for studying hadronic physics
as well as atomic physics in a finite volume. (See Refs. [122,123]
and references within for examples of atomic physics calculations
performed in a finite volume.) See Ref. [56] for insight into how
to deal with states with nonzero spin in the nonrelativistic limit.
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Cð1Þðx0 − y0;kÞ

¼ L3

Z
dP0

2π

�
1

2ωkðiP0 þ ωkÞ
þ � � �

�
eiP0ðx0−y0Þ

¼ L3
e−ωkðx0−y0Þ

2ωk
þO

�
L3

e−E
ð1Þ
3;thðx0−y0Þ

Eð1Þ
3;th

�
; ð6Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
, with m equal to the physical

infinite-volume pole mass. In the first line, the ellipsis

denotes corrections that are finite at the single-particle pole.
This includes terms with poles at higher values of imagi-
nary P0 which correspond to higher energy states. We
emphasize that, in arriving at this identity, we have used the
on-shell renormalization convention in which the residue of
the single-particle propagator is set to 1. This convention is
equivalently expressed as

h0jϕð0; 0ÞjEð1Þk;∞i ¼ 1; ð7Þ

where ϕðx0;xÞ is the Fourier transform of φðx0;kÞ and
jEð1Þk;∞i is the infinite-volume one-particle state with
relativistic normalization

hEð1Þk0;∞jEð1Þk;∞i ¼ 2ωkð2πÞ3δ3ðk0 − kÞ: ð8Þ

By comparing Eqs. (5) and (6), we deduce Eð1Þ
k ¼ ωk

and

jh0jφð0;kÞjEð1Þk;Lij ¼
ffiffiffiffiffiffiffiffiffi
L3

2ωk

s
: ð9Þ

These relations hold up to exponentially suppressed cor-
rections of the form e−mL, which we discuss in more detail
below. We stress that Eq. (9) is only a statement of
renormalization convention on φ together with the nor-
malization convention for finite-volume states

hEð1Þk;LjEð1Þk;Li ¼ 1: ð10Þ

As will become evident in Sec. III, the wave-function
renormalization does not impact the final result, Eq. (2).
Any other choice for the residue would exactly cancel in the
ratio used to access finite-volume matrix elements. The
motivation for deriving Eq. (9) in the manner just presented
is that it provides a straightforward warmup for our analysis
of the two-particle two-point correlation function, to which
we now turn.
The two-particle correlation function can be deter-

mined by considering an alternative energy range and
using two- instead of one-particle interpolating fields. For
the sake of generality, we consider a system with N
coupled two-particle channels. We label the masses in the
jth channel mj;1 and mj;2, with mj;1 ≤ mj;2. We continue
to restrict our attention to spin-zero particles. The
particles in the jth channel can go on shell if the c.m.
energy E� satisfies mj;1 þmj;2 ≤ E� < E�

th. Here E�
th is

the energy of the first allowed multiparticle threshold,
boosted to the c.m. frame.7 In practice we must require

TABLE I. (a) Shown are the subduction coefficients ½CJ
Λ�μ;λ

used to project states onto the irreps of Oh. (b) Shown are the
subduction coefficients determined in Ref. [121], for jλj ≤ 2,
where s ¼ signðλÞ and ~η ¼ ð−1ÞlþJ are used to project operators
onto the irreps of the Dic4, Dic2, and Dic3 groups as shown in
Eq. (79).

Group JP ΛðμÞ ½CJ
Λ�μ;λ

(a)
Oh 0� A�

1 ð1Þ 1
QL
2π ¼ ð0; 0; 0Þ 1� T�

1 ð1Þ δ1;λ
1� T�

1 ð2Þ δ0;λ
1� T�

1 ð3Þ δ−1;λ
2� T�

2 ð1Þ δ1;λ
2� T�

2 ð2Þ ðδ2;λ − δ−2;λÞ=
ffiffiffi
2

p

2� T�
2 ð3Þ δ−1;λ

2� E�ð1Þ δ0;λ
2� E�ð2Þ ðδ2;λ þ δ−2;λÞ=

ffiffiffi
2

p

LGðQÞ jλj~η ΛðμÞ S ~η;λ
Λμ

(b)

Dic4 0þ A1ð1Þ 1
QL
2π ¼ ð0; 0; nÞ 0− A2ð1Þ 1

1 Eð1Þ ðδs;þ þ ~ηδs;−Þ=
ffiffiffi
2

p

1 Eð2Þ ðδs;þ − ~ηδs;−Þ=
ffiffiffi
2

p

2 B1ð1Þ ðδs;þ þ ~ηδs;−Þ=
ffiffiffi
2

p

2 B2ð1Þ ðδs;þ − ~ηδs;−Þ=
ffiffiffi
2

p

Dic2 0þ A1ð1Þ 1
QL
2π ¼ ðn; n; 0Þ 0− A2ð1Þ 1

1 B1ð1Þ ðδs;þ þ ~ηδs;−Þ=
ffiffiffi
2

p

1 B2ð1Þ ðδs;þ − ~ηδs;−Þ=
ffiffiffi
2

p

2 A1ð1Þ ðδs;þ þ ~ηδs;−Þ=
ffiffiffi
2

p

2 A2ð1Þ ðδs;þ − ~ηδs;−Þ=
ffiffiffi
2

p

Dic3 0þ A1ð1Þ 1
QL
2π ¼ ðn; n; nÞ 0− A2ð1Þ 1

1 Eð1Þ ðδs;þ þ ~ηδs;−Þ=
ffiffiffi
2

p

1 Eð2Þ ðδs;þ − ~ηδs;−Þ=
ffiffiffi
2

p

2 Eð1Þ ðδs;þ − ~ηδs;−Þ=
ffiffiffi
2

p

2 Eð1Þ −ðδs;þ − ~ηδs;−Þ=
ffiffiffi
2

p

7For a system with a Z2 symmetry, such as G-parity for ππ in
the isospin limit of QCD, this corresponds to the lowest four-
particle threshold. For systems without such symmetries it
corresponds to the lowest three-particle threshold.
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E� ≪ E�
th, because if E� is too close to the multiparticle

threshold then the neglected exponentially suppressed
corrections become enhanced.
The on-shell c.m. relative momentum for the jth channel

satisfies

k�2j;on ¼
E�2

4
−
ðm2

j;1 þm2
j;2Þ

2
þ ðm2

j;1 −m2
j;2Þ2

4E�2 : ð11Þ

Functions and coordinates evaluated in the c.m. frame will
always have a superscript “�”, and it is important to
remember that a function f in a moving frame that depends
on k can always be related to the c.m. frame function f� via
f�ðk�Þ≡ fðkÞ. This just defines a coordinate change and
does not imply anything about the Lorentz representation
of f. Coordinates in the moving frame and c.m. frame are
related by standard Lorentz transformations. For example,
if we consider a particle with massm, momenta k and k� in
the moving and c.m. frames, then

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k�2

p
¼ γð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
− βk∥Þ;

k�∥ ¼ γðk∥ − β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
Þ; k�⊥ ¼ k⊥; ð12Þ

where γ ¼ E
E� and β ¼ jPj

E .
Two-particle interpolating operators in a given irrep can

be written as a linear combination of products of single-
particle interpolating operators with appropriate Clebsch-
Gordan coefficients [70,107,114–118,120,121]. By first
considering an energy range where only a single channel
is present, one can readily write down the relevant two-
body operator

OΛμðx0;P; jP − kj; jkjÞ
¼

X
R∈LGðPÞ

CðPΛμ;Rk;RðP − kÞÞφðx0; RkÞ

× ~φðx0; RðP − kÞÞ; ð13Þ

where, in general, φ and ~φ may be identical or nonidentical
operators and R is understood as an element of the
representation of LGðPÞ defined by the action on three-
dimensional spatial vectors. In order to minimize unnec-
essary notation, we will suppress the dependence of O on
jP − kj and jkj from now on.8

To completely specify the Clebsch-Gordan coefficients,
we now introduce fkgP as the set of all momenta that are
reached by applying a rotation in LGðPÞ to k. We then
denote the irreps of particles one and two by Λ1ðfP − kgPÞ
and Λ2ðfkgPÞ, respectively, and define the Clebsch-
Gordan coefficient CðPΛμ;Rk;RðP − kÞÞ to project the

two particles in Λ1ðfP − kgPÞ ⊗ Λ2ðfkgPÞ onto ΛðPÞ; μ.
This may also be expressed as an innerproduct of states

CðPΛμ;Rk;RðP − kÞÞ≡ hΛðPÞ; μjΛ1ðfP − kgPÞ;
RðP − kÞ;Λ2ðfkgPÞ; Rki; ð14Þ

from which follows

X
R∈LGðPÞ

jCðPΛμ;Rk;RðP − kÞÞj2 ¼ 1: ð15Þ

The simplest nontrivial example of this operator con-
struction is reached by setting the total momentum to zero,
setting k ¼ 2π

L k̂≡ qð1Þk̂, and taking the two-particle oper-
ator to be in the Aþ

1 irrep,

OAþ
1
ðx0; 0Þ ¼

σffiffiffi
6

p ½φðx0; qð1ÞẑÞ ~φðx0;−qð1ÞẑÞ

þ φðx0;−qð1ÞẑÞ ~φðx0; qð1ÞẑÞ
þ φðx0; qð1Þx̂Þ ~φðx0;−qð1Þx̂Þ
þ φðx0;−qð1Þx̂Þ ~φðx0; qð1Þx̂Þ
þ φðx0; qð1ÞŷÞ ~φðx0;−qð1ÞŷÞ
þ φðx0;−qð1ÞŷÞ ~φðx0; qð1ÞŷÞ�; ð16Þ

where σ ¼ ffiffiffiffiffiffiffiffi
1=2

p
if φ and ~φ are the same operators and

σ ¼ 1 otherwise. If we give the system a nonzero boost
along ẑ, then the symmetry group is reduced to LGðẑÞ.
Consider the scenario where the momentum of the φ field
has magnitude qð1Þ and that of ~φ has magnitude

ffiffiffi
2

p
qð1Þ.

With these single-particle operators, we can construct a
two-particle operator that transforms in the A1 irrep [107],

OA1
ðx0; qð1ÞẑÞ ¼

1

2
½φðx0; qð1Þx̂Þ ~φðx0; qð1Þðẑ − x̂ÞÞ

þ φðx0; qð1ÞŷÞ ~φðx0; qð1Þðẑ − ŷÞÞ
þ φðx0;−qð1Þx̂Þ ~φðx0; qð1Þðẑþ x̂ÞÞ
þ φðx0;−qð1ÞŷÞ ~φðx0; qð1Þðẑþ ŷÞÞ�: ð17Þ

In general, there might be N open channels contributing
to a given state. For example, an infinite volume ππ state
can mix with a KK̄ state, and both must thus have nonzero
overlap with the corresponding finite-volume state.9 It is
convenient to introduce an index, e.g. “a”, to the inter-
polating operator in Eq. (13) to indicate the infinite-volume
channel that it interpolates,

8Throughout this work O will denote an operator that has
overlap with a two-particle state and φ will refer to a single-
particle operator. Of course, in general, these must couple to all
states with the appropriate quantum numbers.

9We note that for physical particle masses the KK̄ threshold
exceeds the four-pion threshold. Since coupling to this state is
ignored in the present formalism, application to ππ, KK̄ is only
valid for unphysical heavy pions and will otherwise introduce
systematic uncertainties on extracted quantities.
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OΛμðx0;PÞ⟶OΛμ;aðx0;PÞ: ð18Þ

For example, OΛμ;a could refer to a ππ-like or a KK̄-like
operator. With this, we can write a generic correlation
function for a two-particle system that has been projected
onto a given irrep as

Cð2Þ
Λμ;abðx0 − y0;PÞ
¼ h0jOΛ0μ0;aðx0;PÞO†

Λμ;bðy0;−PÞj0i
¼ δΛ;Λ0δμ;μ0

X
n

e−EΛ;nðx0−y0Þh0jOΛμ;að0;PÞjEΛ;nP;Li

× hEΛ;nP;LjO†
Λμ;bð0;−PÞj0i þO

�
L6

e−Ethðx0−y0Þ

E2
th

�
;

ð19Þ

where EΛ;n is the nth two-particle eigenenergy of the Λ-
irrep of LGðPÞ. This is the two-body analog of Eq. (5). In
general, we expect multiple two-body states below the first
multiparticle threshold, Eth, and hence include a sum
over n.
The correlation function can also be written in terms of

the interactions of the two-particle system. The leading
order (LO) contribution to the correlation function [first
diagram in Fig. 1(a)] is determined by considering the limit

in which the interactions vanish, and as a result, the
different channels cannot mix. We find

Cð2;LOÞ
Λμ;ab ðx0 − y0;PÞ ¼ L6

Z
dP0

2π
eiP0ðx0−y0Þ ~Cð2;LOÞ

Λμ;ab ðP0;PÞ;

ð20Þ

where

~Cð2;LOÞ
Λμ;ab ðP0;PÞ

≡ δab
1

η

Z
dk0
2π

X
R∈LGðPÞ

CðPΛμ;Rk;RðP − kÞÞ

× GðkÞGðP − kÞC�ðPΛμ;Rk;RðP − kÞÞ: ð21Þ

Here we have introduced the fully dressed propagator

GðkÞ≡
Z

d4xe−ikxh0jTϕðxÞϕ†ð0Þj0i; ð22Þ

with on-shell renormalization limk0→iωk
ðk2þm2ÞGðkÞ¼1.

We have also introduced the symmetry factor η which is
equal to 1=2 if the particles are identical and have momenta
that are related by LGðPÞ rotations, and equal to 1
otherwise.

FIG. 1. (a) Shown is the definition of the finite-volume two-particle correlation function. The solid lines denote two particles in the “1”
channel; dashed lines denote one particle in the “2” channel. The correlation function is written in terms of the c.m. kernel, K�, and the
fully dressed single-particle propagators. (b) Shown is K� for the first channel, which is the sum of all two-particle irreducible s-channel
diagrams. Explicitly shown are examples of diagrams that are included in the kernel: contact interactions, and t- and u-channel diagrams.
In general, all diagrams allowed by the underlying theory where the intermediate particles cannot all simultaneously go on shell are
absorbed into the kernel. As described in the text, in this study we are restricted to energies where only two-particle states are allowed to
go on shell. (c) Shown is the definition of the fully dressed one-particle propagator in terms of the one-particle irreducible (1PI)
diagrams.
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Observe here that GðkÞ is the infinite-volume fully

dressed propagator. Really ~Cð2;LOÞ
Λμ;ab ðP0;PÞ should be con-

structed from the finite-volume analog of GðkÞ. However,
as long as ½P2

0 þ P2�1=2 has an imaginary part with
magnitude below E�

th, then using the infinite-volume
propagator only incurs exponentially suppressed correc-
tions of the form e−mπL, with mπ the lightest mass in the
spectrum. This is discussed in more detail in the context of
the Bethe-Salpeter kernel below. We deduce that our

expression for ~Cð2;LOÞ
Λμ;ab ðP0;PÞ is only valid in a strip of

the complex P0 plane which runs along the real axis and is
bounded by ½P2

0 þ P2� ¼ −E�2
th .

We now complete the analysis of Cð2;LOÞ
Λμ;ab ðx0 − y0;PÞ, by

evaluating the k0 and k00 integrals. First we define

ωj;1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

j;1 þ ðP − kÞ2
q

; ωj;2 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

j;2 þ k2
q

: ð23Þ

In performing the k0 and k00 integrals we encircle the pole at
iωj;2, and this fixes the “2” particle in the jth channel to be on
shell with free energy ωj;2. By energy conservation, the “1”
particle will have energy −iP0 − ωj;2. Specifically we find

Cð2;LOÞ
Λμ;ab ðx0 − y0;PÞ

¼ δab
L6

η

Z
dP0

2π
eiP0ðx0−y0Þ

×
X

R∈LGðPÞ

jCðPΛμ;Rk;RðP − kÞÞj2
4ωa;1ωa;2ðiP0 þ ðωa;1 þ ωa;2ÞÞ

þO
�
L6

e−Ethðx0−y0Þ

E2
th

�
: ð24Þ

Note here that the first term gives a pole in the P0 plane that

sits in the region where our expression for ~Cð2;LOÞ
Λμ;ab ðP0;PÞ is

valid. We do not control the exact form of the second term,
which is an exponential that decays according to some
above-threshold energy. The precise form of the above-
threshold term is not needed for our final result.
To include higher orders we need only use the fact that

the correlation function, defined in Eq. (19), is correctly
reproduced by the all-orders summation of a skeleton
expansion built from Bethe-Salpeter kernels and fully
dressed propagators. In particular, we define the next-to-
leading-order (NLO) correlator as the contribution built
from a single insertion of the Bethe-Salpeter kernel K. The
kernel is depicted in Fig. 1(b) and is defined as the sum of
all amputated four-point diagrams that are two-particle
irreducible in the s channel. We find

Cð2;NLOÞ
Λμ;ab ðx0 − y0;PÞ ¼ L6

Z
dP0

2π
eiP0ðx0−y0Þ ~Cð2;NLOÞ

Λμ;ab ðP0;PÞ;

ð25Þ

where

~Cð2;NLOÞ
Λμ;ab ðP0;PÞ ¼ −

1

L3

X
R;R0∈LGðPÞ

CðPΛμ;R0k;R0ðP − kÞÞ

×
Z

dk00
2π

Z
dk0
2π

Gðk0ÞGðP − k0Þ

× KðP; k; k0ÞGðkÞGðP − kÞ
× C�ðPΛμ;Rk;RðP − kÞÞ: ð26Þ

In general, the kernel is a function of volume, but since the
c.m. energy is restricted to satisfy m1 þm2 ≤ E� ≪ E�

th,
the intermediate particles appearing in the kernel cannot all
simultaneously go on shell. This implies that the summands
appearing in diagrams are smooth functions of summed
momenta. Therefore, one can show, using Poisson’s
resummation formula�

1

L3

XZ
q

�
fðqÞ ¼

X
n≠0

Z
dq

ð2πÞ3 fðqÞe
iLn·q;

that the difference between finite- and infinite-volume
kernels is exponentially small in mπL. In writing the
Poisson resummation formula the following notation has
been introduced:�

1

L3

XZ
q

�
≡
�
1

L3

X
q

−
Z

dq
ð2πÞ3

�
: ð27Þ

Since we neglect these corrections, the result discussed here
holds only for mπL ≫ 1. We will neglect any terms in the
correlation function that are exponentially suppressed with
the mass of any particle in any coupled channel since
Oðe−miLÞ ≤ Oðe−mπLÞ. These corrections have been pre-
viously determined for ππ [124] and NN systems [125] in
an S wave, as well as the ππ system in a P wave in
Refs. [126,127].
Higher order contributions to the correlation func-

tion can be readily evaluated by making the following
replacement:

−½KðP; k; k0Þ�a;b⟶ − ½TLðP; k; k0Þ�a;b; ð28Þ

where

−½TLðP; k; k0Þ�a;b ¼ −½KðP; k; k0Þ�a;b
þ
Z

dl0
2π

ξj
L3

X
l

½KðP; k; lÞ�a;jGjðlÞ

× GjðP − lÞ½TLðP; l; k0Þ�j;b; ð29Þ

and the summation over the intermediate channel j is
implicit.
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A convenient expression for TL can be found by
utilizing the machinery developed by Kim, Sachrajda,
and Sharpe [27]. In order to determine the finite-volume
corrections to the correlation function, it is sufficient to
know the difference between the finite-volume momen-
tum sum and the infinite-volume momentum integral
acting on the two-particle poles. Using a principal-value
prescription to define the integral at the pole, we
observe

ξj

�
1

L3

XZ
l

�
P:V:

½KðP; k; lÞ�a;j½KðP; l; k0Þ�j;b
4ω1;P−lω2;lðω1;P−l þ ω2;l − P0;MÞ

≡ −½K�
off;onF

VK�
on;off �a;b þOðe−mπLÞ; ð30Þ

where the c.m. kernel K�
off;on is the kernel for a system

where the two incoming particles are evaluated on shell,
while the outgoing particles may, in general, be off
shell. Here we have also introduced the Minkowski
energy P0;M ≡ −iP0. Note, if one chooses to use an iϵ
prescription for the propagator, this would lead to a
second contribution to the right-hand side of Eq. (30),
due to the residue of the infinite-volume integral on the
left-hand side.
In writing the right-hand side of Eq. (30), the kernels and

the finite-volume function have been written as matrices
over angular momentum. The matrix elements of FV in the
spherical harmonic basis are found to be [27,54,60]

½FV
j �lml;l0ml0

¼ −
ξj

8πP�
0;M

�X
l00;m00

ð4πÞ3=2
k�l00j;on

cdl00m00 ðk�2j;on;LÞ

×
Z

dΩY�
lml

Y�
l00m00Yl0ml0

�
: ð31Þ

The function cdlm is defined as

cdlmðk�2j ;LÞ ¼
ffiffiffiffiffiffi
4π

p

γL3

�
2π

L

�
l−2

Zd
lm½1; ðk�jL=2πÞ2�;

Zd
lm½s; x2� ¼

X
r∈Pd

jrjlYlmðrÞ
ðr2 − x2Þs ; ð32Þ

where γ ¼ P0;M=P�
0;M, the sum is performed over

Pd ¼ fr ∈ R3jr ¼ γ̂−1ðm − αjdÞg, m is a triplet integer,

d is the normalized boost vector d ¼ PL=2π, αj ¼
1
2
½1þ m2

j;1−m
2
j;2

P�2
0;M

� [72,73,128], and γ̂−1x≡ γ−1x∥ þ x⊥, with
x∥ðx⊥Þ denoting the x component that is parallel
(perpendicular) to the total momentum, P. In
Appendix B we give the generalization of this for asym-
metric volumes with twisted boundary conditions.
We mention a subtlety here with the definition of

cdlmðk�2j ;LÞ for k�2j < 0. The definitions given above

continue to hold for subthreshold momenta, but only if
the appropriate analytic continuation is implemented. To
understand this in detail we first observe that the sum
defining Zd

lm diverges for s < 3=2þ l=2 and, in particular,
diverges for s ¼ 1. The function Zd

lm is thus understood to
be defined via analytic continuation from s > 3=2þ l=2.
To make this definition more apparent in the present
context we give the equivalent form from Kim,
Sachrajda and Sharpe10:

cdlmðk�2j;on;LÞ¼−
1

γL3

X
k�

exp½αðk�2j;on−k�2Þ�
k�2j;on−k�2

k�l
ffiffiffiffiffiffi
4π

p
Ylmðk̂�Þ

þδl0P:V:
Z

dk�

ð2πÞ3
exp½αðk�2j;on−k�2Þ�

k�2j;on−k�2
; ð33Þ

where the sum is over all k� ∈ ð2π=LÞPd and the limit
α → 0þ is understood. This definition makes the ultraviolet
regularization, which is implicit in the analytic continuation
in s, more explicit. For continuation to k�2j;on < 0 it is
convenient to rewrite the integral as an iϵ prescription and a
remainder

P:V:
Z

dk�

ð2πÞ3
exp½αðk�2j;on − k�2Þ�

k�2j;on − k�2

¼
Z

dk�

ð2πÞ3
exp½αðk�2j;on − k�2Þ�
k�2j;on − k�2 þ iϵ

þ ik�j;on
4π

: ð34Þ

The subthreshold continuation of the left-hand side is
defined as the following limit of the right-hand side:

lim
k�j;on→iκj

�Z
dk�

ð2πÞ3
exp½αðk�2j;on − k�2Þ�
k�2j;on − k�2 þ iϵ

þ ik�j;on
4π

�

¼ −
�Z

dk�

ð2πÞ3
exp½−αðκ2j þ k�2Þ�

κ2j þ k�2
þ κj
4π

�
; ð35Þ

where κj is the binding momentum of the jth channel.
We next turn to the Bethe-Salpeter kernel which, like FV ,

can be expressed as a matrix in angular momentum,

K�
off;offðP�

0;k
�
i ;k

�
fÞ ¼ 4π

X
l;ml;l0;ml0

Ylml
ðk̂�

fÞY�
l0ml0

ðk̂�
i Þ

× ½K�
off;offðP�

0; k
�
i ; k

�
jÞ�lml;l0ml0

: ð36Þ

Here we consider a kernel in which both the initial and final
states are off shell. More precisely, we assume ki;0 ¼ iωki

and kf;0 ¼ iωkf
, but no additional constraints. These

relations, which arise from contour integration as dis-
cussed, do not give on-shell two-particle states since

10Our definition of clm differs from Ref. [27] by an overall
sign.
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P0 − k0;i ≠ iωP−ki
and P0 − k0;f ≠ iωP−kf

. Nevertheless, it
is still possible to change to the c.m. frame, expressing the
kernel in terms of ðP�

0;k
�
i ;k

�
fÞ as indicated above. Note that

the matrix defined in Eq. (36) is diagonal,

½K�
off;offðP�

0; k
�
i ; k

�
jÞ�lml;l0ml0

∝ δl;l0δml;ml
0 : ð37Þ

This follows from the rotational invariance of the infinite-
volume theory, equivalently from the fact that the only
angular dependence in the c.m. frame is k̂�

i · k̂
�
f. Finally,

we comment that the on-shell kernel is accessed by
constraining the three-momenta magnitudes to k�i ¼ k�f ¼
k�on. We return to this discussion in the context of the
quantization condition below.
Directly following Kim, Sachrajda and Sharpe by sum-

ming over all possible insertions of the Bethe-Salpeter
kernel, we find

−TL ¼ Koff;off − Koff;on
1

1þ FVK
FVKon;off : ð38Þ

Here we have introduced the two-by-two K matrix, which
is defined as the sum of all infinite-volume, amputated
2 → 2 diagrams with loop integrals defined via the princi-
pal-value prescription11

½KðP; k; k0Þ�a;b ≡ −½KðP; k; k0Þ�a;b − ξjP:V:

×
Z

dl
ð2πÞ3

Z
dl0
2π

½KðP; k; lÞ�a;j
×GjðlÞGjðP − lÞ½KðP; l; k0Þ�j;b: ð39Þ

This object is explicitly shown in Fig. 2(b) for a
single-channel scenario. Observe that in Eq. (38) we have
given subscripts on K to indicate whether the incoming and
outgoing states are on or off shell. K with no subscript is
reserved for the on-shell K matrix.
We contrast the K matrix to the scattering amplitudeM,

which is defined as the sum of all infinite-volume,
amputated 2 → 2 diagrams with integration defined via
the iϵ prescription [as shown in Fig. 2(a) for a single
channel]

½MðP; k; k0Þ�a;b
≡ −½KðP; k; k0Þ�a;b − ξj

Z
d4l
ð2πÞ4 ½KðP; k; lÞ�a;j

× GjðlÞGjðP − lÞ½MðP; l; k0Þ�j;b: ð40Þ

The on-shell K matrix can be directly related to the
on-shell scattering amplitude by introducing a kinematic
matrix that is diagonal over the N open channels
P ¼ diagð ffiffiffiffiffiffiffiffiffi

ξ1q�1
p

;
ffiffiffiffiffiffiffiffiffi
ξ2q�2

p
;…;

ffiffiffiffiffiffiffiffiffiffiffi
ξNq�N

p Þ= ffiffiffiffiffiffiffiffiffiffiffi
4πE�p

. For a sys-
tem with angular momentum J ¼ l ¼ l0, the amplitudes
MJ and KJ are related via [54]

M−1
J ¼ K−1

J − iP2=2; ð41Þ

and the scattering amplitude and the S matrix via

iMJ ¼ P−1ðSJ − IÞP−1: ð42Þ
Substituting TL for K in Eq. (26) gives the full

correlation function

FIG. 2. In order to illustrate the differences and similarities between (a) the scattering amplitudeM and (b) the K matrix K, we show
their diagrammatic representation for the single-channel case in terms of the kernel [defined in Fig. 1(b)] and infinite-volume loops. The
infinite-volume loops of the scattering amplitude are evaluated using the iϵ prescription, while those of the K matrix are evaluated using
the principal value, as shown. For multichannel scenarios one simply upgrades the kernels and two-particle loops to be matrices in the
number of open channels, as depicted in Fig. 1. Note that the single-particle propagators are fully dressed, as defined in Fig. 1(c).

11The use of pole prescription here is somewhat subtle. If we
restrict the Euclidean-signature time component P0 to be real,
then no pole prescription is needed. However, if P0 is imaginary
and thus P0;M is real, then poles appear in the region of
integration. Our definition requires always performing time-
component integrals with P0;M off the real axis, as in the standard
iϵ prescription. This produces integrals over spatial components
of the form of Eq. (30). These are always to be evaluated with real
P0;M and with the principal-value pole prescription. Alternatively,
one may use the iϵ prescription for both the time-component and
spatial-component parts of each two-particle loop integral, but
then one must take only the real part.
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Cð2Þ
Λμ;abðx0 − y0;PÞ ¼ L6

Z
dP0

2π
eiP0ðx0−y0Þ

�
~C½2;OðKÞ�
Λμ;ab ðP0;PÞ

− YΛμ

�
1

L3

1

Kþ ðFVÞ−1
�
ab
Y †
Λμ

�
þOðL6e−Ethðx0−y0Þ=E2

thÞ: ð43Þ

The first term of the integrand is defined as

~C½2;OðKÞ�
Λμ;ab ðP0;PÞ

≡ ~Cð2;LOÞ
Λμ;ab ðP0;PÞ þ

1

L3

X
R;R0∈LGðPÞ

CðPΛμ;R0k;R0ðP − kÞÞ

ð44Þ

×
Z

dk00
2π

Z
dk0
2π

Gðk0ÞGðP − k0ÞKðP; k; k0ÞGðkÞ

×GðP − kÞC�ðPΛμ;Rk;RðP − kÞÞ: ð45Þ

We have also introduced new notation for the second term,

½YΛμ�l;m
ffiffiffiffiffiffi
4π

p
Ylmðk̂�Þ

≡ X
R∈LGðPÞ

CðPΛμ; RðP − k0Þ; Rk0Þ
Z

dk00
2π

Gðk00; Rk0Þ

× GðP0 − k00; RðP − k0ÞÞKðP; k; k0Þ: ð46Þ

We stress that Y depends on off-shell K matrices. This
dependence is unavoidable in the two-particle correlation
function and will persist in our final result. However, we
will see that the off-shell contributions cancel when we
consider the ratio of correlation functions that is needed to
isolate the matrix element of an external current between
finite-volume energy eigenstates.
Inorder to evaluate the integral overP0we first note that the

free poles of the integrand exactly cancel. This is a nontrivial
observation that cannot be reached unless one formally keeps
all partial wave contributions that have overlap with the irrep
of interest. In particular, in Appendix A, along with showing
an explicit proof of the cancellation of the free poles, we show
that by truncating the scattering amplitude to be in an Swave
the free poles, in general, do not cancel. The cancellation of
free poles assures that the only contribution toEq. (43) is from
integration aroundpoles of the interacting system.To evaluate
these, we introduce

MðP0;MÞ≡ KðP0;MÞ þ ðFVðP0;MÞÞ−1: ð47Þ

Now note that the finite-volume two-particle spectrum is
given by energies for which MðP0;MÞ has a vanishing
eigenvalue. This is Lüscher’s quantization condition, given
in Eq. (1) above. At this stage we think it useful to discuss
the connection of this result to previous work. We first
observe that, although the condition in terms ofMðP0;MÞ is

most convenient for the bulk of our analysis, here it is
useful to reexpress it as

det½ðKðP0;MÞÞ−1 þ FVðP0;MÞ� ¼ 0: ð48Þ

This is reached by multiplyingM by K−1 on the left and by
FV on the right before taking the determinant. It gives an
equivalent condition since multiplying by these matrices
does not change the locations of zero eigenvalues.
Substituting Eq. (41) into this form then gives

det½ðMðP0;MÞÞ−1 þ FV
iϵðP0;MÞ� ¼ 0; ð49Þ

where FV
iϵðP0;MÞ≡ iP2=2þ FVðP0;MÞ. This shows the

equivalence of the present result to those appearing in
Refs. [27,54,60,62–64].
Next we consider Eq. (48) for energies in the vicinity of

the lowest two-particle threshold. In this case we need only
consider the S-wave scattering for the lowest two-particle
channel. The quantization condition becomes

ξ

8πP�
0;M

½k� cot δðk�Þ − 4πcd00ðk�2;LÞ� ¼ 0: ð50Þ

We may analytically continue this result below threshold
by replacing k� ¼ ijk�j ¼ iκ. In this continuation
4πcd00ðk�2;LÞ ¼ −κ plus exponentially suppressed correc-
tions.12 We deduce

k� cot δðk�Þjk�¼iκ þ κ ¼ 0; ð51Þ

which is the standard, infinite-volume condition for a
bound state.
Returning to the P0 integral in Eq. (43), we write the

inverse of MðP0;MÞ in terms of a determinant and adjugate,

1

MðP0;MÞ
≡ 1

det½MðP0;MÞ�
adj½MðP0;MÞ�: ð52Þ

This equation defines the adjugate which is also equal to the
transpose of the cofactor matrix.13 It implies that, as P0;M
approaches a two-particle energy, MðP0;MÞ−1 will diverge
in proportion to det½MðP0;MÞ�−1 such that adj½MðP0;MÞ�
remains finite. This separation, into diverging prefactor
times finite matrix, makes Eq. (52) useful for evaluating the
residue of the two-particle poles. Looking at the variation of
the quantization condition about the energy eigenvalues,
we find

12We stress that the exponentially suppressed corrections may
be large near threshold so that keeping such terms may be
important.

13This is also commonly known as the adjoint of a matrix, but
given the context of this work, this nomenclature could be
confused with the Hermitian conjugate. Therefore, we refer to
this matrix as the adjugate to avoid confusion.
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det½MðP0;MÞ�j ¼ det½MðEnÞ� þ ðP0;M − EnÞtr
�
adj½MðP0;MÞ�

∂MðP0;MÞ
∂P0;M

�				
P0;M¼En

þOððP0 − iEnÞ2Þ ð53Þ

¼ −iðP0 − iEnÞtr
�
adj½MðP0;MÞ�

∂MðP0;MÞ
∂P0;M

�				
P0;M¼En

þOððP0 − iEnÞ2Þ: ð54Þ

With this in hand, one can perform the integral in Eq. (43)
to find

Cð2Þ
Λμ;abðx0 − y0;PÞ ¼ L3

X
n

e−EΛ;nðx0−y0Þ½YΛμ;nRΛ;nY
†
Λμ;n�ab;

ð55Þ

RΛ;n¼ adj½MðP0;MÞ�tr
�
adj½MðP0;MÞ�

∂MðP0;MÞ
∂P0;M

�
−1
				
P0;M¼EΛ;n

;

ð56Þ
where YΛ;n is the value of Y [defined in Eq. (46)] evaluated
at the nth interactive two-particle pole. Here the sum over n
runs over a finite set of energies that lie below the next
multiparticle threshold. We are constrained to this region
because our expression for the integrand of the P0 integral
was only valid for ImP�

0 < 4m, as already discussed above.
By comparing this result to Eq. (19), we find that the

matrix elements of the interpolating operators, in general,
satisfy

h0jOΛμ;að0;PÞjEΛ;nP;LihEΛ;nP;LjO†
Λμ;bð0;−PÞj0i

¼ L3½YΛμ;nRΛ;nY
†
Λμ;n�ab; ð57Þ

and in the case that a ¼ b this implies

jh0jOΛμ;að0;PÞjEΛ;nP;Lij ¼ L3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½YΛμ;nRΛ;nY

†
Λμ;n�aa

q
;

ð58Þ

where the repeated indices on the right-hand side are not
summed. Equations (57) and (58) are the main results of
this section.

A. Single-channel S-wave result

Here we consider the case where the orbital angular
momentum is restricted to the S wave. For this scenario to
be relevant, the irrep of interest should have strong overlap
with the S wave and all higher contributions should be
small. These conditions hold, for example, for the ππ
system near threshold. At rest the LO contamination to the
S wave is due to l ¼ 4, and in the moving frame the LO
contamination is due to l ¼ 2, both of which are suppressed
at low energies. In this scenario M is a one-by-one matrix
and its adjugate is 1. Using Eq. (56) one obtains that the
residue at the nth pole is

RS;n ¼ ½∂M=∂P0;M�−1jP0;M¼EΛ;n

¼
�
8πE�

n

ξq�n

1

cos2δS

�∂ðδS þ ϕd
00Þ

∂P0;M

�
jP0;M¼EΛ;n

�
−1
; ð59Þ

where we have introduced the pseudophase ϕd
lm with ðlmÞ

angular momentum in the moving frame

q�Λ;n cotϕ
d
lm ¼ −

4π

q�lΛ;n
cdlmðq�2Λ;n;LÞ: ð60Þ

Combining this with the S-wave projection of Y , defined
in Eq. (46) above, we conclude that

jh0jOΛμð0;PÞjEΛ;nP;Lij

¼ L3=2

�
ξq�n
8πE�

n

jY Sj2cos2δS
½∂ðδS þ ϕd

00Þ=∂P0;M�jP0;M¼EΛ;n

�
1=2

: ð61Þ

We stress here that Y S contains the dependence of this matrix
element of the specific operator used. We also recall that, in
the case where the operator is built from single-particle
interpolating fields as in Eq. (13), then Y S can be expressed
in terms of an off-shell K matrix, Eq. (46). This off shellness
is unavoidable, since the single-particle interpolating fields
are evaluated at finite-volume momenta, which are different
from the momenta that are determined by the finite-volume
spectrum of the interacting theory. In Sec. III we show how
the dependence on Y cancels when one constructs ratios to
access finite-volume matrix elements.
Also, it is worth mentioning that Eq. (61) clearly

explains why, if one constructs an operator with a particular
set of discrete momenta, the resulting correlation function
will have the largest overlap with the nearest eigenstate.
This is because the amplitude of each exponential scales as
∼

ffiffiffiffiffiffiffiffiffiffi
jY Sj2

p
. From the definition in Eq. (46), one observes that

this diverges in the limit where the energy of two free
particles with the quantum numbers of the two-particle
operator, Efree, coincides with the finite-volume interacting
energy EΛ;n. In fact, one can show that near this pole, the
overlap factor scales as ∼jEΛ;n − Efreej−1. In Sec. III D 1 we
show that this result reproduces the well-known LL factor
in a moving frame.

B. ππ in a P wave

In the case where the two particles of interest are
degenerate, parity is still a good quantum number, even
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when the total momentum is nonzero. As a result, odd and
even partial waves in the ππ systems do not mix. Therefore,
when interested in studying scattering in the P-wave ππ
channel, the LO partial wave contamination to consider is
due to the F wave. By neglecting this contribution, M can
be written as a one-by-one matrix, and the quantization
condition can, in general, be written as

cot δP þ cotϕd
P ¼ 0; ð62Þ

where the pseudophase ϕd
P can be written in terms of the

pseudophases defined in Eq. (60),

cotϕd
P ≡ ðcotϕd

00 þ αd20;Λ cotϕ
d
20 þ αd22;Λ cotϕ

d
22Þ: ð63Þ

For systems with d ¼ 0 and cubic volumes, the cd2m exactly
vanish. For systems with nonzero total momenta or for
asymmetric volumes, cd2m do not necessarily vanish and the
values of αd20;Λ and αd22;Λ for d2 ≤ 3 are shown in Table II.
The overlap factor of the two-particle interpolating

operator with the nth finite-volume eigenstate for a two-
particle system in a P wave follows from Eq. (61), after
substituting for the definition of the pseudophase and using
the P-wave phase shift

jh0jOΛμð0;PÞjEΛ;nP;Lij

¼ L3=2

�
ξq�n
8πE�

n

jYPj2cos2δP
½∂ðδP þ ϕd

PÞ=∂P0;M�jP0;M¼EΛ;n

�
1=2

: ð64Þ

In Sec. III D 2 we show this leads to the needed LL factor
for πγ� → ππ when the final state is in a P wave.
Note that we have left the symmetry factor ξ unspecified

here. A P-wave state is antisymmetric under exchange of
individual particle momenta. Thus, for bosons, overall
exchange symmetry implies that the P-wave states must
alsobe antisymmetric under exchangeof particle labels. This
in turn implies that only nonidentical pions can participate in
P-wave scattering. However, if we use two-pion isospin
states to define scattering quantities, then ξ ¼ 1=2 must
nonetheless be used. To make sense of this consider, for
example, the two-pion state with I ¼ 1;MI ¼ 1,

jI ¼ 1;MI ¼ 1i ¼ 1ffiffiffi
2

p ðjπþπ0i − jπ0π−iÞ: ð65Þ

This can be used to construct and compareP-wave scattering
amplitudes, andKmatrices, defined using isospin states and
using unsymmetrized states. One finds

½KI¼1;MI¼1�P ¼ 2½Kπþπ0→πþπ0 �P; ð66Þ

where the subscriptP indicates that we are only considering
l ¼ l0 ¼ 1 entries. This discrepancy in K matrices implies a
difference in the values for ½Y I¼1;MI¼1�P and ½Y πþπ0 �P, as
defined in Eq. (46). However, the finite-volume matrix
element of a given operator must be independent of this
choice. Equation (64) gives consistent predictions as long as
one uses ξ ¼ 1with ½Y πþπ0 �P and ξ ¼ 1=2with ½Y I¼1;MI¼1�P.
See also the discussion after Eq. (106) below.

C. πK for J ≤ 1

As a slightly more complicated example, we consider the
πK operator. For such a system with zero total momentum,
parity is agoodquantumnumber, andasa result oddandeven
partial waves do not mix. If we restrict the angular momen-
tum to satisfy J ≤ 1, the system could be in an S or aPwave.
The corresponding cubic irrepswould beAþ

1 andT−
1 , and the

matrixelementsof their respectiveoperators aredescribedby
Eqs. (61) and (64), respectively. For a boosted system, parity
is no longer a good quantum number. As a result odd and
even partial waves will mix. Neglecting D-wave contami-
nation, one finds that for boosted systems at least one irrep
will have large overlap with P-wave states and no overlap
with theS-wavestates.Onecan readily identify such irreps as
E for d ¼ ð00nÞ, B1 and B2 for d ¼ ðnn0Þ, and E for
d ¼ ðnnnÞ. For these irreps, the overlap factor is again
shown in Eq. (64). The nonvanishing values for αd20;Λ and
αd22;Λ for d2 ≤ 3 are given in Table II. TheA1 irrep for these
boost vectors is an admixture of S and P waves. As an
example, consider the A1 in the Dic4 group, which is the
symmetry group for d ¼ ð00nÞ. This irrep mixes the
ðl; mÞ ¼ fð0; 0Þ; ð1; 0Þ;…g partial waves. In this space
one can write down the finite volume function FV and the
K matrix,

Dic4A1∶ FV
A1

¼ q�A1;on

8πE�
A1

�
cotϕd

00 cotϕd
10

cotϕd
10 cotϕd

00þ 2=
ffiffiffi
5

p
cotϕd

20

�
;

ð67Þ

TABLE II. Nonzero values of αd20;Λ and αd22;Λ for d2 ≤ 3. For the T−
1 irrep ofOD

h , the c
d
2m vanish; therefore, there is

no need to define αd2m;Λ for this irrep.

d ð00nÞ ðnn0Þ ðnnnÞ
αd20;A1

¼ 2ffiffi
5

p αd20;A1
¼ − 1ffiffi

5
p ; αd22;A1

¼ −i
ffiffi
6
5

q
αd22;A1

¼ −2i
ffiffi
6
5

q
αd20;E ¼ − 1ffiffi

5
p αd20;B1

¼ − 1ffiffi
5

p ; αd22;B1
¼ i

ffiffi
6
5

q
αd22;E ¼ i

ffiffi
6
5

q
αd20;B2

¼ 2ffiffi
5

p

BRICEÑO, HANSEN, AND WALKER-LOUD PHYSICAL REVIEW D 91, 034501 (2015)

034501-12



Kon;on;A1
¼ 8πE�

A1

q�A1;on

� ½cot δS�−1 0

0 ½cot δP�−1
�
: ð68Þ

The quantization condition can be written as

Dic4A1∶ det½MA1
� ¼ det ½Kon;on;A1

þ ðFV
A1
Þ−1� ¼ 0: ð69Þ

In order to evaluate jh0jOA1;0;PjEA1;nP;Lij, we first need to
evaluate the adjugate of MA1

,

adj½MA1
� ¼

� ½MA1
�
22

−½MA1
�
12

−½MA1
�
21

½MA1
�
11

�
: ð70Þ

We obtain the overlap factor for the A1 irrep for the Dic4
group,

jh0jOA1μ;0;PjEA1;nP;Lij ¼ L3=2
ðYA1μ;nadj½MA1

�Y †
A1μ;n

Þ1=2

tr
h
adj½MA1

� ∂MA1∂EA1 ;n

i
1=2 :

ð71Þ
Similar expressions can be found for theA1 irreps of the Dic2
and Dic3 groups; the only differences would be the values of
the finite-volume functions and the K matrix appearing in
Eqs. (69) and (68). For example, theA1 irrepof theDic2mixes
the ðl; mÞ ¼ fð0; 0Þ; ð1;−1Þ; ð1; 1Þ;…g partial waves,

Dic2A1∶ FV
A1

¼ q�A1;on

8πE�
A1

0
BB@

cotϕd
00 i3=2Re½cotϕd

11� i1=2Re½cotϕd
11�

−i1=2Re½cotϕd
11� cotϕd

00 − cotϕd
20=

ffiffiffi
5

p
−

ffiffiffiffiffiffiffiffi
6=5

p
cotϕd

22

−i3=2Re½cotϕd
11�

ffiffiffiffiffiffiffiffi
6=5

p
cotϕd

22 cotϕd
00 − cotϕd

20=
ffiffiffi
5

p

1
CCA; ð72Þ

Kon;on;A1
¼ 8πE�

A1

q�A1;on

0
B@

½cot δS�−1 0 0

0 ½cot δP�−1 0

0 0 ½cot δP�−1

1
CA: ð73Þ

The final piece needed is the evaluation of the adjugate of a three-dimensional matrix,

adj½MA1
� ¼

0
BBBBBBBBBB@

				 ½MA1
�
22

½MA1
�
23

½MA1
�
32

½MA1
�
33

				 −
				 ½MA1

�
12

½MA1
�
13

½MA1
�
32

½MA1
�
33

				
				 ½MA1

�
12

½MA1
�
13

½MA1
�
22

½MA1
�
23

				
−
				 ½MA1

�
21

½MA1
�
23

½MA1
�
31

½MA1
�
33

				
				 ½MA1

�
11

½MA1
�
13

½MA1
�
31

½MA1
�
33

				 −
				 ½MA1

�
11

½MA1
�
13

½MA1
�
21

½MA1
�
23

				
				 ½MA1

�
21

½MA1
�
22

½MA1
�
31

½MA1
�
32

				 −
				 ½MA1

�
11

½MA1
�
12

½MA1
�
31

½MA1
�
32

				
				 ½MA1

�
11

½MA1
�
12

½MA1
�
21

½MA1
�
22

				

1
CCCCCCCCCCA
: ð74Þ

These two examples explicitly illustrate how to correctly
handle partial wave mixing in numerical studies of the two-
point correlation function. Similarly, one can consider the
scenario where the scattering amplitudes couple different
on-shell channels; in Sec. III D 3 we discuss how to
determine the LL factor for such systems.

III. THREE-POINT CORRELATION
FUNCTIONS AND THE GENERALIZED

LELLOUCH-LÜSCHER FORMULA

Having discussed two-point correlation functions exten-
sively in the previous section, we now proceed to the main
focus of this work, three-point correlation functions. In
particular, we are interested in processes where an external
current annihilates a single-particle state and creates a two-
particle state. Such a transition was first considered in this

context by Lellouch and Lüscher, who derived a relation
between a finite-volume matrix element and the physical
decay rate for K → ππ [25]. The weak Hamiltonian is the
external current in this process, and thus the analysis is
restricted to scalar currents which insert zero momentum.
Here we extend the result by allowing the external current
to inject arbitrary four momentum and to be in any irrep of
the finite-volume symmetry group. This is particularly
relevant for meson photoproduction processes such as
πγ� → ππ as well as meson decays of the form
ϕ1 → ϕ2ϕ3X, where X denotes an arbitrary leptonic cur-
rent. Even the relatively simple example of πγ� → ππ
illustrates that the finite-volume final state mixes different
angular momenta, due to the reduction of rotational
symmetry. In addition, the finite-volume matrix element
is related to multiple infinite-volume matrix elements,
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defined via asymptotic states with different particle content.
For example, the ππ state mixes with KK̄.14 Following the
discussion of the previous section, we accommodate any
number of strongly coupled channels, but restrict our
attention to energies for which only two-particle states
can go on shell.

A. Construction of currents in irreps of LGðQÞ
In order to construct the three-point correlation function,

we must first define currents in irreps of the finite-volume
symmetry groups. We begin by defining a current which
transforms as a representation of the infinite-volume
symmetry group. As a specific example, consider a four-
vector current which couples an incoming single-particle
state, with momentum Pi, to an outgoing (asymptotic) two-
particle state, where one particle has momentum k and the
other Pf − k. Defining hνðPi; Pf − k; kÞ as the LO tran-
sition amplitude for this process, we introduce

J νðxÞ ¼
ξ

L9

X
Pf;k;Pi

Z
dPf;0

2π

dPi;0

2π

dk0
2π

eiðPi−PfÞ·xφ̄†ð−Pf þ kÞ

× ~φ†ð−kÞφðPiÞhνðPi; Pf − k; kÞ: ð75Þ

Here ξ ¼ 1=2 if φ̄ ¼ ~φ and otherwise ξ ¼ 1. The zero
component of this four-vector current transforms trivially
under rotations, also within the finite-volume subgroups.
By contrast, the spatial vector (or pseudovector) is in the
J ¼ 1 irrep of SOð3Þ, and thus transforms under multiple
irreps of the finite-volume groups.
In order to discuss the subduction of the vector current

onto irreps of the octahedral group and the little groups, it is
convenient to first Fourier transform

~J jðx0;QÞ ¼
Z

dxe−iQ·xJ jðxÞ

¼ ξ

L6

X
Pf;k;Pi

Z
dPf;0

2π

dPi;0

2π

dk0
2π

eiðPi;0−Pf;0Þx0

× φ̄†ð−Pf þ kÞ ~φ†ð−kÞφðPiÞhjðPi; Pf − k; kÞ
× δPi;QþPf

; ð76Þ

and also to switch from the Cartesian to the spherical-
harmonic basis

~J �1 ¼ ∓ 1ffiffiffi
2

p ð ~J x � i ~J yÞ; ~J 0 ¼ ~J z: ð77Þ

For nonzero Q, the azimuthal component of the vector
current is only a good quantum number if the ẑ axis and the
momentum axis coincide. It is thus convenient to instead

use operators in the helicity basis. These are found by
defining R as an active rotation from ð0; 0; jQjÞ to Q and
DðJÞ

m1m2
ðRÞ as the m1m2 component of the corresponding

Wigner-Dmatrix in the J representation. With this, one can
rotate from the spherical-harmonic to the helicity basis,

~J λðy0;QÞ ¼
X
m

Dð1Þ�
mλ ðRÞ ~J mðy0;QÞ: ð78Þ

We are now in a position to decompose the current into
irreps of the finite-volume symmetry groups. First restrict-
ing attention to ~J λðy0; 0Þ, we comment that the current can
be subduced onto the Λ irrep of Oh using the subduction
coefficients, ½CJ

Λ�μ;λ [121]. As can be seen in Table I(a), for
this case the subduction is trivial. The J ¼ 1 irrep becomes
the T1 irrep of the octahedral group, with each element
of the helicity basis equal to one of the three μ values
labeling the finite-volume counterpart. For systems in
flight, one may define a similar subduction. In this case
nontrivial linear combinations arise, given by

~J ½J;P;jλj�
Λμ ðy0;QÞ ¼

X
λ̂¼�jλj

S ~η λ̂
Λμ

~J ½J;P�
λ̂

ðy0;QÞ; ð79Þ

where now J and P specify the angular momentum and
parity of the system in the c.m. frame. Table I(b) shows the
values of S ~ηλ

Λμ for systems with integer J ≤ 2 and
LQ=2π ¼ fð0; 0; nÞ; ðn; n; 0Þ; ðn; n; nÞg, and other pos-
sible cubic rotations are determined in Ref. [121].
The subduction of the vector current onto a definite irrep

of LGðQÞ can be easily generalized to currents of any rank,

~J α;β;…;ωðx0;QÞ⟶ ~J ½J;P;jλj�
Λμ ðx0;QÞ: ð80Þ

The discussion that follows is relevant for arbitrary rank
currents with either positive or negative parity that have
been properly subduced onto the irreps of LGðQÞ. The key
point is that, by taking appropriate linear combinations, one
can relate an operator in any basis to one that transforms as
an irrep of the finite-volume group. The linear combina-
tions of currents induce linear combinations of the tran-
sition amplitudes so that both ~J and h may be reexpressed
in terms of finite-volume irreps, and the form of Eq. (75) is
preserved in the new basis

~J ½J;P;jλj�
Λμ ðx0;QÞ ¼ ξ

L6

X
Pf;k;Pi

Z
dPf;0

2π

dPi;0

2π

dk0
2π

eiðPi;0−Pf;0Þx0

× φ̄†ð−Pf þ kÞ ~φ†ð−kÞφðPiÞ
× h½J;P;jλj�Λμ ðPi; Pf − k; kÞδPi;QþPf

: ð81Þ

Finally, to consider scenarios with N > 1 open two-particle
channels, one need only generalize this expression to

14This mixing is also present for the coupled-channel gener-
alization of Lellouch-Lüscher presented in Ref. [54].
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~J ½J;P;jλj�
Λμ ðx0;QÞ ¼

XN
a¼1

ξa
L6

X
Pf;k;Pi

Z
dPf;0

2π

dPi;0

2π

dk0
2π

eiðPi;0−Pf;0Þx0 φ̄†
að−Pf þ kÞ ~φ†

að−kÞφðPiÞ

× h½J;P;jλj�Λμ ðPi; Pf − k; k; aÞδPi;QþPf
; ð82Þ

where φ̄†
a and ~φ†

a each create one of the two particles in the ath channel and h½J;P;jλj�Λμ ðPi; Pf − k; k; aÞ is the LO transition
amplitude for that channel.

B. Three-point correlation function

Having properly defined the current of interest, we proceed to evaluate three-point correlation functions. Arriving at the
result with an arbitrary number of open two-particle states is straightforward after one determines the single-channel result.
We thus suppress the channel index for the time being and use Eq. (81) for the current. We begin by giving the expression
analogous to Eq. (19), with a current of arbitrary momentum inserted at time t ¼ y0,

Cð1→2Þ
Λfμf ;Λμ

ðxf;0 − y0; y0 − xi;0Þ ¼ h0jOΛfμfðxf;0;PfÞ ~J ½J;P;jλj�
Λμ ðy0;QÞφ†ðxi;0;−PiÞj0i

¼
X
nf

e−EΛf ;nf
ðxf;0−y0Þe−EΛi ;0

ðy0−xi;0Þh0jOΛfμfð0;PfÞjEΛf;nfPf;Li

× hEΛf;nfPf;Lj ~J ½J;P;jλj�
Λμ ð0;QÞjEΛi;0Pi;LihEΛi;0Pi;Ljφ†ð0;−PiÞj0i: ð83Þ

In the second equality we have assumed xi;0 < y0 < xf;0.

In order to get insight as to how one can interpret hEΛf;nfPf;Lj ~J ½J;P;jλj�
Λμ ð0;QÞjEΛi;0Pi;Li, we also evaluate the correlation

function diagrammatically, as depicted in Fig. 3.15 First observe that the transition amplitude, shown in Fig. 3(b), is defined
in analogy to the Bethe-Salpeter kernel as the sum of all amputated diagrams that are two-particle irreducible in the s
channel. The object differs from the Bethe-Salpeter kernel only in the form of external legs and in the insertion of a new
contact interaction associated with the electroweak process of interest. To evaluate the three-point correlator we must sum
all diagrams that appear when the external legs of the transition amplitude are contracted with the single incoming particle
and outgoing two-particle state. We perform the calculation of the three-point correlator in two steps. First we consider the
contraction of the incoming state with the current

FIG. 3. (a) Diagrammatic representation for the three-point correlation function for processes involving a single incoming particle and
an outgoing two-particle state. This is written in terms of the LO transition amplitudes, one of which is explicitly shown in (b), and the
Bethe-Salpeter kernel, depicted in Fig. 1(b). The wiggly line is meant to depict an integer spin external current that can inject arbitrary
four-momenta. Note that disconnected diagrams appearing in the LO transition amplitudes vanish except in the case where the current
has the same quantum numbers as one of the outgoing external legs.

15Note that Fig. 3 shows the expression for the correlation function when an arbitrary number of final two-particle states are present.
The single-channel scenario is recovered by suppressing the dependence on the a index and reducing all matrices in the channel space to
scalars.
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Dð1Þðy0 − xi;0Þ ¼
1

L3

X
Pi0

Z
dPi0;0

2π
eiPi0 ;0y0hφðPi0 Þφ†ðxi;0;−PiÞih½J;P;jλj�Λμ ðPi0 ; Pf − kf0 ; kf0 ÞδPi0 ;QþPf

¼
�
e−ðy0−xi;0ÞEΛi ;0

2EΛi;0

�
h½J;P;jλj�Λμ ðPi; Pf − kf0 ; kf0 ÞδPi;QþPf

þO
�
e−E3;thðy0−xi;0Þ

E3;th

�
; ð84Þ

where Pi;0 ¼ iEΛi;0. The remaining contractions, between the current and the final two-particle operator, give

Dð2Þðxf;0 − y0Þ ¼
ξ

L3

X
Pf;kf

Z
dPf;0

2π

dkf;0
2π

e−iPfy0hOΛfμfðxf;PfÞφ̄†ð−Pf þ kfÞ ~φ†ð−kfÞi

× h½J;P;jλj�Λμ ðPi; Pf − kf; kfÞδPi;QþPf
: ð85Þ

The LO contribution of this term is found to be

Dð2;LOÞðxf;0 − y0Þ ¼
L3

η

Z
dPf;0

2π
eiPf;0ðxf;0−y0Þ

X
R∈LGðPfÞ

CðPfΛfμf;RðPf − kfÞ;RkfÞ

×
h½J;P;jλj�Λμ ðPi; Pf − kf; kfÞ

4ω1ω2ðiPf;0 þ ðω1 þ ω2ÞÞ
δPi;QþPf

þ � � � ; ð86Þ

where the ellipsis denotes contributions associated with higher energy poles of the two-particle propagator. Note that the
symmetry factor cancels.
To complete our calculation of Cð1→2Þ, it remains only to include all higher order corrections to Dð2Þ. These arise from

insertions of the Bethe-Salpeter kernel between the current and the two-body operator. All contributions are included by
making the substitution

h½J;P;jλj�Λμ ðPi; Pf − kf; kfÞ → h½J;P;jλj�Λμ ðPi; Pf − kf; kfÞ

− ξ
1

L3

X
kf0

Z
dkf0;0
2π

TLðPf; kf0 ; kfÞGðkf0 ÞGðPf − kf0 Þh½J;P;jλj�Λμ ðPi; Pf − kf0 ; kf0 Þ þ � � � ; ð87Þ

where the ellipsis again denotes higher energy poles.
To give the final result we must first define H½J;P;jλj�

Λμ ðPi; Pf − kf; kfÞ as the sum over all infinite-volume diagrams
contributing to the transition amplitude, evaluated using the principal-value prescription [depicted in Fig. 4(b)]. This is also
given by

FIG. 4. In order to illustrate the differences and similarities between the transition amplitudes (a) A and (b) H, we show their
diagrammatic representation for the single-channel case in terms of the LO transition amplitude [defined in Fig. 3(b)], the Bethe-Salpeter
kernel [defined in Fig. 1(b)] and in terms of infinite-volume loops. The infinite-volume loops of A are evaluated using the iϵ
prescription, while those of H are evaluated using the principal value. For multichannel scenarios, the kernels and two-particle loops
become matrices in the space of open channels and the LO transition amplitude becomes a vector in the space, as depicted in Fig. 3.
Single-particle propagators are fully dressed, as defined in Fig. 1(c).
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H½J;P;jλj�
Λμ ðPi; Pf − kf; kfÞ≡ h½J;P;jλj�Λμ ðPi; Pf − kf; kfÞ

þ ξP:V:
Z

dkf0

ð2πÞ3
Z

dkf0;0
2π

Koff;offðPf; kf0 ; kfÞGðkf0 ÞGðPf − kf0 Þh½J;P;jλj�Λμ ðPi; Pf − kf0 ; kf0 Þ:

ð88Þ

In addition, we define H½J;P;jλj�
lml;Λμ

¼ R dΩY�
lml

ðk̂�
fÞH½J;P;jλj�

Λμ ðPi; Pf0 − kf; kfÞ, which is the projection of this amplitude onto the
spherical harmonic basis of the outgoing state. Note that this requires evaluating the transition amplitude in the frame where
the final two-particle state is at rest. In order to minimize excess in labels, from now on we suppress the superscripts on

H½J;P;jλj�
lml;Λμ

and simply denote it as Hlml;Λμ.
Putting all the pieces together and performing the integral over Pf;0, one finds the following expressions for the three-

point correlation function:

Cð1→2Þ
Λfμf ;Λμ

ðxf;0 − y0; y0 − xi;0Þ ¼
�
e−ðy0−xi;0ÞEΛi ;0

2EΛi;0

�Z
dPf;0

2π
eiPf;0ðxf;0−y0ÞδPi;QþPf

×

�
1

η

CðPΛfμf; ðPf − kfÞ;kfÞH½J;P;jλj�
Λμ ðPi;Pf − kf; kfÞ

4ω1;Pf−kf0ω2;kf0 ðω1;Pf−kf0 þω2;kf0 þ iPf;0Þ
− YΛfμf

1

Kþ ðFVÞ−1HΛμ;onL3 þ � � �
�

¼
�
e−ðy0−xi;0ÞEΛi ;0

2EΛi;0

�
L3
X
nf

e−EΛf ;nf
ðxf;0−y0ÞYΛfμf;nfRΛf;nfHΛf;nf ;ΛμδPi;QþPf

þ � � � ; ð89Þ

where the ellipsis denotes the contribution from higher energy poles. Note that, just like in the two-point correlation
function, the free-particle poles do not contribute due to the careful cancellation of the two objects inside the braces.
By comparing Eqs. (83) and (89) and multiplying by the complex conjugate expression, one finds an identity for the

finite-volume matrix element

jhEΛf;nfPf;Lj ~J ½J;P;jλj�
Λμ ð0;Pi − PfÞjEΛi;0Pi;Lij

¼
�

L3

2EΛi;0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðYΛfμf;nfRΛf;nfHΛf;nf ;ΛμÞðH†

Λf;nf ;Λμ
RΛf;nfY

†
Λfμf;nf

Þ
q

jh0jOΛμð0;PfÞjEΛf;nfPf;LijjhEΛi;0Pi;Ljφ†ð0;−PiÞj0ij
ð90Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2EΛi;0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðYΛfμf;nfRΛf;nfHΛf;nf ;ΛμÞðH†

Λf;nf ;Λμ
RΛf;nfY

†
Λfμf;nf

Þ
YΛfμf;nfRΛf;nfY

†
Λfμf;nf

vuut ; ð91Þ

where we have used Eqs. (9) and (58) to write the second equality. It is important to emphasize that the value of Y depends
on the two-body interpolators used, and it is essential to use the same interpolators in the two-point and three-point
functions for the second equality to follow. Indeed, although we constructed our two-body interpolators from scalar fields
(with residue one at the single-particle pole), this result holds for any interpolating field with the desired quantum numbers.
Any nontrivial overlap factors cancel between the numerator and denominator.
For multichannel systems, one needs to evaluate the three-point correlation function using a current that couples to all

open channels, as defined in Eq. (82). In this case one has the freedom to choose which flavor of two-particle operator is
used in evaluating the correlation function. We define

Cð1→2Þ
Λfμf;a;Λμ

ðxf;0 − y0; y0 − xi;0Þ ¼ h0jOΛfμf;aðxf;0;PfÞ ~J ½J;P;jλj�
Λμ ðy0;QÞφ†ðxi;0;−PiÞj0i

¼
X
nf

e−EΛf ;nf
ðxf;0−y0Þe−EΛi;0

ðy0−xi;0Þh0jOΛμ;að0;PfÞjEΛf;nfPf;Li

× hEΛf;nfPf;Lj ~J ½J;P;jλj�
Λμ ð0;QÞjEΛi;0Pi;LihEΛi;0Pi;Ljφ†ð0;−PiÞj0i: ð92Þ

This generic representation of the three-point function is diagrammatically depicted in Fig. 3(a). Following the steps above,
it is straightforward to see that Eq. (91) generalizes to
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jhEΛf;nfPf;Lj ~J ½J;P;jλj�
Λμ ð0;Pi − PfÞjEΛi;0Pi;Lij ¼

1ffiffiffiffiffiffiffiffiffiffiffiffi
2EΛi;0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½YΛfμf;nfRΛf;nfHΛf;nf ;Λμ�a½H†

Λf;nf ;Λμ
RΛf;nfY

†
Λfμf;nf

�a
½YΛfμf;nfRΛf;nfY

†
Λfμf;nf

�aa

vuut ; ð93Þ

where the repeated channel indices on the right-hand side
are not summed.
We now show that this result is equivalent to the main

result of this work, Eq. (2) above. To do so we define

V ðaÞ
b ≡ Y †

Λfμf;nf ;a;b
; ð94Þ

where a and b are channel indices. We stress that, for each
fixed value of a, V ðaÞ

b is a column in angular-momentum/
channel space. Suppressing the channel index b, this
notation allows us to rewrite Eq. (93) as

jhEΛf;nf ;Lj ~J ½J;P;jλj�
Λμ jEΛi;0;Lij

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2EΛi;0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½V ðaÞ†RΛf;nfHΛf;nf ;Λμ�½H†

Λf;nf ;Λμ
RΛf;nfV

ðaÞ�
½V ðaÞ†RΛf;nfV

ðaÞ�

vuut :

ð95Þ

Here we have dropped all momentum and time labels for
compactness of notation.
We next observe that RΛf;nf , which is Hermitian and

therefore diagonalizable, has only one nonzero eigenvalue.
To see this, recall that RΛf;nf is equal to a scalar prefactor
times adj½MðP0;M ¼ EΛ;nÞ�Λf

. The adjugate here is under-
stood as a matrix in angular-momentum/channel space that
has been projected onto the Λf subspace. We now consider
the adjugate as a function of ϵn ≡ P0;M − EΛ;n, and show
that all but one of its eigenvalues vanishes as ϵn → 0.
Recall the defining relation

adj½MðϵnÞ� ¼ det½MðϵnÞ�½MðϵnÞ�−1: ð96Þ

Formally diagonalizing both sides, we argue that exactly
one of the eigenvalues of ½MðϵnÞ�−1 scales as 1=ϵn and the
rest are finite. Note that the divergence of two eigenvalues
would imply the existence of two orthogonal states that are
exactly degenerate in finite volume. This represents two
possibilities. The first is that distinct energies coincide only
at certain values of L. This would imply a level crossing,
which does not occur unless the Hilbert space divides into
distinct, noninteracting subspaces. The second possibility is
that the finite-volume spectrum includes states that are
degenerate for all values of L. This occurs whenever there
is a symmetry relating the finite-volume states. However, in
the present context the matrix has been projected to a
particular irrep and row. It follows that, within the subspace
that we consider, exactly one of the eigenvalues of

½MðϵnÞ�−1 scales as 1=ϵn. This in turn implies that the
determinant of MðϵnÞ vanishes as ϵn or faster, and thus all
but one of the adjugate’s eigenvalues vanishes.
We denote the nonzero eigenvalue of RΛf;μf by λ and the

corresponding eigenvector, E. We also introduce E1;E2;…
as the remaining orthonormal set that is annihilated by
RΛf;nf . These eigenvectors span the space, so we may
substitute V ðaÞ ¼ cEþP ciEi and deduce

jhEΛf;nf ;Lj ~J ½J;P;jλj�
Λμ jEΛi;0;Lij

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2EΛi;0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½c�λE†HΛf;nf ;Λμ�½H†

Λf;nf ;Λμ
cλE�

λc�E†Ec

s
; ð97Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2EΛi;0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½λE†HΛf;nf ;ΛμH

†
Λf;nf ;Λμ

E�
q

; ð98Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2EΛi;0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½H†

Λf;nf ;Λμ
λEE†HΛf;nf ;Λμ�

q
; ð99Þ

where in the first line we acted RΛf;nf on each eigenvector,
in the second line we canceled common factors and inserted
a redundant trace, and in the third we used the cyclic
property of the trace. Observing finally that

RΛf;nf ¼ λEE†; ð100Þ

we conclude

jhEΛf;nfPf;Lj ~J ½J;P;jλj�
Λμ ð0;Pi − PfÞjEΛi;0Pi;Lij

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2EΛi;0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½H†

Λf;nf ;Λμ
RΛf;nfHΛf;nf ;Λμ�

q
: ð101Þ

C. Relation of H to infinite-volume matrix elements

In this section we relate HΛf;nf ;Λμ;JfmJf
¼

HΛf ;Λμ;JfmJf
ðE�

Λf;nf
Þ to infinite-volume matrix elements.

Here we have given the full set of indices including
JfmJf ¼ lfmf, which are the angular-momentum indices
of the final two-particle state and were suppressed in the
derivation above. We have also emphasized that the label nf
only refers to the particular two-particle pole at which the
transition amplitude is evaluated. Finally, we stress that the
subscript Λf on H indicates that the angular-momentum
space has been projected onto a finite-volume irrep. For
example, in the case of Λf ¼ Aþ

1 the transition amplitude
will include Jf ¼ 0, Jf ¼ 4 and certain higher waves, but
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not Jf ¼ 2; Jf ¼ 3. However, by considering different
irreps one can, in principle, sample all partial waves,
and so construct an unprojected vector HΛμ;JfmJf

.
To give the relation to physical matrix elements, we first

connect this transition amplitude, defined using the princi-
pal-value prescription, to the amplitude defined via the iϵ
prescription. We label the latter AΛμ;JfmJf

. Both amplitudes
are explicitly shown in Fig. 4 and the relationship between
the two is found by noting that the difference in each two-
particle loop is a simple kinematic factor, determined by the
residue of each loop at the poles. This is very similar to the
relation between K and M discussed above. We find

A ¼ HþKðiP2=2ÞHþ KðiP2=2ÞKðiP2=2ÞHþ � � �

¼
�

1

1 − KðiP2=2Þ
�
H

¼
�

1

K−1 − ðiP2=2Þ
�
K−1H ¼ MK−1H: ð102Þ

For systems with only a single channel present H andA are
columns and P, K andM are diagonal matrices in angular-
momentum space; otherwise, these objects are defined on
the direct product space of angular momenta and open
channels. Note that H only has complex values from the
spherical harmonics, the function H before decomposition
is pure real. Thus the nontrivial complex phases of A are
determined entirely by the strong interaction, as encoded in
K−1M. In the single-channel case we see that the phase of
A is equal to the elastic scattering phase of the two-particle
channel considered. Thus Eq. (102) is simply the gener-
alization of Watson’s theorem for multichannel systems.
This relation motivates the definition

RΛf;nf ¼ ½M−1†KRKM−1�Λf;nf ; ð103Þ

which allows us to compactly display our main result in
terms of A, as in Eq. (2) above.
Finally we comment that AΛμ;JfmJf

is trivially related to
the infinite-volume matrix element of the current. To see
this, we first rewrite the current ~J ½J;P;jλj�

Λμ ðx0;QÞ, Eq. (82), in
infinite volume and set x0 ¼ 0,

~J ½J;P;jλj�
Λμ ð0;Q;∞Þ ¼

XN
a

ξa

Z
d4Pf

ð2πÞ4
d4Pi

ð2πÞ4
d4k
ð2πÞ4

× φ̄†
að−Pf þ kÞ ~φ†

að−kÞφðPiÞ
× h½J;P;jλj�Λμ ðPi; Pf − k; k; aÞ
× ð2πÞ3δ3ðPi − Pf −QÞ: ð104Þ

Note that we still label the current by Λμ. The linear
combinations that relate this basis to more standard
infinite-volume bases are discussed above. Requiring
only that states are normalized according to the standard

infinite-volume relativistic convention [Eq. (8)] and also
that the single-particle operators have propagators with
unit residue [Eq. (7)], one arrives at Eq. (3).

D. Examples of applications of Eq. (2)

1. K → ππ decay amplitude

First, we demonstrate that this formalism properly
recovers the well-known result for K → ππ weak decay.
In this case, the initial state is a single kaon and the external
current is a pseudoscalar. The current cannot inject any
momentum, so we set Pf ¼ Pi. By conservation of angular
momentum, the infinite-volume current can only create a
two-pion state in an S wave. For this scenario our master
equation gives the following relationship between the
infinite-volume transition amplitude and the finite-volume
matrix element:

jAS;nf j2
jhππ; EnfP;Λfμf;Lj ~J ½0;−1;j0j�

Λμ ð0; 0ÞjK;EKP;Lij2

¼ 16πEKE�
nf

q�nfξ
∂ðδS þ ϕd

00Þ
∂P0;M

				
P0;M¼Enf

: ð105Þ

For the problem at hand EK is equal to the energy of the
incoming kaon, and the symmetry factor ξ is equal to 1=2.
If one wishes, it is straightforward to replace the derivative
with respect to total energy with a derivative with respect to
relative momentum. Doing so, one finds agreement with
Refs. [25–28] in the limit that the initial and final states are
exactly degenerate. Note that, since the current is evaluated
at a specific time slice, the current need not conserve energy
and Eq. (105) reflects this fact. For a process such as K →
ππ this is an artifact, and one must set the ππ energy to be
degenerate with the kaon in order to extract the physical
decay amplitude.

2. πγ� → ππ transition amplitude

Unlike the previous example, for a process such as πγ� →
ππ the external current can inject arbitrary momentum. For
such a process, the lowest energy configuration of the final
state is a P wave. Therefore, it is expected that the Lellouch-
Lüscher factor gets modified. Since the two particles in the
final state are degenerate, odd and even partial waves cannot
mix. By ignoring contamination from the F wave and using
the results of Sec. II B, one finds the generalization of the
previous result for two particles in a P wave,

jAΛfμf;nf ;Λμ;Jf¼1j2
jhππ; EnfPf;Λfμf;Lj ~J ½1;−1;jλj�

Λμ ð0;Pi − PfÞjπ; EiPi;Lij2

¼ 16πEiE�
nf

q�nfξ
∂ðδP þ ϕd

PÞ
∂P0;M

				
P0;M¼Enf

; ð106Þ
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where ϕd
P has been defined in Eq. (63). Also, as already

discussed after that equation, ξ ¼ 1=2 must be used if A is
defined in the isospin basis and ξ ¼ 1 must be used if A is
defined with unsymmetrized two-pion states. The two
choices are consistent since the two definitions of the
transition amplitude differ by a factor of

ffiffiffi
2

p
. The Jf ¼ 1

superscript on the transition amplitude means that we have
integrated it against one of the lf ¼ 1 spherical harmonics.
As discussed above, this projection is performed in the two-
particle center-of-mass frame. Observe that the right-hand
side does not depend on the representation of the current or
the single-particle state.
The right-hand side effectively corrects for the large

finite-volume artifacts associated with the two-particle
state. This gives a one-to-one mapping between the
finite-volume matrix element and infinite-volume transition
amplitude for this process. The result thus allows one to
determine, using LQCD, the same quantity that is extracted
from experiments. If one wants to evaluate this transition
amplitude at the ρ pole, in order to study processes such as
πγ� → ρ, then it is necessary to analytically continue into
the complex plane [59]. This requires parametrizing the
transition amplitude as a function of the exchange momen-
tum as well as the relative momentum between the two
pions in the P wave. By fitting this function to the LQCD
results, one can study the behavior of the transition
amplitude as a function of the exchange momentum at
the resonance pole.

3. Two-dimensional case

As we have already stressed, partial wave mixing is
inevitable when performing calculations in a finite volume,
and this mixing is quantified by our main result, Eq. (2). In

addition, the final two-particle state may, in general, have
overlap with more than one infinite-volume state. This
leads us to consider a generic scenario where the matrix R
in Eq. (2) is two dimensional. In order to avoid introducing
additional notation we consider the form of the main result
using infinite-volume quantities that are defined via the
principal-value prescription, namely Eq. (101).
In Sec. II C we discussed one explicit example for a πK

boosted state, where we neglected contributions from Jf ≥
2 partial waves. We could also consider a system with two
open channels where we ignore partial wave mixing, e.g.,
ππ − KK̄. In the first case the finite-volume matrix FV

Λf
will

have off-diagonal terms but the K matrix will be diagonal.
In the second case this is reversed; the K matrix has
nonzero off-diagonal terms while FV

Λf
is diagonal. In order

to accommodate these two scenarios simultaneously, we
allow the K matrix and the FV

Λf
matrix to have off-diagonal

terms. The spectrum of this system must satisfy

det½MΛf
� ¼ det ½KΛf

þ ðFV
Λf
Þ−1� ¼ 0: ð107Þ

By restricting MΛf
to be a two-dimensional matrix, its

adjugate can be written as

adj½MΛf
�jP0;M¼EΛf ;nf

¼
� ½MΛf

�
22

−½MΛf
�
12

−½MΛf
�
21

½MΛf
�
11

�
: ð108Þ

By requiringM to satisfy Eq. (107), we note that not all the
elements of its adjugate are independent.
Inserting the above expression into Eq. (101), one finds

jhEΛf;nfPf;Lj ~J ½J;P;jλj�
Λμ ð0;Pi − PfÞjEΛi;0Pi;Lij2

¼ 1

2EΛi;0

 
j½H�1j2½MΛf

�
22
þ j½H�2j2½MΛf

�
11
− ½H��1½H�2½MΛf

�
12
− ½H��2½H�1½MΛf

�
21

tr
h
adj½MΛf

� ∂MΛf

∂P0;M

i
!					

P0;M¼EΛf ;nf

ð109Þ

where the subscripts of HΛfμf;nf ;Λμ have been suppressed in
the last line for compactness. Here we emphasize that
although the full transition amplitude is real, the spherical
harmonic decomposition may, in general, be complex. This
is due to the fact that the spherical harmonics are them-
selves complex. This result illustrates the power of Eq. (2).

4. D → fππ;KK̄g decays

Assuming sufficiently heavy pion masses, such that the
multiparticle threshold lies above the energy of the D
meson, Eq. (109) allows one to study D → fππ; KK̄g
decays. To find the equivalence between the result

presented in the previous section and the result presented
in Ref. [54], we rederive the result of Ref. [54] using
notation presented here. This allows for a more compact
representation of the result. In Ref. [54] the authors follow
the trick first utilized by Lellouch and Lüscher to describe
K → ππ decays. We present this method in the context of
the two-channel system.
The argument proceeds by modifying the ππ − KK̄

correlation function, by including a contribution to the
Hamiltonian density due to the weak interaction. We denote
this perturbative shift by λHWðxÞ, where λ is a free
parameter that allows us to organize an expansion. The
modified Hamiltonian density couples ππ − KK̄ with theD
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state, both in a finite and an infinite volume. Considering
first the finite-volume theory, we tune the box size L such
that the D state and some ππ − KK̄ finite-volume state are
exactly degenerate (for a given total momentum). The
presence of the weak interaction will break the degeneracy
and result in two nearly degenerate states with energies

Eð1Þ ¼ ED � λL3jhEDP;LjHWð0ÞjD;EDP;Lij; ð110Þ

where we have only kept the leading order contribution in λ
and where ED ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

D þ P2
p

with MD the D meson mass.
Turning to the infinite-volume theory, the weak pertur-

bation has the effect of modifying the scattering amplitude.
This modification is due to the additional interaction that
couples the D to the two-particle states. The shift in the
scattering amplitude contains two insertions of the weak
Hamiltonian, one for transitioning from two particles to the
D and one for transitioning back to two particles. Thus the
shift is generically Oðλ2Þ, but in the present case we
evaluate the amplitude at an energy which is shifted by
OðλÞ from ED. This enhances the shift in the scattering
amplitude to be OðλÞ. One finds [54]

Mð1Þ ¼ Mð0Þ∓λΔM ð111Þ

where

ΔM ¼ 1

2EDΔE

� jAD→ππj2 AD→ππA
†
D→KK̄

A†
D→ππAD→KK̄ jAD→KK̄j2

�
;

ð112Þ

and where we have defined ΔE≡ L3jhEDP;Lj×
HWð0ÞjD;EDP;Lij.
We next find it convenient to rewrite this perturbation to

the scattering amplitude as a perturbation to the K matrix.
To do this, we follow the reasoning of Eq. (102) and
observe that the only difference between the transition

amplitude and the scattering amplitude is that for the latter
we need to include the imaginary part of the diagrams
associated with both incoming and outgoing two-particle
states. This leads to the following relation between ΔM
and ΔK,

ΔK ¼ KM−1ΔMM−1K: ð113Þ

At this point we can combine the shift in the finite-volume
spectrum with the shift in the infinite-volume K matrix to
determine the leading order modification to M, defined in
Eq. (47). We find that the matrix is shifted by an amount

λΔM ¼ λΔE
∂M

∂P0;M

				
P0;M¼ED

∓λΔK: ð114Þ

Of course, the quantization condition must also be valid for
the perturbed theory. We thus deduce that the linear shift to
the determinant of M should vanish,

det½MðλÞ�j ¼ det½Mð0Þ� þ λtr½adj½Mð0Þ�ΔM�
¼ λtr½adj½Mð0Þ�ΔM�jP0;M¼ED

¼ 0; ð115Þ

where we have used the fact thatMð0Þ also has a vanishing
determinant since this defines the quantization condition of
the unperturbed theory.
Showing that this result is equivalent to Eq. (109)

requires some algebra. First we substitute Eq. (114) into
Eq. (115) and solve for ΔE,

ΔE ¼ tr½adj½M�ΔK�
tr½adj½M� ∂M

∂P0;M
�

				
P0;M¼ED

: ð116Þ

Next we substitute the specific two-channel form,
Eq. (108), and also use Eqs. (102), (112) and (113) to
simplify the result. We conclude that

ΔE2 ¼ L6jhEDP;LjHWð0ÞjD;EDP;Lij2 ¼
1

2ED

�½H�21½MΛf
�
22
þ ½H�22½MΛf

�
11
− 2½H�1½H�2½MΛf

�
12

tr½adj½M� ∂M
∂P0;M

�
�
j
P0;M¼ED

; ð117Þ

which is equivalent to Eq. (109) for the special case where
the initial and final states are exactly degenerate and have
the same total momentum. Furthermore, since the outgoing
two-particle state is in an S wave, all of the elements in the
right-hand side of the equation above are real. Note that the
left-hand side of the above equation contains an extra factor
of L6. This is because the current in Eq. (109) is in
momentum space.
We note that although it might seem that this result is

sensitive to the relative sign between ½H�1 and ½H�2, our

result only allows one to determine the sign of
½H�1½H�2½MΛf

�
12
. The determinant condition describing

the spectrum is only sensitive to the magnitude of
½MΛf

�
12
. Therefore, we find no method here for determining

the relative sign of ½H�1 and ½H�2.

5. B → πK transition amplitudes

One example where partial wave mixing may, in general,
not be small is in studies of B → πK transition amplitudes.
This is due to the fact that for boosted systems the final state
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will be an admixture of even and odd partial waves. In
particular, if one is interested in the case where the
infinite-volume final state has overlap with the K�ð892Þ
resonance, then one must consider irreps that have strong
overlap with the πK Pwave. If the final state is at rest or if
it is in the E irrep for d ¼ ð00nÞ, B1 and B2 for d ¼ ðnn0Þ,
or E for d ¼ ðnnnÞ, and if one neglects the contribution
from the D and higher partial waves by following the
discussion of Sec. II C, then one finds that the ratio of the
infinite transition amplitudes and finite-volume matrix
elements of vector or pseudovector currents satis-
fies Eq. (106).
For the A1 irrep of the Dic4 group, one simply needs to

insert the expressions for the on-shell K matrix in Eq. (67)
along with FA1

in Eq. (68) onto Eq. (109) to find the
relation between the finite-volume matrix elements of
currents and infinite-volume transition amplitudes.
Because of the symmetries of the infinite volume, only
one of the transition amplitudes is nonvanishing. For
example, if we consider the case where the current is
subduced from Jf ¼ 1 with odd parity, then HS;nf ;Λμ must
exactly vanish. Therefore, for vector currents Eq. (109)
simplifies to

jAP0;nf ;Λμj2
jhπK;EnfPf;Λfμf;Lj ~J ½1;−1;jλj�

Λμ ð0;QÞjB0; EB0Pi;Lij2

¼ 2EΛi;0cos
2δP

						
tr
h
adj½MΛf

� ∂MΛf

∂P0;M

i
½MΛf

�
11

						
P0;M¼EΛf ;nf

: ð118Þ

where AP0;nf ;Λμ denotes the P-wave transition amplitude
with zero helicity. This follows from the helicity decom-
position of the A1 irrep of the Dic4 group as shown in
Table I(b). For a pseudovector current or for rank-two
tensor currents, neither HS;nf ;Λμ nor HPm;nf ;Λμ need vanish.
Therefore one necessarily must use Eq. (109). For the A1

irreps of the Dic2 group one must input the finite-volume
function and scattering matrices defined in Sec. II C into
the general result for the matrix element of cur-
rents, Eq. (101).
As discussed in the previous section, this result does not

require that the initial and final states are exactly degen-
erate. For studies of B meson decays on the lattice, it is a
necessity since the formalism does not currently support
multiparticle states. Therefore this result is of most sig-
nificance for studies of B meson decays with large energy
exchange, while the momentum exchange could be arbi-
trarily small.
Finally, it is important to remember that if one is

interested in studying transition amplitudes involving the
isospin-1=2 Kπ final state, one necessarily must consider
the admixture of this with Kη. Although the inelasticity is
seen to be small at physical values, this will depend on the

quark masses used to perform the calculation.16

Furthermore, for unphysically large quark masses, such
as those in used in Refs. [22,23,111], the Kη threshold is
significantly closer to the Kπ threshold than it is in nature.
In order to include this mixing between the channels one
will have to use Eq. (109) when there are two open
channels with negligible partial wave mixing or, in general,
Eq. (2).

IV. CONCLUSION

In this work we present a nonperturbative derivation of
two- and three-point functions in the mesonic sector. In
Sec. II we explicitly demonstrate how to construct oper-
ators with the appropriate symmetries of a finite-volume
system. This allowed us to write down the correlator as a
function of time and energy, Eq. (55). We find that although
the spectrum solely depends on the on-shell scattering
amplitudes, the correlation function also depends on off-
shell scattering amplitudes. Furthermore, the result pre-
sented explains why if one constructs an operator with a
particular set of discrete momenta, then the resulting
correlation function will be dominated by the nearest
eigenstate. This is because the overlap of an operator with
a state, Eq. (58), scales as ∼jEΛ;n − Efreej−1, where Efree
stands for the free energy of the two-particle system and
EΛ;n is the nth eigenstate of theΛ irrep of the corresponding
symmetry group.
In Sec. III we discuss the construction and interpretation

of three-point correlation functions in the mesonic sector.
Section III A reviews the work of Ref. [121] in the
construction of currents that have been properly subduced
onto an irrep of the symmetry group of the system. Having
defined the subduced currents, in Sec. III B we evaluate the
three-point correlation function diagrammatically to all
orders in perturbation theory, Eq. (89). By comparing
the expression of the three-point function with Eq. (58),
we find a master equation for the matrix element of currents
between a one- and two-particle finite-volume state,
Eq. (2). This result is the generalization of the Lellouch-
Lüscher formula, relating matrix elements of currents in
finite and infinite volumes, to processes where the external
current can inject arbitrary total momentum into the system
and the final state can be in an arbitrary partial wave. The
generalization also includes an arbitrary number of strongly
coupled two-particle channels. The result is exact up to
exponentially suppressed volume corrections that are

16It is important to remember that at the physical point, the η is
a resonance that decays approximately one-third of time to 3π0

[129]. However the width of 1.31� 0.05 keV [129] is suffi-
ciently narrow that treating the resonance as stable would likely
be a good approximation. In this approach, resolving the finite-
volume spectrum where the η resides will most likely require
having three-body operators. Additionally, at the physical point
one can no longer neglect mixing between Kπ and Kππ, which
our formalism does not accommodate.
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governed by Lmπ. In Sec. III D 1 we demonstrate that this
result recovers the well-known K → ππ result. Section III
D 2 demonstrates how one determines the πγ� → ππ
transition amplitude. Section III D 3 gives a generic expres-
sion for the determination of finite-volume matrix elements
where there are two coupled channels open, Eq. (109).
Equation (109) is relevant for two-channel systems, regard-
less of whether the mixing is physical or an artifact of the
reduction of rotational symmetry in a finite volume.
Section III D 5 demonstrates how to implement this for-
malism for future studies of B → πK transition amplitudes,
where the final state is properly treated as a scattering state.
Finally, we remark that although we have chosen to
perform the derivation using a current that has been
subduced onto an irrep of the symmetry group of the
system, one can implement the formalism derived here to
currents that do not satisfy this criteria. This is due to the
fact that one can also write any current as a linear
combination of subduced currents.
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APPENDIX A: CANCELLATION OF FREE POLES

In arriving at the final expression for the two-point
correlation, Eq. (55), we argued that the free particle poles
of the integrand of Eq. (43) do not contribute. Here we give
a proof of this statement. In Secs. II and III we constructed
operators that are in the irrep of the symmetry group of the
system, but the cancellation of free poles cannot depend on
this fact. It must only depend on the fact that the particle
interactions are not exactly zero. If one would choose to not
define an operator with good quantum numbers, then
Eq. (19) would acquire an additional sum over all possible
irreps that have overlap with the operator of interest. This in
turn would lead to a far less reliable extraction of the
spectrum since multiple irreps could, in principle, have
nearly degenerate eigenstates. With this caveat in mind, we
decide to illustrate the cancellation of free particle poles
using a set of generic operators with no restrictions on
quantum numbers,

Aðx0;PÞ ¼
X
k

aðkÞφðx0;P − kÞ ~φðx0;kÞ;

Bðx0;PÞ ¼
X
k

bðkÞφ†ðx0;−Pþ kÞ ~φ†ðx0;−kÞ; ðA1Þ

where aðkÞ and bðkÞ are generic functions of k. Note that we have not specified wether the sum is over all possible values
of k or one specific shell; this distinction does not matter.
Since the cancellation of free poles is not affected by the number of open channels, we restrict the discussion here to the

case of only one open channel. It is straightforward to write down the two-point correlation function (depicted in Fig. 5) in
the vicinity of the free poles

h0jAðx0;PÞBðy0;PÞj0i ¼ L3

Z
dP0

2π
eiP0ðx0−y0Þ

�X
k

−iL3

4ω1;P−kω2;k

aðkÞbðkÞ
P0 − iðω1;P−k þ ω2;kÞ

−
X
k;k0

aðkÞbðk0ÞTLðP; k; k0Þ
4ω1;P−kω2;k½P0 − iðω1;P−k þ ω2;kÞ�4ω1;P−k0ω2;k0 ½P0 − iðω1;P−k0 þ ω2;k0 Þ� þ � � �

�
; ðA2Þ

where the ellipsis denotes finite contributions to the correlation function near the free poles. In writing the correlation
function we have introduced a function TLðP; k; k0Þ, which is related to the K matrix via Eq. (38). Near the free particle
poles this can be written as

TLðP; k; k0Þ ¼ −KðP; k; k0Þ þ i

�
1

L3

X
l

−
Z
l

�
KðP; k; lÞTLðP; l; k0Þ

4ω1;P−lω2;l½P0 − iðω1;P−l þ ω2;lÞ�
; ðA3Þ

MULTICHANNEL 1 → 2 TRANSITION … PHYSICAL REVIEW D 91, 034501 (2015)

034501-23



where we have neglected contributions which are expo-
nentially suppressed in mπL. The free particle poles satisfy
P0 ¼ iðω1;P−k þ ω2;kÞ, and in order to obtain their con-
tribution, we investigate the leading ϵ behavior, where ϵ is
defined via

P0 ¼ iðω1;P−k þ ω2;kÞ þ ϵ: ðA4Þ

To do so, we upgrade these functions to matrices in
momentum space. It is important to observe that, in general,
there will be multiple values of k and P − k that satisfy the
free energy condition, specifically all elements of fkgP and
fP − kgP. Defining ω1 and ω2 as the free energies that
satisfy P0 ¼ iðω1 þ ω2Þ, at leading order in ϵ, Eq. (A2)
simplifies to

h0jAðx0;PÞBðy0;PÞj0i ¼ −iL3a

�
1

4ω1ω2ϵ

�⋆
b

− a

�
1

4ω1ω2ϵ

�⋆
TL

�
1

4ω1ω2ϵ

�⋆
b:

ðA5Þ

Here a is understood as a row and b as a column vector,
½1=ð4ω1ω2ϵÞ�⋆ is a matrix that acts in the restricted space of
fkgP and fP − kgP with value equal to 1=ð4ω1ω2ϵÞ, while
TL is a matrix with off-diagonal entries. If we next restrict
our attention to the set of momenta that satisfy the free
energy conditions, then the T matrix, Eq. (A3), satisfies

TL ¼ −Kþ i
1

L3
K

�
1

4ω1ω2ϵ

�⋆
TL: ðA6Þ

At this stage we observe that, since K ¼ Oð1Þ, one can
show that

TL ¼ −iL3

�
1

4ω1ω2ϵ

�
−1

þOðϵ2Þ: ðA7Þ

Substituting this into Eq. (A5) gives perfect cancellation of
theOð1=ϵÞ terms independent of the values of a and b. This
justifies the cancellation of free particle poles in Eq. (43),
which is recovered by setting a and b equal to the Clebsch-
Gordan coefficients.

However, it is common practice to restrict the scattering
amplitude to a particular partial wave when obtaining the
finite-volume spectrum. Here we demonstrate how this
approximation can lead to spurious free poles in the
correlation function. Let KSðn; P0Þ and TSðn; P0Þ be the
S-wave K matrix and T functions at the nth free particle
pole which has a degeneracy of N. From Eq. (A3), we see
that these satisfy

TSðn; P0Þ ¼ −KSðn; P0Þ þ i
N
L3

KSðn; P0ÞTSðn; P0Þ
4ω1ω2ϵ

þOðϵ2Þ; ðA8Þ

⇒ TSðn; P0Þ ¼ −i
4ω1ω2L3

N
ϵþOðϵ2Þ: ðA9Þ

Substituting Eq. (A9) into the S-wave reduction of
Eq. (A2), we deduce that free particle poles only cancel
when

ð1=NÞ
X

R;R0∈LGðPÞ
aðRkÞbðRk0Þ ¼

X
R∈LGðPÞ

aðRkÞbðRkÞ:

ðA10Þ

If one chooses a and b to be Kronecker deltas in
momentum, as has been done in previous work, the
cancellation in Eq. (A2) is lost, unless N ¼ 1. But this
is a contradiction to the statement above, that free particle
poles should not appear regardless of the values of a and b
for any momentum. The apparent contradiction here is
resolved by noting that the matrix K is only invertible if
each row is linearly independent. However, in the case of
the S-wave amplitude the matrix is proportional to a matrix
which has 1 in every single entry. Thus the matrix argument
fails and the alternative argument shows that cancellation
does not occur for all a and b. Furthermore, we argue that
imposing a scattering amplitude to exactly vanish for all but
one partial wave at all values of momentum is unnatural.
The only way to achieve this is to require all shape
parameters of the partial waves not included to be equal
to zero. Restricting the final results of the quantization
condition, the matrix elements of the two-particle inter-
polating operator and the matrix elements of the currents,
Eqs. (1), (57), (58), (91) and (101), to a single partial wave

FIG. 5. Shown is the diagrammatic representation of the correlation function defined in Eq. (A2) in terms of the kernels [defined in
Fig. 1(b)], the fully dressed single-particle propagators [defined in Fig. 1(c)] and the finite-volume loops. The “F. T.” label around the
braces reminds the reader that one must Fourier transform the energy-momentum correlation function to obtain the correct exponential
dependence in time. The T function, which is explicitly labeled, is defined in Eq. (38).
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can be done if the contribution from higher partial waves is
seen to be significantly suppressed at low energies. This is
to say that the order of operations in studying finite-volume
physics is relevant and can lead to significantly different
results.
From this discussion it is clear that if one is solely

interested in obtaining the spectrum and not in arriving at a
nonperturbative expression for the correlation functions, it
suffices to look at the poles of TL. As is evident from Fig. 5,
the free particle poles correspond to zeros of TL, and
consequently, one does not need to worry about any
spurious poles. Furthermore, the subtlety regarding the
order of operations does not play a role when studying the
pole structure of TL. Therefore, as was done in Ref. [66],
one may first proceed to set the angular momentum to any
partial wave desired and then obtain the quantization
condition from the pole structure of TL.

APPENDIX B: GENERALIZATION FOR
TWISTED BOUNDARY CONDITIONS IN

ASYMMETRIC VOLUMES

In the derivation of the master equations of this work,
namely Eqs. (1), (57), (58), (91), and (101), periodic
boundary conditions on the spatial extent of the cubic
volume have been assumed. The periodicity constraint is
encoded in the expression for the Z functions shown in
Eq. (32), and this is generally true for arbitrary boundary
conditions; Ref. [85] demonstrated how to compactly
write the Z functions in such a way that they accommodate
the different geometries and boundary conditions. For
relevant work that leads to this result, see Refs. [57,67–
69,79,83,104,130–132]. TBCs require that fields, in gen-
eral, satisfy

ψðxþ nLÞ ¼ eiθ·nψðxÞ; ðB1Þ

where θ is a three-dimensional real angle. Therefore, the
free momentum of the ith particle in the jth channel will be
equal to pj;i ¼ 2πni

L þ ϕj;i

L .
For asymmetric volumes, let L be the spatial extent

of the z axis and ηi be defined such that Lx ¼ ηxL and
Ly ¼ ηyL. Using the notation ~χ ¼ ðχx=ηx; χy=ηy; χzÞ,
one can readily find the most general form of the
clm and Z functions with arbitrary twist and asym-
metric volumes,

c
d;ϕj;1;ϕj;2

lm ðk�2;L; ηx; ηyÞ ¼
ffiffiffiffiffiffi
4π

p

ηxηyγL3

�
2π

L

�
l−2

× Z
d;ϕj;1;ϕj;2

lm ½1; ðk�L=2πÞ2; ηx; ηy�;
ðB2Þ

Z
d;ϕj;1;ϕj;2

lm ½s; x2; ηx; ηy� ¼
X

r∈Pϕ1 ;ϕ2;
d;ηx;ηy

jrjlYlmðrÞ
ðr2 − x2Þs ; ðB3Þ

where Pϕ1;ϕ2

d;ηx;ηy
¼fr∈R3jr¼ γ̂−1ð ~m−αj ~dþ ~ΔðjÞ

2π Þg, where

m is a triplet integer, ~ΔðjÞ ¼ −ðαj − 1
2
Þð ~ϕj;1 þ ~ϕj;2Þ þ

1
2
ð ~ϕj;1 − ~ϕj;2Þ and ~d ¼ PL=2π. Additionally, one

obtained an overall factor of ffiffiffiffiffiffiffiffiffi
ηxηy

p in Eqs. (9), (57),
and (58); i.e. one must make the following replace-
ments:

jh0jφð0;kÞjEð1Þ
k ij⟶

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηxηyL3

2ωk

s
; ðB4Þ

jh0jOΛμ;að0;PÞjEΛ;nij⟶
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηxηyL3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½YΛμ;nRΛ;nY

†
Λμ;n�aa

q
:

ðB5Þ
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