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Methylmercury (MeHg) is a widespread environmental toxin that preferentially and adversely affects developing
organisms. To investigate the impact of MeHg toxicity on the formation of the vertebrate nervous system at
physiologically relevant concentrations, we designed a graded phenotype scale for evaluating Xenopus laevis
embryos exposed to MeHg in solution. Embryos displayed a range of abnormalities in response to MeHg,
particularly in brain development, which is influenced by bothMeHg concentration and the number of embryos
per ml of exposure solution. A TC50 of ~50 μg/l and LC50 of ~100 μg/l were foundwhenmaintaining embryos at a
density of one per ml, and both increased with increasing embryo density. In situ hybridization and microarray
analysis showed no significant change in expression of early neural patterning genes including sox2, en2, or
delta; however a noticeable decrease was observed in the terminal neural differentiation genes GAD and xGAT,
but not xVGlut. PCNA, a marker for proliferating cells, was negatively correlated with MeHg dose, with a signifi-
cant reduction in cell number in the forebrain and spinal cord of exposed embryos by tadpole stages. Conversely,
the number of apoptotic cells in neural regions detected by a TUNEL (terminal deoxynucleotidyl transferase
dUTP nick end labeling) assay was significantly increased. These results provide evidence that disruption of
embryonic neural development by MeHg may not be directly due to a loss of neural progenitor specification
and gene transcription, but to a more general decrease in cell proliferation and increase in cell death throughout
the developing nervous system.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC-BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Generated by both natural and anthropogenic sources, mercury is a
potent toxin for both humans andwildlife that has become aworldwide
health concern (Mergler et al., 2007). Easily transported through the at-
mosphere due to its low boiling point, elementalmercury can be depos-
ited far from its source where it rapidly enters the food chain through
methylation by microorganisms into a highly bioavailable methylmer-
cury (MeHg) form (Amyot et al., 2005; Harris et al., 2007; Schaefer
et al., 2011). Because of MeHg's relatively long half-life in biological
tissues, there is considerable biomagnification (Chumchal et al., 2011;
Horvat et al., 2013), leading to elevated concentrations and increased

toxicity in animals at higher trophic levels (Schmitt et al., 2011; Spada
et al., 2012). On the biochemical level, toxicity is facilitated by the ability
of MeHg to conjugate with the exposed thiol group of cysteine, leading
to disruption of thiol and selenol rich enzyme activities (Carvalho et al.
2008; Zemolin et al., 2012) and providing MeHg active transport across
the blood–brain and placental barriers through formation of a methio-
nine mimic with free cysteine (Simmons-Willis et al., 2002; Yin et al.,
2008).

Because of an observed elevated sensitivity in embryos, a number of
studies have focused on examining the specific mechanisms underlying
MeHg's effects on the developing nervous system at both the phenotyp-
ic and cellular molecular level (Patel and Reynolds, 2013). In vivo
invertebrate studies with physiologically relevant exposures have
shown a link between MeHg induced activation of the Notch pathway
and a failure in proper neuron migration, survival, and axon outgrowth
during Drosophila development (Rand et al., 2008, 2009; Engel et al.,
2012; Engel and Rand, 2014). Embryological work using Xenopus at
environmentally relevant concentrations of MeHg in solution found
general toxicity beginning around 50 μg/l along with significant axial
deformities and shortening of the embryo (Prati et al., 2002), disruption
of metamorphosis independent of T3 levels (Davidson et al., 2011), and
identified biomarkers strongly related toMeHg exposure (Monetti et al.,
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2002). In rodents, many experiments involving human-like prenatal
modes of exposure have examined the resulting behavioral and cogni-
tive defects (for review see: Bisen-Hersh et al., 2014). A few rodent
studies investigated developmental mechanisms of toxicity, noting
aberrant neural cell migration (Guo et al., 2013), long lasting defects
in the glutathione pathway (Stringari et al., 2008), and alterations in
the expression of genes related to structural development of the brain
in the cerebellum of both rats and mice (Padhi et al., 2008; Radonjic
et al., 2013). However, the majority of these studies focus on develop-
mental defects in the postnatal animal, and therefore cannot capture
potential responses to toxicity occurring during the earliest phases of
neurulation and gene patterning. Research in zebrafish has begun to
address this by examining earlier time points in neurodevelopment,
and has found a decrease in the proliferation of cells in the neural tube
(Bertossi et al., 2004), along with disruption of genes related to oxida-
tive stress and apoptosis (Yang et al., 2007; Ho et al., 2013).

While these results have given a clearer picture of the deleterious
effect of MeHg on neurodevelopment, they are based on studies using
a wide array of different model organisms with extremely varied dose
and timing regimens, making direct comparisons difficult. In light of
this, we have employed environmentally relevant concentrations of
MeHg in a continuous exposure protocol using Xenopus laevis to ad-
vance our knowledge of early vertebrate developmental effects, such
as neural patterning gene transcription, cell proliferation, and apoptosis
at earlier developmental stages than previously done, and provide a
comparison to studies conducted in zebrafish and other vertebrate
model systems. In addition, to enhance our mechanistic understanding
of embryonic toxicity, we have performed a time course assay of MeHg
uptake to observe how this process changes with developmental stage,
examined the effects of embryo density on toxicity response, and exam-
ined changes in early global transcription by microarray. The data from
these experiments supports the hypothesis that failure of neuronal
survival, rather than loss of neural patterning specification, may serve
as a mechanism for MeHg toxicity during early neurodevelopment.

2. Methods

2.1. Animal care and embryo collection

All animal and embryo handling was conducted in accordance with
the Institutional Animal Care and Use Committee guidelines at the Col-
lege of William andMary. X. laevismale and female frogs were injected
with 250 and 700 units of human chorionic gonadotropin (Intervet), re-
spectively, and up to a thousand embryos at a timewere collected from
one to two females in four batches from a single tray throughout the
day. Embryos were dejellied for 3–5 min in a solution of 2% L-cysteine
in 0.1× Marc's Modified Ringer (MMR) supplemented with 50 μg/ml
gentamicin, pH 7.8 to 8.0. The 0.1× MMRwas made through a serial di-
lution of 10×MMR(1MNaCl, 20mMKCl, 10mMMgSO4, 20mMCaCl2,
50 mM HEPES, pH 7.4–7.6). After being dejellied, embryos were rinsed
three times in 0.1× MMR to remove the remaining L-cysteine. Unfertil-
ized eggs and otherwise deformed embryos were discarded within a
few hours of collection. Embryos were staged according to Nieuwkoop
and Faber (1994). Specifically of importance for this study are: the
first cleavage stage 2 (1.5 h post fertilization (hpf)), cleavage stages
4–6 (2.25–3 hpf), blastula stage 8 (5 hpf), gastrulation stages 10–12
(9–13.25 hpf), the early neurulation and neural folds stages 14–15
(16.5–17.5 hpf), the late neurulation stages 18–20 (19.75–22.75 hpf),
the tailbud stage 25 (27.5 hpf), the swimming tadpole stage 37
(53.5 hpf), and the pre-metamorphosis stage 45 (98 hpf).

2.2. Preparation of MeHg solutions

A stock of 10 mg/l MeHg solution was prepared by dissolving
12.5 mg of methylmercury chloride (MeHgCl) into 1 l of sterile double
distilled (sdd) H2O. The 10 mg/l stock was then diluted 1:10 with sdd

H2O, and total mercury content was quantitated using a Milestone Di-
rect Mercury Analyzer-80 (DMA) before final dilutions in 0.1× MMR
with gentamicinweremade forworking solutions. Theworking solutions
prepared from the 1 mg/l solution include: 200 μg/l, 150 μg/l, 100 μg/l,
75 μg/l, 50 μg/l, and 10 μg/l, and were verified for mercury content by
DMA (see Section 2.4) at the start of each exposure experiment.

2.3. Mercury exposure experiments

After removal of the jelly coat, embryos at the two-cell stage from the
same batch were unbiasedly sorted into 35 mm, 60 mm, or 100 mm
polystyrene Fisherbrand petri dishes containing either 5 ml, 10 ml, or
20 ml of medium, respectively, at recorded densities. The different dish
sizes were selected to minimize embryo use according to the number
of embryos needed for sufficient N at all doses for a particular experi-
ment and subsequent downstream assays. The media for control groups
was 0.1× MMR with gentamicin (DMA measured to contain 0.00 μg/l
mercury). Sibling embryos from the same batch were exposed to a
range of MeHgCl working solutions and control solution. Exposure
began at the two-cell stage and embryos were kept in the same solution
until the end of the experiment, constituting a one-time continuous dose
of MeHgCl. Developmental progress was assessed using a graded 0–5
scale (Fig. 1) and the number of embryos for each phenotypewas record-
ed at different stages. At the conclusion of the experiment, embryoswere
either fixed for in situ hybridization (ISH) in 1×MEMFA (100mMMOPS

Fig. 1. Phenotype grading scale used for the visual analysis of the gross response of embry-
os to MeHg exposure. The scale applies to pre and post hatching embryos. The scores are:
5, normal development; 4, cell loss in vitelline membrane obscuring b25% of the embryo
without gross deformity for pre-, or minor deformities with no loss of morphology, such
as spine curling for post-; 3, two or more stages behind paired non-exposed controls; 2,
large amount of cell loss to vitelline membrane obscuring N25% of embryo for pre-, or
large amount of deformity causing loss of morphological features in post-; 1, ball of cells
that has ceased to develop. Not shown is score 0, which is full lysis and removal. Scale
bar represents 1 mm.
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(pH 7.4), 2mMEGTA, 1mMMgSO4, and 3.7% formaldehyde) for 90 min
at room temperature (RT), or frozen for lyophilization and dry weight
mercury content determination. Aliquots of the mercury solutions used
for embryo exposure were taken both before and after exposure, and
subsequently analyzed by DMA to assess uptake by the embryos.

2.4. Direct mercury analysis

Solution samples and freeze-dried embryos were analyzed by DMA
in quartz boats and nickel boats, respectively, as previously published
(Varian-Ramos et al., 2011), at a loading weight of ~0.02 g per sample.
Duplicate DORM-4 and DOLT-4 (National Research Institute, Canada)
reference standards were run for each load of 20 to 22 samples and an
analytical runwas performed if standardswerewithin 7.5%of reference.
Blanks were run before and after standards and sample runs. The DMA
was calibrated every two months or as necessary using the above stan-
dards, and run according to the manufacturer's specifications.

2.5. ISH and TUNEL

A 1003 bp fragment of the X. laevis proliferating cell nuclear antigen
(PCNA) gene (GenBank: NM_001087542) was cloned by RT-PCR
(forward: 5′ – CGTCGCGGTAATCCCTTA – 3′; reverse: 5′ – TTGACCTCCT
AGGGCAGAGA – 3′) from stage 40 X. laevis RNA into a pSC-A-amp/kan
vector (Agilent). Antisense probe was made by linearizing the plasmid
with XhoI and transcribing with T7 RNA polymerase. For Sox2, a
961 bp fragment of the X. laevis Sox2 gene (GenBank: AF022928) was
cloned by RT-PCR (forward: 5′ – ATTCTGCCAGCCTTTGCTC – 3′; reverse:
5′ – CGTGCCATTGATCCCTGT – 3′) from stages 18–19 X. laevis RNA into a
pCRII-TOPO vector (Life Technologies). Antisense probe was then made
by EcoRV linearization and transcribed with Sp6 RNA polymerase.
Deltawas obtained in a pCMV-Sport6 vector from the IMAGE consortium
(ID: 6636225; GenBank: BC070634), and antisense probe was produced
by linearizing with EcoR1 and transcribing with T7 RNA polymerase.
Engrailed-2 (En2) was obtained in the pBluescript vector from Addgene
(plasmid 16950; Hemmati-Brivanlou et al., 1991; GenBank: NM_
001101791), and antisense probe was made by linearizing with XbaI
and transcribing with T3 RNA polymerase. Glutamic acid decarboxylase
(GAD) (GenBank: U38225) and GABA transporter 1 (xGAT) (GenBank:
AY904365) antisense probes were made as described by Li et al.
(2006), while vesicular glutamate transporter 1 (xVGlut1) (GenBank:
AF548627) antisense probe was made as described by Gleason et al.
(2003). Sense probes were used as hybridization controls, and all probes
were labeled with digoxygenin-rUTP (Roche). Whole mount ISH was
carried out using a Biolane HTI following previously described methods
(Harland, 1991), with minor modification, and visualized with BCIP/
NBT color reaction. Embryos were then imaged with an Olympus
SZH10 research stereoscope coupled with an Olympus DP71 digital
camera.

Whole mount TUNEL was performed by permeabilizing embryos in
phosphate buffer saline (PBS) with 0.1% Tween-20 five times for 15min
each, equilibrating for 1 h in terminal deoxynucleotidyl transferase
(TdT; Sigma-Aldrich) buffer at RT, and incubating overnight at RT in
TdT buffer with digoxigenin-dUTP (Roche) and 40 U of TdT enzyme
(Sigma-Aldrich). The enzyme reaction was stopped by adding PBS
with 100 mM EDTA and incubating at 65 °C two times for 30 min
each. TUNEL positives were visualized by BCIP/NBT staining after label-
ing with alkaline phosphatase conjugated anti-digoxigenin antibody
(Roche) 1:2000 overnight at 4 °C. Embryos were photographed with
the same methods as the whole mount ISH.

2.6. Histology and cell counts

Histology was performed on ISH and TUNEL labeled embryos
through cryosectioning or paraffin sectioning. For cryosectioning,
embryos were first cryoprotected in 1.6 M sucrose in PBS for at least

12 h, embedded in Optimal Cutting Temperature media (Sakura) for
at least 2 h, and then frozen at −20 °C. Following this, embryos were
cryosectioned on a CryoStar NX70 microtome (Thermo Scientific) at a
thickness of 18 μm and mounted on slides. For paraffin sectioning, em-
bryos were dehydrated by gradated ethanol washes and cleared in 50%
xylene/50% ethanol, followed by embedding in paraffin. Embryos were
then sectioned by microtome at 10 μm thickness. After either method,
slides were hydrated and equilibrated for 5 min in PBS, and stained for
15 min in 1× DAPI. Coverslips were then mounted on slides using
Vectamount AQ (Vector Labs) or Fluoromount G (SouthernBiotech)
for imaging on an Olympus BX60 microscope with an attached Media
Cybernetics QCapture digital camera. Cell counts were performed
using ImageJ. Regions of interest (ROI) capturing the neural tissue
were selected from DAPI images of histological sections, and cells
were automatically counted with the ITCN plugin (Byun et al., 2006)
using a width of 6 pixels, minimal distance between nuclei of 3 pixels,
and a peak threshold of 1.2. Counts of TUNEL positive cells were manu-
ally performed on the same ROIs using bright field images. Cell numbers
from histological sections were averaged per brain region. Forebrain
was defined as the neural regions up to the start of the eye, midbrain
from beginning of the eye to the end of the eye, hindbrain from the
end of the eye to the end of the otic vesicle, and spine being the remain-
ing posterior sections.

2.7. qRT-PCR

Ten embryos from each exposure of 0, 75, and 150 μg/lMeHgCl were
flash frozen in liquid nitrogen at stage 37. Embryos were subsequently
homogenized while frozen by grinding with a pestle in 700 μl of TRIzol
(Life Technologies). RNA was then extracted from the TRIzol homoge-
nate using 4-bromoamisole and purified with an RNeasy Mini Kit
(Qiagen), followed by cDNA synthesis with the iScript Reverse Tran-
scription Supermix for RT-qPCR (Bio-Rad). qRT-PCR was performed
with the Power SYBR Green PCR Master Mix (Applied Biosystems) on
a StepOne Real-Time PCR System. The cycling program was: 95 °C for
10 min; then 40 cycles of 95 °C for 15 s and 60 °C for 1 min. Raw data
was processed with the StepOne Software v2.3 by normalizing to the
expression level of the reference gene, ornithine decarboxylase (ODC),
and then again to the 0 μg/l control (ΔΔCт method), and subsequently
analyzed in Microsoft Excel 2010 with the 2−ΔΔCт method. Three
technical replicates were performed for each gene and run. Primers
used were: PCNA (forward: 5′ – CGTCAAGATGAGCAGTATGTC – 3′)
and (reverse: 5′ – GATTTGGCGACTCAAACACC – 3′); and ODC (forward:
5′ – GCAAAGTGGATCTGATGATGAA – 3′) and (reverse: 5′ – CATCTGGT
TTGGGTTTCTTTG – 3′).

2.8. Microarrays

Microarray analysis was performed with the Affymetrix GeneChip
Xenopus laevis Genome 2.0 Array. The microarray was repeated for an
N of 3, with each N consisting of the exposure of ten embryos to
0.0 μg/l and 200 μg/l MeHgCl, as described in Section 2.3 at a ratio of
two embryos per ml (e/ml) of solution. Total RNA was extracted from
each pool of ten embryos from the three independent experiments
with theQiagen RNeasyMini Kit and sent to the ClemsonUniversity Ge-
nomics Institute. There, cDNA was produced from 500 ng total RNA
using the3′ IVT Express kit according to themanufacturer's instructions,
except that the in vitro transcription reaction was carried out for 16 h.
Hybridization, washing, staining, and scanning were performed accord-
ing to the manufacturer's instructions. Raw data was normalized using
Robust Microarray Average (RMA) (Irizarry et al., 2003) as implement-
ed in the Bioconductor R (Gentleman et al., 2004) package. p-Values
were calculated for each gene using the Limmapackage in Bioconductor
R (Smyth, 2005) using a two-sample linear design model with group-
means parameterization with Bayes correction. p-Values were corrected
for multiple hypotheses testing by the Benjamini–Hochberg procedure
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(Benjamini and Hochberg, 1995) and genes with significance of p b 0.05
after correctionwere considered differentially expressed (DE). Function-
al enrichment analysis on DE genes was performed in Partek Genomics
Suite 6.6 using gene ontology (GO) enrichment and Partek Pathway,
using the set of all genes in the Affymetrix CSV annotation for the
X. laevis Genome 2.0 Array as of August 2010 (https://www.affymetrix.
com/Auth/analysis/downloads/na31/ivt/X_laevis_2.na31.annot.csv.zip)
as the background set.

2.9. Statistical analysis

Statisticswere performed inMicrosoft Excel 2010 using the Analysis
ToolPak and Solver Add-in. Additional statistical functionality, was
added to Excel by the Real Statistics Resource Pack v3.2.1 (Zaiontz,
2014). For testing differences in the distribution of embryos between
phenotype ranks (Fig. 2), a two sample Kolmogorov–Smirnov test
was used, with a Dunn–Sidak corrected α = 0.017 for testing signif-
icant differences between total distributions of different embryo den-
sities, and α = 0.0085 for significance between doses within a
particular density. For curve fitting to average phenotype data
(Fig. 3a), a four parameter logistic curve of the form y = D − ((A −
D) / (1 − (x / C)^B)) was fit using Excel's Solver Add-in set to minimize
χ2, with the values of 4.937 for A, 4.350 for B, 74.063 for C, and 0.958
forD, rounded to three significantfigures. Concentrations of totalmercury
in embryo dry weight tissue across developmental stages (Fig. 3b) was
analyzed by two factor ANOVAwith replication followedby contrast anal-
ysis between particular MeHgCl doses with a Dunn–Sidak correctedα=
0.0102. Finally, for comparisons between only two populations of data
(Figs. 6i; 8i), a two tailed, unpaired Student's t-test was used.

3. Results

3.1. Morphological phenotype is dependent on dosage and density of the
embryos

To assay the dose response of X. laevis embryos to MeHgCl, embryos
were scored as described in Fig. 1. Dose response of embryos at the swim-
ming tadpole stages 33–37 had a statistically significant dependence on
the number of the embryos in a given volume of solution (hereafter re-
ferred to as density), determined by two sample Kolmogorov–Smirnov
testing, with a p = 1.16 ∗ 10−5 for the distribution embryo rankings
between 1 and 2 embryos per ml (e/ml) densities (Fig. 2a,b), a p =
4.19 ∗ 10−12 between 2 and 3 e/ml densities (Fig. 2b,c), and a p =
1.08 ∗ 10−7 between 1 and 3 e/ml densities (Fig. 2a,c). For embryos ex-
posed to MeHg at a density of 1 e/ml, the teratogenic concentration at
which 50% of embryos failed to develop normally (score b 5; TC50)
was ~50 μg/l MeHgCl (Fig. 2a). At a density of 2 e/ml, the TC50 was be-
tween 75 μg/l and 100 μg/l (Fig. 2b), and ~100 μg/l at 3 e/ml (Fig. 2c).
These embryo densities resulted in a corresponding 50% lethal concen-
tration (score ≤ 1; LC50) of ~100 μg/l for 1 e/ml, between 100–150 μg/l
for 2 e/ml, and ~200 μg/l for 3 e/ml. A significant difference in the distri-
bution of embryo rankings was also observed for both 1 and 2 e/ml
densities as early as between 0 and 50 μg/l (p = 2.71 ∗ 10−15 and
p = 1.76 ∗ 10−7, respectively), but was not significant until between
0 and 100 μg/l for the 3 e/ml density (p = 2.02 ∗ 10−13).

Due to the dose responses' dependence on density, subsequent ex-
perimentswere carried out at a 1 e/ml density, as this provided thewid-
est variability in phenotypes within our range of solutions. Embryos
displayed varying responses within the same plate, where a range of
scores from 5 to 1 could be represented in a single experiment
(Fig. 3c, e.g. 100 μg/l). However, the highest dose typically reached
100% lethality. The average phenotype score displayed a consistent de-
crease with increasing MeHgCl exposure (Fig. 3a), with an inflection
point at 74 μg/l MeHgCl for the sigmoidal curve fit (χ2 = 4.36, R2 =
0.834), which agrees with the phenotype distribution seen at 1 e/ml
exposed to 75 μg/l MeHgCl (Fig. 2a).

Levels of total mercury detected in embryo dry weight tissue signif-
icantly increased with both increasing dose (N = 3 experiments, 15
embryos total per dose; two factor ANOVA: F4,100 = 365.20, p =
1.03 ∗ 10−58) as well as increasing developmental stage (F9,100 =
82.61, p = 4.35 ∗ 10−42) (Fig. 3b), with embryos ranging from an aver-
age of 64± 3.5mg/kg at pre-metamorphosis stage 45when exposed to
50 μg/lMeHgCl, to 110±27.5mg/kg from 200 μg/l exposure. Therewas
also a significant interaction between stage and dose (F36,100 = 10.9,
p = 1.88 ∗ 10−21) for the amount of detected mercury in tissue. The
relative change in absorption between doses was less at intermediate
concentrations, being statistically significant between 0 and 50 μg/l
MeHgCl (ANOVA contrast: p = 0.0006), 50 and 100 μg/l (p = 0.0019),

Fig. 2. Stacked percentages of embryos in each post hatching phenotype score at stage
33+ for a given exposure level of MeHgCl in solution. (A) Percentage of scores for embry-
os exposed at a density of 1 e/ml. N= 12 experiments, with 134 embryos total on average
per dose. (B) and (C) are percentages of scores for embryo densities of 2 e/ml and 3 e/ml
respectively. N = 17 experiments, with 320 embryos total on average; and N = 6
experiments, with 172 embryos total on average per dose, respectively.
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and 100 and 200 μg/l (p= 2.49 ∗ 10−8), but not significant between 50
and 75 μg/l (p=0.08), or 75 and 100 μg/l (p=0.16). Additionally, there
was a significant difference after Dunn–Sidak multiple hypothesis
correction (α=0.01) in the absorption of mercury by stage 4 between
0 and 200 μg/lMeHgCl (p=0.0004), and between0 and 50 μg/l by early
gastrula stage 10 (p = 0.006).

Embryos exposed at a density of 2 e/ml displayed a similarMeHgup-
take response by stage 37, but achieved burden values 42% less on
average than stage 37 embryos at 1 e/ml above, while absorbing
approximately 30% more MeHg from solution (N = 3 experiments, 15
embryos total per dose; data not shown), suggesting a partitioning of
available MeHg between embryos driving the differences in MeHg
uptake at the various embryonic densities. Additional experiments
with MeHg pre-conjugated with cysteine (MeHgCys) at 1 e/ml using
identical methods and exposures showed a much milder phenotypic
effect, with 20% lethality at the 200 μg/l treatment level and a higher
amount of non-deformed developmental delay (score 3) that peaked
to ~50% with 100 μg/l MeHgCys (N = 3 experiments, 30 embryos
total per dose; data not shown) compared to a ~20% peak at 75 μg/l
MeHgCl. Despite this, embryos exposed to MeHgCys had the same
level of mercury uptake into embryonic tissue as MeHgCl when mea-
sured by DMA (N = 2 experiments, 10 embryos total per dose; data
not shown). Therefore, MeHgCl was chosen for continued experiments
to allow analysis of developmental responses from 0% to 100% lethality
within an environmental and physiological exposure range.

To determine temporal response to MeHg exposure, embryos were
monitored over time. The percentage of experiments per developmen-
tal stage at which first signs of abnormalities were visible (a score b 5)
was recorded (Table 1). No abnormalities in development were noticed
at any dose up to stages 8–9, immediately prior to gastrulation, com-
pared to controls. As the amount of MeHgCl increased, the percentage
of experimentswith embryo failure increased, and time of first deformi-
ty shifted to earlier stages. At the lowest concentrations ofMeHgCl, 50 to
75 μg/l, developmental disruption was first seen at late neurula stages
18–20, with a larger fraction of experiments showing abnormalities in
the 75 μg/l treatment group. At higher doses of MeHgCl, starting at

100 μg/l, deformities began to occur during the gastrulation stages
10–12, and by late neurula for exposures above 100 μg/l all experiments
had embryos with disrupted phenotypes.

3.2. Early neural genes are unchangedwhile late neural phenotypemarkers
are reduced by MeHg

To analyze the effects of MeHg exposure on the expression of early
neural specific genes during development, ISH was performed on gas-
trula stages 11–12 and tailbud stages 23–24 embryos to probe for the
expression patterns of the neural progenitor gene, sox2, the midbrain–
hindbrain boundary marker, en2, and the Notch ligand, delta. The ex-
pression of both sox2 and en2 did not show differences in patterning
at stages 11–12 (Fig. 4j–m) or 23–24 (Fig. 4a–f) for surviving embryos.
Similarly, delta did not show abnormal expression (Fig. 4g–i and n–q),
even at 100 μg/l MeHgCl.

For later neural gene expression, the excitatory neuron marker
xVGlut, and the inhibitory neuronmarkers, GAD and xGAT, were investi-
gated. While xVGlut did not display a discernible qualitative decrease in
expression strength until the highest dose for half of embryos examined
(Fig. 4u), barring cases where the head region failed to develop, there

Fig. 3. Average response and MeHg uptake of embryos exposed to MeHgCl at a density of 1 e/ml. (A) Scatter plot of the average phenotype score of all embryos in an experiment by
the starting concentration of MeHgCl in solution, as measured by DMA. Each triangle point represents one exposure experiment consisting of 10 to 20 embryos. A sigmoidal curve fit
of χ2 = 4.36 is shown with its associated R2. N = 32 experiments, with 370 embryos total. (B) Concentration of total Hg detected in embryo dry weight tissue per MeHgCl solution
exposure at different embryonic stages as measured by DMA-80. N = 4 experiments, 20 embryos total per dose for stages 4–8 and 12, and 3 experiments and 15 embryos total per
dose for stages 10 and 14–45. Error bars represent standard deviation. (C) Images of embryos at stages 45–46 exposed to indicated amounts of MeHgCl in solution. N= 12 experiments,
with 138 total embryos on average per dose.

Table 1
Stages where embryo development becomes disrupted by MeHgCl solution (score b 5).

MeHgCl Stages
8–9

Stages
10–12

Stages
13–17

Stages
18–20

Stages
20–29

Stage
30+

50 μg/l − − − + + ++
75 μg/l − − − +++ ++++ ++++
100 μg/l − ++ ++ +++ +++ ++++
150 μg/l − ++ ++++ ++++ ++++ ++++
200 μg/l − ++ ++ ++++ ++++ ++++

Symbols indicate number of experiments where embryo deformity was observed at that
dose: −, no experiments; +, N25% of experiments; ++, N50% of experiments; +++,
N75% of experiments; ++++, 100% of experiments.
N = 6 experiments, and 70 embryos per stage on average.
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was misexpression in neural regions (Fig. 4t) and cranial nerves
(Fig. 4u) with increasing dose (Fig. 4r–u). For both GAD and xGAT,
there was a noted decrease in the number of embryos with proper
patterning with higher MeHgCl exposure, along with a decrease in
observable signal strength, particularly in the midbrain and forebrain
regions (Fig. 4v–cc). These effects were most apparent in embryos
with greater overall deformity.

3.3. PCNA and TUNEL display a decrease of cell proliferation and increase of
death in response to MeHg

As morphological disruption began during neurulation for all treat-
ments, despite normal expression of neural patterning genes, embryos
were examined for PCNA transcription as a marker of proliferation to
investigate if MeHg was preventing proper production of neural cells
during neurulation. Alterations in PCNA patterning and intensity were
observed by ISH, and became more pronounced with treatment dose
(Fig. 5). Expression of PCNA was first visible around stage 13 during
the first wave of neurogenesis (Hartenstein, 1989), and a qualitative
reduction in PCNA signal and area of expression was seen in the poste-
rior neural folds of the embryonic neural plate during neural fold stages
14–15 at the highest twoMeHg concentrations (150–200 μg/l) (Fig. 5e,f).
Disruption of PCNA based on dose and stage occurred when develop-
mental abnormalities became apparent (Table 1). qRT-PCR quantitation
of PCNA expression, found a decrease in the relative amount of PCNA
transcripts at 75 and 150 μg/l MeHgCl compared to the 0 μg/l control,
with ΔΔCт scores that were 1.72 ± 0.26 and 1.62 ± 0.42 cycles above

the control, respectively; corresponding to a 60% and 57% respective re-
duction in PCNA transcripts after 2−ΔΔCт transformation (N= 1 exper-
iment, 3 technical replicates, 10 embryos total for each dose) (Fig. 5y).
Histological sections of stages 37–38 embryos exposed to 100 μg/l
MeHgCl displayed a similar trend. Embryos that grew normally showed
greater, but still less than that of control, PCNA expression in neural re-
gions, while embryoswith grossmorphological disruption had a greatly
reduced level of expression and a reduced neural region — particularly
in the forebrain areas (Fig. 6). Quantitation of cell number was per-
formed on the histological sections using DAPI staining of nuclei and
cell counting with ImageJ. A statistically significant reduction in the
number of neural cells was observed in the forebrain (N = 4 experi-
ments, 7 embryos at 0 μg/l and 8 at 100 μg/l total; p= 0.039) and spinal
cord (p = 0.0056) regions of stage 37 embryos exposed to 100 μg/l
MeHg compared to controls (Fig. 6i). While not statistically significant
in the midbrain or hindbrain regions (p = 0.25 and p = 0.30, respec-
tively), these results support a reduction in neural cell proliferation as
a contributing mechanism to the decrease in GAD and xGAT expression
and general neural developmental disruption.

A marked increase in apoptosis measured by TUNEL positive cells
was observed in embryos exposed to 100 μg/l MeHgCl, compared to
siblings grown in standard rearing conditions (Fig. 7). The increase in
TUNEL positive cells appeared to be stage dependent, embryos before
stages 14–15 did not demonstrate as large a rise in positives relative
to controls, compared to embryos at stages 19–20 and older. Histologi-
cal analysis showed the increase in TUNEL labeled cells to be mostly in
the neural and epidermal regions of the embryo, and appeared to

Fig. 4.Expression of early neural patterning and late neural phenotype genes in embryos exposed to varying concentrations ofMeHgCl in solution, as assayedby ISH. Stages 23–24embryos
are seen from a dorsal (left) and lateral (right) view probed for sox2 (A–C), en2 (D–F), and delta (G–I). Similarly, shown is the dorsal view of stage 12 embryos probed sox2 (J–M) and delta
(N–Q). For neural phenotypes, a lateral view of stage 35 embryos is shown stained for xVGlut (R–U), GAD (V–Y) and xGAT (Z–CC) expression. Dark purple-blue areas indicate positive
expression of mRNA. For all images, anterior is on the right, and for lateral views dorsal is up. N = 2 experiments, with the total number of evaluated embryos shown at the lower right of
each image. The number of embryos out of the total matching each image is also shown; where counts were evenly split, the embryos most similar to controls are displayed. Abbreviations:
e, eye; fb, forebrain; hb, hindbrain; mb, midbrain; olf, olfactory; pg, pineal gland; sc, spinal cord; VII, cranial nerve VII; VIII, cranial nerve VIII; IX, cranial nerve IX. Scale bars represent 1 mm.
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have the highest localization in the cell dense periventricular zones
(Fig. 8). Counts of TUNEL positive cells in stage 37 embryos from histo-
logical sections displayed a statistically significant increase in the num-
ber of apoptotic cells per 100 neural nuclei in the forebrain (N = 2
experiments, and 3 sectioned embryos per dose; p = 10−6) and spinal
cord (p = 0.019) compared to unexposed controls (Fig. 8i). Both the
midbrain and hindbrain showed a decreased number of nuclei and an
increase in apoptotic cells compared to controls, but were not statisti-
cally significant (p = 0.25 and p = 0.099 for midbrain, respectively;
p= 0.30 and p= 0.11 for hindbrain, respectively). To try to investigate
the pathways involved in apoptosis, embryos were injected with 4.6 nl
of 1 mM (for a final 10 μM concentration) of Pifithrin-μ to inhibit p53
activated apoptosis (Storm et al., 2006), or MDL28170 to inhibit the
Bax activation step by calpains (Briz et al., 2013) prior to exposure to
0 or 100 μg/l MeHgCl (N = 3 experiments, 20 embryos total for each
dose and inhibitor). While a 40–50% rescue was seen of embryos
exposed to positive controls of H2O2 and ethanol for each pathway,
respectively, no impact on 100 μg/l MeHgCl induced phenotypes was
observed, and nor was a change seen in Bax or p53 expression by ISH
in response to MeHgCl exposure (data not shown).

3.4. Microarray analysis shows cell cycle and apoptosis pathways are
affected, but not neural patterning genes

To analyze global gene transcription changes during the start of neu-
ral progenitor, regional patterning gene expression, and MeHg induced
developmental disruption, whole transcriptome microarray analysis
was carried out on late gastrulation stage 12 embryos exposed to
200 μg/l of MeHgCl at 2 e/ml. Of the 32,475 genes in the Affymetrix
array, 7453 geneswere found to be significantly differentially expressed
(p b 0.05) (Supplementary Table 1). No significant changes were found
for sox2, en2, or delta, as verified by ISH (Table 2), or the notch receptor
(p= 0.15). PCNAwas significantly upregulated at this stage in response
to MeHg exposure (Table 2; p = 0.0064), although it could not be
distinguished from background staining by ISH. As PCNA did not show
a loss of patterning until later stages at this dose, this difference is
consistent with early or compensatory transcriptional changes prior to
disruption of cell proliferation.

In order to analyze which gene pathways were being affected, path-
way enrichment analysis of differentially expressed genes using Partek
was performed. Eight pathways were found as significantly enriched

Fig. 5. Expression pattern of PCNA at several developmental stages duringMeHgCl solution exposure, as detected by ISH. Stages 14–15 (A–F), stages 19–20 (G–L), and stages 25–26 (M–R)
embryos are seen from adorsal view. Stages 37–38 embryos (S–X) are shown from a dorsal (left) and lateral (right) view, except for 200 μg/l, which is a featureless ball of cells. All embryos
shown are representative near the average phenotype score from exposure at each dose. For all images, anterior is on the right. Dark purple-blue areas indicate positive PCNA expression.
N = 2 experiments, with the total number of evaluated embryos shown at the lower right of each image. The number of embryos out of the total matching each image is also shown.
(Y) qRT-PCR results of relative PCNA expression in stage 37 embryos at each MeHgCl dose. Values for the ΔΔCт score in each condition have been normalized to the expression level of
the 0 μg/l control and are shown using 2−ΔΔCт scale. N = 1 biological experiment pooled from 10 embryos, and 3 technical replicates, for each dose. Scale bars represent 1 mm.
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(p b 0.05), including cell cycle (p= 0.0003) and apoptosis (p= 0.049)
pathways. Developmental processes were not significantly altered
according to this analysis, butwere significantly altered (p b 0.05) accord-
ing to GO term enrichment (Supplementary Table 2), suggesting that
other development related genes may be affected by MeHg exposure.

4. Discussion

MeHgCl exposurewas found to be a potent teratogen to the develop-
ingnervous systemof X. laevis embryoswithin a range of concentrations
below and up to the lower limit in adult human blood (200 μg/l) where

Fig. 6. Transverse histological cryosections through stage 37 embryos stained for PCNA expression (blue regions) by ISH. Forebrain,midbrain, hindbrain, and spinal cord sections of control
(A–D) and MeHgCl solution exposed (E–H) embryos are shown oriented dorsal on top. Two of the four MeHgCl exposed embryos displayed abnormally reduced or absent forebrain
structures as seen in (E). N = 2 experiments, with 4 embryos sectioned from each condition. (I) Neural cell counts using DAPI stain compared between unexposed and MeHgCl exposed
embryos averaged over each CNS region. N = 4 experiments, with 7 embryos sectioned from 0 μg/l and 8 from 100 μg/l total. Error bars represent standard deviation. *p= 0.039, **p =
0.0056, ns = not significant as determined by Student's t-test for each region. Abbreviations: e, eye; fb, forebrain; hb, hindbrain; mb, midbrain; olf, olfactory; ot, otic vesicle; pn,
pronephros; sc, spinal cord. Scale bar represents 150 μm.

Fig. 7.TUNEL staining for cells undergoing apoptosis inwholemount embryos exposed toMeHgCl solution. Shown dorsally are stages 10–12 (A–B), stages 14–15 (C–D), stages 19–20
(E–F), and stages 25–26 embryos (G–H). Stages 37–38 embryos (I–J) are seen from a lateral view. For all images, anterior is on the right. For controls, a low (top) and high
(bottom) staining embryo is shown. For the MeHgCl exposed, an average (top) and below average (bottom) ranked embryo is shown for each stage. N = 2 experiments, and
10 embryos total for each. Scale bars represent 1 mm.
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the first signs of toxicity (paresthesia) occur (USFDA, 1994). Dose
response phenotype experiments gave a TC50 and LC50 for stage 37 em-
bryos at 1 e/ml of ~50 μg/l and ~100 μg/l, respectively (Fig. 2a). This
agrees with the TC50 and LC50 (~50 μg/l and ~70 μg/l) calculated from
previous work in X. laevis exposed at unknown density for 120 h (ap-
proximately stage 47) (Prati et al., 2002), and the LC50 (~100–125 μg/
l) observed in zebrafish at more similar developmental time points
(Hassan et al., 2012; Ho et al., 2013 Supplementary Fig. 5). In addition
to the concentration of MeHg in solution, we found that the density of
the embryos played a statistically significant role (p = 1.16 ∗ 10−5 be-
tween 1 and 2 e/ml; p = 4.19 ∗ 10−12 between 2 and 3 e/ml) in the se-
verity of the phenotypes displayed at a given dose, and on the
consequent TC50 and LC50 (Fig. 2b,c). To our knowledge, this is the
first report of the density of MeHg solution exposed embryos having
such a large effect on toxicity response.

Throughout development, therewas a statistically significant uptake
of MeHg compared to that of controls (p= 0.0006) in a developmental
stage (p = 2.85 ∗ 10−48) and dose (p = 1.03 ∗ 10−58) dependent
manner, with a significant interaction between the two factors (p =
1.88 ∗ 10−21) (Fig. 3b). The rate of MeHg uptake was dependent on
dose. By stage 4, only the highest dose had significant uptake (200 μg/l
MeHgCl; p = 0.00044), but this included the lowest dose by stage 10
(50 μg/l; p = 0.0066). Consequently, the first signs of developmental
abnormality in any experiment were observed at gastrula stages 10–
12 in the highest three MeHgCl doses, while lower concentrations did
not induce disruption until the neurula stages 18–20 (Table 1). Thema-
jority of abnormalities at all doses began during neurogenesis from
stages 13–20 (Hartenstein, 1989) despite different rates of MeHg up-
take, demonstrating a greater vulnerability of embryos at neurula
stage than gastrula (Falluel-Morel et al., 2007; Rand et al., 2009; Guo
et al., 2013). At the three lowest doses, the concentration of mercury
in embryos plateaued to comparable levels by stage 37, and the highest
dose (200 μg/l) reached only 1.7 times the mercury in tissue than the
lowest (50 μg/l) by stage 45 (Fig. 3b). This suggests that a steady state
or buffering system is involved in embryonic MeHg tissue loads,
which is overwhelmed at high levels of exposure as seen in tadpoles
fed contaminated food during metamorphosis (Davidson et al., 2011).
Despite this, increasing MeHg exposure resulted in greater embryonic
disruption and lethality (Fig. 3a), indicating that transient flux or higher
early levels of uptake, particularly during neurulation, may play a larger
role in developmental toxicity than the endpoint concentration mea-
sured at tadpole stage.

Fig. 8.Histological sections cut transversely by cryosectioning though stage 37 embryos stained for apoptotic cells (blue dots) by TUNEL assay. Forebrain, midbrain, hindbrain, and spinal
cord sections of control (A–D) and MeHgCl solution exposed (E–H) embryos are shown oriented dorsal on top. N = 2 experiments, with 4 embryos sectioned from each concentration.
(I) Number of TUNEL positive cells per 100 neural cells compared between unexposed andMeHgCl exposed embryos averaged over each CNS region. N= 2 experiments, with 3 embryos
sectioned from each condition. Error bars represent standard deviation. *p = 0.019, **p = 10−6, ns = not significant as determined by Student's t-test for each region. Abbreviations:
e, eye; fb, forebrain; hb, hindbrain; mb, midbrain; olf, olfactory; ot, otic vesicle; pn, pronephros; sc, spinal cord. Scale bar represents 150 μm.

Table 2
Microarray fold change and p-values of genes assayed by ISH.

Gene Probe set ID Fold DE Adjusted p-value

sox2 Xl.188.1.S2_a_at −1.05 0.666
sox2 Xl.188.1.S2_at −1.08 0.512
sox2 Xl.188.1.S1_a_at −1.06 0.666
en2 Xl.1174.1.S1_at −1.03 0.815
delta Xl.54916.1.A1_s_at −1 0.977
delta Xl.14759.1.S1_at −1.08 0.34
PCNA Xl.34965.1.S1_at 1.56 0.00636
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Early neural progenitor and patterning gene markers sox2, en2, and
delta were found to show no evidence of change, even at the highest
MeHg doses in this study (Fig. 4). Microarray analysis at stage 12 (before
the stages used for phenotyping), the start of neural progenitor anddiffer-
entiation gene expression (Ferreiro et al., 1994; Kishi et al., 2000), found
no significant differential expression of those genes from MeHgCl expo-
sure (Table 2), despite observable abnormalities by that stage at that
dose (200 μg/l) (Table 1). This agrees with sox2 expression in zebrafish
at older stages (48 to 72 hpf), which showed no significant change at a
lower concentration of MeHg (60 μg/l) (Ho et al., 2013). Thus, failures in
neural development and subsequent neurological problems are not likely
explained by losses of early nervous systempatterning by these genes. In-
vestigation of the inhibitory neuronal phenotype markers GAD and xGAT
found a qualitative decrease in expression strength and the number of
embryos with normal patterning (Fig. 4v–cc), while excitatory neurons
labeled by xVGlut did not show as much a decrease, but began to have
areas ofmisexpression (Fig. 4r–u). This implies othermechanismsbesides
early neural patterning could be leading to a lack of neuronal differentia-
tion or the loss of subpopulations of neurons, and in particular thosewith
an inhibitory phenotype as suggested in rats (O'Kusky et al., 1988; Yuan
and Atchison, 1997) and minks (Basu et al., 2010).

Unlike early neural patterning genes, expression of PCNAwas found
to correlate with embryological phenotype, with greater levels of defor-
mity showing reduced areas of PCNA expression (Figs. 5 and 6). Levels of
PCNA were highest in presumptive neural regions of control embryos
starting at stage 13, and the reduction of PCNA expression uponMeHgCl
exposure appeared to affect those regions most severely, as observed
with embryos that lacked anterior brain regions yet otherwise appeared
normal (Figs. 3c; 5k,q). Cell counts of transverse histological sections re-
vealed a statistically significant decrease in the number of neural nuclei
in the forebrain (p= 0.039) and spinal cord (p= 0.0056) (Fig. 6i), and
qRT-PCR found a reduction of PCNA transcripts upwards of 60% (Fig. 5y).
This agrees with the decreased PCNA protein levels in zebrafish neural
tissue exposed to MeHg (50 μg/l and 80 μg/l) (Hassan et al., 2012) at a
comparable density (1 to 1.5 e/ml). Microarray studies of zebrafish,
however, did not appear to find differential expression of cell cycle
genes or PCNA (Yang et al., 2007; Ho et al., 2013), although one
of those studies noted reduced brain size in MeHg treated embryos
(Ho et al., 2013). A possible explanation for this difference may be the
higher embryo density (5 e/ml) reported byHo et al. (2013), supporting
the observation that embryonic density impacts developmental
response to MeHg and could confound between-study comparisons. In
our microarray at stage 12, PCNA expression showed significant upreg-
ulation (1.54 folds, p = 0.00636) (Table 2). However, ISH staining
at stage 12 and earlier could not distinguish PCNA expression from
background, suggesting that a loss of PCNA expression occurs after the
developmental point used on the microarray. Early upregulation by
stage 12 may be related to PCNA's role in DNA repair rather than cell
proliferation (Prevodnik et al., 2007; Chen et al., 2013), and may repre-
sent an early stress response to MeHg.

The number of apoptotic cells detected by TUNEL was significantly
increased from MeHg exposure (Figs. 7 and 8), particularly of neural
cells in the forebrain (p = 1 ∗ 10−6) and spinal cord (p = 0.019)
(Fig. 8i), coinciding with the decreased cell counts (Fig. 6i). While the
pattern of cell death did not appear to have structurally specific localiza-
tions, apoptosis was highest in neural regions near the ventricle
(Fig. 8e–h). The combination of lowered cell proliferation and increased
cell death in neural tissue provides a possiblemechanism for the sensitiv-
ity of the neurula stages toMeHg, through the disruption of neurogenesis
andneural survival during this critical point. Likewise,microarray analysis
of adult zebrafish brain tissue after intraperitoneal injection of MeHg
found significant alteration of gene pathways regulating cell survival
and apoptosis in favor of cell death (Richter et al., 2011). And a decreased
neural proliferation and increased cell death in the hippocampus of rats
exposedperinatally toMeHg lead to impairment inmemory function last-
ing through adolescence (Falluel-Morel et al., 2007; Sokolowski et al.,

2013). In our stage 12 embryos, microarray results displayed a strong
upregulation of mitochondrial associated apoptotic genes such as
cytochrome c (p b 0.005) and caspase 9 (p b 0.03), but found a down-
regulation of bax (p b 0.012) and no significant change in caspase 8
(p N 0.08), caspase 3 (p N 0.07), or p53 (p N 0.5). Injection of the apopto-
sis inhibitors Pifithrin-μ orMDL28170 found no rescue of phenotypes or
embryonic lethality, suggesting MeHg induced apoptosis does not
solely involve p53 or calpain induction of Bax, respectively.

In conclusion,MeHg toxicity disrupted X. laevis embryogenesis most
severely during development of the nervous system from stages 13 to
20, coinciding with both the first and second waves of neurogenesis
(Hartenstein, 1989). While early neural patterning and progenitor
gene expression remained largely unaffected, later neuronal phenotype
expression of GABAergic populations was reduced. This was also
reflected in a loss of cell proliferation in areas of nervous system devel-
opment, and an increase in apoptosis. This suggests the loss of neural
populations is through a mechanism of decreased proliferation and in-
creased cell death early in neurulation, rather than neural patterning
gene disruption, as supported by studies in mice and rats at later devel-
opmental points (Sakamoto et al., 2004; Glover et al., 2009; Radonjic
et al., 2013). Further work remains to be done to determine additional
mechanisms, especially those underlying the occurrence of failed neural
tube closure seen in neurula stages at higher doses (Fig. 5k,q). Investiga-
tion of the role of calcium during these events could provide additional
insight due to observed antagonismof calciumchannels byMeHg (Yuan
et al., 2005), and the importance of calcium in cell migration and neural
phenotype specification. Recently, frequent calcium spiking in neural
progenitors, suggested to be inhibited by MeHg (Fahrion et al. 2012;
Kong et al. 2013), has been implicated to lead to a GABAergic phenotype
(Marek et al., 2010; Lewis et al., 2014), providing an additional possible
mechanism for the enhanced downregulation of inhibitory neuronal
populations by MeHg and the resulting neurological sensory and motor
defects.
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