A Comparative Field Study of Crassostrea ariakensis and Crassostrea virginica in Relation to Salinity in Virginia

Gustavo W. Calvo
Virginia Institute of Marine Science

Mark W. Luckenbach
Virginia Institute of Marine Science

Standish K. Allen Jr.
Virginia Institute of Marine Science

Eugene M. Burreson
Virginia Institute of Marine Science

Follow this and additional works at: https://scholarworks.wm.edu/reports

Part of the Marine Biology Commons

Recommended Citation

This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
A Comparative Field Study of Crassostrea ariakensis and Crassostrea virginica in Relation to Salinity in Virginia

School of Marine Science
Virginia Institute of Marine Science
College of William & Mary
Gloucester Point, VA 23062

Gustavo W Calvo
Mark W Luckenbach
Standish K. Allen, Jr.
and
Eugene M. Burreson

Special Report in Applied Marine Science and Ocean Engineering No. 360

March 2000
EXECUTIVE SUMMARY

In accordance with the Rational Plan for Testing Application of Non-Native Oyster Species (VIMS 1996) we conducted a field experiment to examine survival, growth and disease susceptibility of *Crassostrea ariakensis* (=rivularis) in relation to salinity in Virginia. The performance of triploid *C. ariakensis* in comparison with that of diploid *C. virginica*, (n = 250, age = 2 years, mean shell height = 60-64 mm) was evaluated at replicate sites within low, medium, and high salinity regimes (respectively, < 15‰, 15-25‰, > 25‰) in Chesapeake Bay and the Atlantic Coast. During the course of this study, from June 1998 to September 1999, there was a severe oyster disease epizootic prevailing in Chesapeake Bay. At the end of the study *C. ariakensis* exhibited lower disease prevalence and intensity and superior survival and growth than *C. virginica*. At low salinity sites cumulative mortality in *C. ariakensis* (14%) was significantly lower than that in *C. virginica* (81%). At medium and high salinity sites, cumulative mortality in *C. ariakensis* was less than 16% whereas all *C. virginica* were dead by the end of the experiment. After one year of deployment, mean shell height of *C. ariakensis* at low, moderate, and high salinity sites, was respectively 96 mm, 125 mm, and 140 mm. In comparison, mean shell height of *C. virginica* was respectively 72 mm, 85 mm, and 75 mm. Prevalence and intensity of *Perkinsus marinus* infections were significantly lower in *C. ariakensis* than in *C. virginica*. During the second summer of disease exposure, prevalence in *C. ariakensis* ranged from 0-28% whereas prevalence in *C. virginica* was 100% at all sites. Only light infections were present in *C. ariakensis* whereas heavy infections were found in *C. virginica*. MSX was absent in *C. ariakensis* and present in *C. virginica*. Mud worms were present in both oyster species but infestations were low and did not appear to affect condition or growth. In summary, wide salinity tolerance and low disease susceptibility were associated with high survival and growth of *C. ariakensis* in Chesapeake Bay and the Atlantic Coast of Virginia.
TABLE OF CONTENTS

EXECUTIVE SUMMARY .. i
INTRODUCTION .. 1
METHODS .. 1
Study Sites ... 1
Oysters .. 2
Experimental Design .. 3
Mortality, Growth, and Condition .. 3
Diseases and Polydora .. 4
Reproductive Status and Ploidy ... 5
RESULTS .. 5
Environmental Parameters .. 5
Mortality .. 6
Growth .. 6
Disease .. 6
Condition .. 7
Polydora .. 7
Ploidy .. 8
DISCUSSION ... 8
LITERATURE CITED ... 11
APPENDICES .. 13
ACKNOWLEDGEMENTS ... 19
INTRODUCTION

In contrast with extensive information available for eastern, Crassostrea virginica, and Pacific, Crassostrea gigas, oysters, reports on Suminoe oysters, Crassostrea ariakensis (= C. rivularis), are scarce. Suminoe oysters are reported to be naturally distributed from southern Japan along the south China coast through southeast Asia to the western coast of the Indian subcontinent, but the taxonomy is tenuous in some areas and its actual distribution not clearly known (Carriker & Gaffney 1996).

Larval settlement mostly occurs in estuarine areas with low salinity but juvenile and adult oysters grow within a wide range of salinity (Guo et al. 1999, Ahmed et al. 1987, Cai et al. 1992). Cultivation is important in southern China using seed oysters collected from the wild (Guo et al. 1999). In the West Coast of USA, where C. ariakensis has been introduced with shipments of C. gigas and kumamoto oysters from southern Japan in the 1970s (Breese and Malouf 1977), its aquaculture potential has been established (Langdon and Robinson 1996). Using field experiments to compare the growth of C. ariakensis and C. gigas, Langdon and Robinson (1996) found that both species had similar growth and condition at various locations along the West Coast.

No studies on the Suminoe oyster are available for the Atlantic Coast of USA. However, as native eastern oyster stocks collapsed throughout much of the mid-Atlantic seaboard due to over harvesting, disease, and water quality deterioration, interest in the potential use of non-native oyster species has grown. Following a Virginia program to examine the suitability of non-indigenous oyster species to the local environments (VIMS 1996), C. gigas was the first species to be evaluated in Chesapeake Bay and the Atlantic Coast of Virginia (Calvo et al. 1999). Over the course of that study, from May 1997 to May 1998, C. gigas had lower disease susceptibility than C. virginica, but survival and growth were equal or superior in native oysters than in C. gigas within Chesapeake Bay. Based on its close resemblance to the native oyster and its tolerance of mid to subtropical environments, C. ariakensis was the second candidate species selected for testing in Virginia (VIMS 1996). Considering its documented ability to grow in a wide range of salinity we hypothesized that C. ariakensis would perform better than C. gigas in Chesapeake Bay. The objectives of the present study were to compare survival, growth, and disease susceptibility of C. ariakensis and C. virginica in various salinities.

METHODS

Study Sites

Six sites were selected on the basis of several criteria including salinity regime, geographic location, available information on oyster growing conditions and water quality, safety, logistics, and relevance for the oyster industry. Sites were established at duplicate locations within low salinity (<15‰), medium salinity (15-25‰), and high salinity (>25‰) areas (Fig 1). Low and medium salinity sites were established near the margins of rivers (Coan, Great Wicomico, and York), or in shallow creeks surrounded by marshes (Woodas Creek, a tributary of the East River). High salinity sites were located in well-flushed narrow channels surrounded by marshes and mudflats in the coastal lagoon system of the Atlantic Coast of Virginia.

Temperature and salinity were measured during monthly site visits with a stem thermometer and a refractometer. To further characterize environmental variables, hourly temperature, salinity, and turbidity were measured with Hydrolab-
Figure 1. Location of study sites in Chesapeake Bay and the Atlantic Coast of Virginia. Triangles = low salinity (<15‰) sites, circles = medium salinity (15-25‰) sites, squares = high salinity (>25‰) sites.

Minisonde® dataloggers deployed at various sites for weekly to monthly intervals.

Oysters

To ensure that this study resulted in neither the unintended reproduction of a non-native species nor the introduction of potential exotic pathogens, we used individually certified triploid *C. ariakensis* produced and maintained in quarantine first at Haskin Shellfish Research Laboratory, Rutgers University (HSRL) and then at the Virginia Institute of Marine Science's (VIMS) Aquaculture Genetics and Breeding Technology Center. *C. ariakensis* brood stock, originating from an established line at HSRL and derived from sources in the West Coast of USA, was spawned in July 1996. Triploidy was induced by treatment of fertilized eggs with cytochalasin-B using the methods described by Downing and Allen (1987).
Juvenile *C. ariiakensis* were transferred to flow-through York River water with quarantined effluents at VIMS, where oysters were maintained until they were individually examined for triploidy, as described below. *C. virginica* brood stock, collected from Mobjack Bay, VA was spawned by a local commercial hatchery in July 1996. Prior to deployment, juvenile diploid *C. virginica* were maintained at the Ware River, VA.

Experimental Design

Between 29 May and 2 June 1998, adult oysters were dispensed into replicate 9.5 mm mesh bags and placed within individual floating trays at the study sites. Each floating tray contained 2 bags with 100 oysters and one bag containing 50 individually labeled oysters, to follow growth, as described below. Floating trays (2.3 m x 0.5 m x 0.3 m) were constructed by fitting wire mesh trays (25 mm square 16 gauge mesh) into floating frames built with 4 inch (10.16 cm) PVC pipe, following the design of Luckenbach and Taylor (1997). Floating trays and bags were cleaned of fouling organisms at least once a month during regular site visits and more often if necessary. All sites were visited monthly (± 15 days).

Data were examined for compliance with statistical test assumptions using Bartlett chi-square test for homogeneity of variance and plots of means vs. standard deviations. Arcsine and logarithmic transformations were used when appropriate, and non-parametric tests were employed when necessary (Zar 1974). ANOVAs were used to examine the effects of species and salinity regime on final cumulative mortality, growth rate, *P. marinus* prevalence and weighted prevalence. Differences in mean variables, between species within a salinity regime and between salinity regimes within a species, were further examined by Newman-Keuls tests. Mann-Whitney and

Kruskal-Wallis tests were used, respectively, to examine variation in oyster body weights, condition, and *Polydora* spp. by species within a salinity regime, or to examine both the effects of species and salinity on the same variables. Statistical analyses were performed using Statview® and Statistica® softwares.

Mortality, Growth, and Condition

All live and dead oysters within each float were counted monthly to determine survival. Monthly mortality was calculated as the number of oysters that died during each month interval divided by the number of live oysters at the beginning of the interval, corrected for oysters removed by sampling. Cumulative mortality was calculated as the sum of interval mortality (Barber and Mann 1994, Krebs 1972).

To follow growth, 50 oysters within each float were individually labeled and shell height was repeatedly measured to the nearest 0.1 mm, using calipers, once monthly except January, February and April, 1999. Monthly growth rates for individual oysters were calculated as the overall shell height increment during the growing period while live oysters of both species were still available at all sites, June 1998-May 1999, and divided by the deployment time in days standardized for 30 days.

At the end of the experiment, in September 1999, whole weight, shell weight, tissue wet and dry weight were measured on the same oysters collected for disease diagnoses. Following Lawrence and Scott (1982), condition index (CI) was calculated by the formula:

\[
CI = \frac{\text{tissue dry weight}}{\text{(total weight - shell weight)}}.
\]

Oysters were allowed to air-dry for 15-20 min before weighing, and whole oyster weight was recorded to the nearest 0.01g. Oysters were then shucked, shells weighed to the nearest 0.01g, and wet tissues were
gently rolled on a paper towel and weighed on pre-tared vessels to the nearest 0.001g. Wet tissues were dried at 80°C overnight and tissue dry weight was measured the next day to the nearest 0.001g.

Diseases and Polydora

A baseline sample of 25 oysters was taken to assess the disease status of each species prior to deployment in spring 1998. Subsequent disease samples for each species at each site were collected in August and September 1998, and in May, August, and September 1999. *Perkinsus marinus* was diagnosed using Ray’s fluid Thioglycollate medium (RFTM) assays (Ray 1952) on combined mantle, gill, and rectum tissue. Infection intensity was rated based on Ray (1954) and Mackin (1962) and for the calculation of weighted prevalence the following numerical values were assigned to intensity categories: (1) light, (3) moderate, and (5) heavy. Weighted prevalence was calculated by the formula:

\[
\text{Weighted prevalence} = \frac{(n_1*1) + (n_2*3) + (n_3*5)}{N},
\]

where \(n_i \) = number of cases rated as \(i \),
\(N \) = total number of oysters examined in the sample.

Haplosporidium nelsoni was diagnosed using standard paraffin histology procedures with oysters preserved in Davidson’s AFA and 6 mm tissue sections stained with Harris' hematoxylin and eosin (Burreson et al. 1988). Infection intensity was rated as light, moderate, and heavy based on Burreson et al. (1988). Histological sections were also used to document the presence of other parasites and to examine development of oyster gonads. All disease and histology analyses were performed by the VIMS Shellfish Pathology Laboratory.

The spionid polychaetes *Polydora websteri* and *P. ligni* are commensal with bivalves, including oysters. These suspension-feeding worms do not feed on the oyster, but the mechanical irritation caused by their presence causes the oyster to lay down additional layers of conchiolin over the worm’s tube in what are often termed mud-blisters. At sufficiently high levels of infestation this can severely limit the growth of oysters and reduce their condition index. Examination for mud-blisters associated with *Polydora* spp. was conducted on the same oysters collected for condition and disease diagnoses in September 1999. Worms were not identified to species, but *Polydora websteri* is the most common species affecting oysters in the northeast coast of the United States (Blake and Evans 1972, Wargo and Ford 1993). The internal
surface of right valve shells was visually inspected and rated according to the presence and extent of mud-blisters. Examination was restricted to right valves as in Wargo and Ford (1993) who reported that infestations by Polydora spp. were equally found in right and left valves. Following the methods of Handley and Bergquist (1997), infestation was rated as: (0) no visible mud-blisters or any evidence of boring by Polydora spp.; (1) mud-blisters affecting less than 25% of the valve; (2) 25%-50% of the valve affected; (3) 50%-75% of the valve affected; or (4) more than 75% of the valve affected. Weighted prevalence was calculated by the formula:

Weighted prevalence = ((n₁*1) + (n₂*2) + (n₃*3) + (n₄*4))/N,
where nᵢ = number of cases rated as (i), N = total number of oysters examined in the sample.

Reproductive Status and Ploidy

Baseline samples of C. ariakensis were taken to ascertain the extent of triploid individuals in quarantine and to certify triploid individuals to be deployed during the experiment. Over the course of the study samples of C. ariakensis (n = 16-35) were collected from each site in July and August 1998 and in May, June, and July 1999. Ploidy was determined by flow cytometry of gill and/or hemolymph biopsies. When gill and/or hemolymph samples were found to contain any diploid cell (a condition termed mosaic), a biopsy of the gonad was examined by flow cytometry, and the remaining gonad tissue was processed by histology. Ploidy assays were conducted at HSRL and the VIMS Aquaculture Genetics and Breeding Technology Center.

RESULTS

Environmental Parameters

Low salinity sites experienced relatively low mean salinity (<10‰) during June-July 1998 because of high rainfall during spring 1998 and relatively high mean salinity (>15‰) during November 1998-March 1999 and in August and September 1999, because of drought conditions starting in fall 1998 and continuing into Spring and Summer 1999. Medium salinity sites experienced relatively low salinity (<15‰) during June 1998 (Fig. 2). Salinity fluctuations in high salinity sites were within the expected range (25-35‰). Temperature followed similar seasonal trends at all sites with a maximum of 28-32°C in July and a

!Figure 3. Mean cumulative mortality by salinity regime (N=2 sites, +SD) from June 1998 to September 1999. Open bars=C. virginica, solid bars=C. ariakensis. *=Break in monthly sampling.
minimum of 0-5°C in March. High salinity sites experienced overall cooler temperature with monthly means 2-4°C lower than medium or low salinity sites (Fig. 2).

Mortality

Throughout most of the study and regardless of salinity regime, mortality of C. virginica was much higher than that of C. ariakensis (Fig. 3). Species had a significant effect on mean cumulative mortality (Table 1). At low salinity sites mean cumulative mortality in C. ariakensis (14%) was much lower than that in C. virginica (81%). At medium and high salinity sites, mean cumulative mortality in C. ariakensis was less than 16% whereas all C. virginica were dead by the end of the experiment. The highest increase in mean cumulative mortality, from 5% to 78%, was observed in C. virginica at medium salinity between July and October 1998 (Fig. 3).

Growth

Growth varied with species and salinity regime (Fig. 4). At the start of the experiment mean shell height was 60 mm in C. virginica and 64 mm in C. ariakensis. After 1 yr. of deployment, mean shell height of C. virginica at low, medium, and high salinity sites was respectively 70 mm, 80 mm, and 73 mm. C. virginica stopped growing during the second year and growth at low and high salinity regimes during the first year was minimal. In comparison, mean shell height of C. ariakensis at low, moderate, and high salinity sites, was respectively 93 mm, 121 mm, and 137 mm. Most of the growth in C. ariakensis occurred during fall 1998 and spring 1999. No growth was observed for either species during July to September 1999.

Species, salinity regime and their interaction had significant effects on mean growth rate (Table 2A). At low salinity sites, mean growth rate of C. virginica (1.1 mm mo.⁻¹) was not significantly different than that of C. ariakensis (2.6 mm mo.⁻¹). At medium salinity sites, mean growth rate of C. virginica (1.7 mm mo.⁻¹) was significantly lower than that of C. ariakensis (4.9 mm mo.⁻¹). At high salinity sites, mean growth rate of C. virginica (1.0 mm mo.⁻¹) was significantly lower than that of C. ariakensis (6.2 mm mo.⁻¹). For C. virginica, growth rate did not significantly differ among salinity regimes. For C. ariakensis, growth rate at low salinity was significantly lower than that at medium and high salinity regimes, but growth rate did not significantly differ between medium and high salinity regimes (Table 2B).

Disease

Baseline samples revealed no P. marinus and a 4% prevalence of H. nelsoni (MSX) in C. virginica and 12% prevalence of P. marinus and no MSX in C. ariakensis. In all subsequent samples prevalence and intensity of P. marinus infections were consistently higher in C. virginica than in C. ariakensis. During the second summer...
of disease exposure prevalence in C. virginica was 100% at all sites, whereas prevalence in C. ariakensis ranged 0-28% (Fig. 5). Several heavy infections were found in C. virginica whereas only light infections were observed in C. ariakensis (Appendix I). During August and October 1998, prevalence and weighted prevalence were significantly higher in C. virginica than in C. ariakensis (Appendices II and IIIA). In September 1999 when all C. virginica at medium and high salinity sites had either died or had been removed by sampling, prevalence and weighted prevalence in C. ariakensis were not significantly different among salinity regimes (Appendices IV and V). Maximum prevalence of MSX in C. virginica was 25% at the York River site in May 1999. MSX was also present in C. virginica at the low salinity Great Wicomico River site in September 1998, and at high salinity sites in October 1998 and May 1999. In general, intensity of infections was light but a few heavy infections were found in medium and high salinity sites. No MSX was found in C. ariakensis.

Condition

At low salinity sites, mean condition index in C. virginica (3.6%) was not significantly different (Mann-Whitney tests p = 0.121) than that in C. ariakensis (6.6%). Similarly, there was no significant (Mann-Whitney tests p = 0.121) difference in body weights between species. At medium and high salinity, comparisons between species were not possible because at the end of the experiment there were no live C. virginica at those sites (Appendix VI). Within C. ariakensis, mean condition index at low, medium and high salinity, respectively, were 6.6%, 5.3% and 9.7% and not significantly different (Kruskal-Wallis test, p = 0.276). Similarly, there were no significant differences (Kruskal-Wallis test, p > 0.102) between mean body weights among salinity regimes.

Percent shell relative to whole oyster weight in C. virginica (62%) was similar to that in C. ariakensis at low, medium, or high salinity, respectively, 59%, 61% and 65%.

Polydora

At low salinity sites, mean prevalence was 100% in both species, and weighted prevalence in C. virginica (1.1) was not significantly different (Mann-Whitney test p = 0.121) from that in C. ariakensis (3.4). At medium and high salinity, comparisons between species were not possible because at the end of the experiment there were no live C. virginica at those sites (Appendix VII). Within C. ariakensis, mean prevalence
at low, medium and high salinity, respectively, 100%, 62% and 12% was not significantly different (Kruskal-Wallis test, \(p = 0.156 \)) among salinity regimes. Similarly, weighted prevalence at low, medium, and high salinity, respectively, 3.4, 2.2 and 1.0 was not significantly different (Kruskal-Wallis test, \(p = 0.156 \)) among salinity regimes.

Ploidy

The baseline sample revealed that prior to deployment 94% of the \(C. ariakensis \) in the lot were triploids. Individual certification assured that triploids were exclusively deployed in the field. During the course of the study, there were 66 individuals in which combinations of diploid and triploid cells (mosaics) were detected out of 1163 oysters examined (5.7%). The proportion of mosaics ranged from 0% to 16% depending on time and site. For all salinity regimes combined, the proportion of mosaics increased from 0.5% in June 1998 to 7.4% in August 1999. For all times pooled within low, medium, and high salinity regimes, the proportion was respectively, 5.3%, 6.9%, and 4.5% (Table 3). Examination of 39 mosaic individuals revealed that 10 were females, 23 were males, 1 was hermaphroditic, and 5 were undifferentiated.

DISCUSSION

Over the course of the study from June 1998 through September 1999, \(C. ariakensis \) exhibited higher survival and growth rate, and lower disease susceptibility than \(C. virginica \). Drought conditions

Table 2. Effects of species and salinity regime on mean growth rate.

A. Two-way ANOVA

<table>
<thead>
<tr>
<th>Effect</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>1</td>
<td>32.293</td>
<td>61.382</td>
<td><0.0005**</td>
</tr>
<tr>
<td>Salinity</td>
<td>2</td>
<td>3.441</td>
<td>6.536</td>
<td>0.031*</td>
</tr>
<tr>
<td>Species*Salinity</td>
<td>2</td>
<td>3.225</td>
<td>6.124</td>
<td>0.035*</td>
</tr>
<tr>
<td>Error</td>
<td>6</td>
<td>0.526</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* denotes significance at \(p = 0.05 \), ** denotes significance at \(p = 0.01 \)

B. Multiple comparison (Newman-Keuls test)

<table>
<thead>
<tr>
<th>Within</th>
<th>Between</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low salinity</td>
<td>C. virginica and C. ariakensis</td>
<td>0.162</td>
</tr>
<tr>
<td>Medium salinity</td>
<td>C. virginica and C. ariakensis</td>
<td>0.012*</td>
</tr>
<tr>
<td>High salinity</td>
<td>C. virginica and C. ariakensis</td>
<td>0.003**</td>
</tr>
<tr>
<td>C. virginica</td>
<td>Low salinity vs. medium salinity</td>
<td>0.406</td>
</tr>
<tr>
<td>C. virginica</td>
<td>Low salinity vs. high salinity</td>
<td>0.932</td>
</tr>
<tr>
<td>C. virginica</td>
<td>Medium salinity vs. high salinity</td>
<td>0.613</td>
</tr>
<tr>
<td>C. ariakensis</td>
<td>Low salinity vs. medium salinity</td>
<td>0.008**</td>
</tr>
<tr>
<td>C. ariakensis</td>
<td>Low salinity vs. high salinity</td>
<td>0.007**</td>
</tr>
<tr>
<td>C. ariakensis</td>
<td>Medium salinity vs. high salinity</td>
<td>0.131</td>
</tr>
</tbody>
</table>

* denotes significance at \(p = 0.05 \), ** denotes significance at \(p = 0.01 \)
and below normal Chesapeake Bay stream flow starting in fall 1998 resulted in increased salinity and severe epizootics of both H. nelsoni and P. marinus in 1999 (Ragone Calvo & Burreson 1999). Heavy disease pressure prevailing during this study, however, did not affect survival and growth of C. ariakensis. For Suminoe oysters deployed at any salinity regime, susceptibility to P. marinus was low, no MSX was found, and cumulative mortality was less than 16%. In contrast, Mobjack Bay C. virginica employed in this study, which were relevant for the industry because they have been the standard stock for commercial aquaculture in Virginia, experienced high mortality associated with heavy infections. For example, after the first summer of disease exposure, when more than 50% of C. virginica in this experiment had died, MSX was present and P. marinus was 100% prevalent with severe infections at medium and high salinity sites. A year later when all C. virginica at medium and high salinity sites were dead, cumulative mortality at low salinity sites was 81% and P. marinus was 100% prevalent with severe infections. Presence of MSX and intensification of P. marinus infections at the low salinity Great Wicomico site was undoubtedly favored by drought conditions resulting in salinity greater than 15‰ starting in fall 1998 and continuing into spring and summer 1999. Persistence of salinity

Figure 5. Mean prevalence of P. marinus by salinity regime (N=2 sites, +SD) in samples of 25 oysters. Open bars = C. virginica, solid bars = C. ariakensis. NS = Not sampled.

Figure 6. Mean weighted prevalence of P. marinus (N=2 sites, +SD) in samples of 25 oysters. Open bars = C. virginica, solid bars = C. ariakensis. NS = Not sampled.
greater than 15‰ during summer and fall is conducive to development of lethal P. marinus infections (Burreson and Ragone Calvo 1996). Mud worms were present in both oyster species but infestations did not appear to affect condition or growth of C. ariakensis. In Zhanjiang Bay, southern China, mass mortality of C. ariakensis has been associated with outbreaks of toxic phytoplankton blooms (Yongjia et al. 1995). However, to the best of our knowledge no parasitic diseases had been reported in Suminoe oysters before this study. More research is needed to examine disease susceptibility and the mechanisms of disease resistance in C. ariakensis.

In agreement with the wide salinity tolerance described for C. ariakensis in its native range (Guo et al. 1999), Suminoe oysters tested in this study had comparable survival at all salinity regimes and equal growth rate at medium and high salinity regimes. By the end of the experiment, when oysters were 3 years old, mean shell height of C. ariakensis at low, medium, and high salinity regimes was respectively 96 mm, 125 mm, and 140 mm. By comparison, in Zhanjiang Bay (annual salinity range = 7-30‰) average shell height of three-year old Suminoe oysters is 100 mm (Cai et al. 1992).

Results of the present investigation suggest that C. ariakensis is more adapted to Chesapeake Bay conditions than C. gigas. In a study with C. gigas at mostly the same low and medium salinity sites used in the present investigation (Calvo et al. 1999), mean cumulative mortality was greater than 50% and growth rate at medium salinity sites was not significantly higher that of C. virginica. Both C. gigas and C. ariakensis had similarly low susceptibility to P. marinus infections and no MSX was detected in either oyster species. In high salinity sites at the Atlantic Coast of Virginia, both C. gigas and C. ariakensis experienced significantly higher growth rate than corresponding C. virginica control oysters. Similarly, in a direct comparison of C. gigas and C. ariakensis, with oysters of the same age in high salinity environments, growth rate was the same for both species at various locations on the West Coast of USA (Langdon & Robinson 1996). For example, juveniles (< 10 mm in shell height) of both non-indigenous oyster species planted on shell strings in July 1990 similarly increased to 90 mm after 1 year of deployment in Yaquina Bay, OR.

In summary, during the course of the study C. ariakensis performed better than C. virginica in Chesapeake Bay and the Atlantic coast of Virginia. Wide salinity tolerance combined with low disease susceptibility resulted in higher survival and growth in C. ariakensis as compared to C. virginica. As previously discussed for C. gigas (Calvo et al. 1999), a debate on whether C. ariakensis is, or is not, an appropriate species for introduction or use in

<table>
<thead>
<tr>
<th>Salinity</th>
<th>1998</th>
<th>1999</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6/30-7/6</td>
<td>8/3-8/12</td>
</tr>
<tr>
<td>Low</td>
<td>1% (1/70)</td>
<td>3% (2/70)</td>
</tr>
<tr>
<td>Medium</td>
<td>0% (0/70)</td>
<td>7% (5/70)</td>
</tr>
<tr>
<td>High</td>
<td>0% (0/70)</td>
<td>3% (3/70)</td>
</tr>
</tbody>
</table>

In parenthesis number of mosaics/number of oysters examined
these environments must include other factors beyond the scope of these field investigations. For example, international organizations have recommended that competent local authorities consider the following: (a) assess the possibility of introducing pathogens and parasites associated with the species proposed for introduction; (b) assess the potential relationship of the candidate species with other members of the ecosystem; and (c) examine the probable effects including a prediction of the range for the establishment of the species.

LITERATURE CITED

APPENDICES

I. Prevalence and intensity of P. marinus in C. virginica and C. ariakensis by salinity regime, site and date.

II. One-way ANOVA of the effects of species, salinity regime, and time on P. marinus prevalence.

III. One-way ANOVA of the effects of species, salinity regime, and time on P. marinus weighted prevalence.

IV. One-way ANOVA of the effect of salinity regime on P. marinus prevalence in C. ariakensis.

V. One-way ANOVA of the effect of salinity regime on P. marinus weighted prevalence in C. ariakensis.

VI. Mean (SD) biomass and condition index of C. virginica and C. ariakensis by salinity regime and site in September 1999.

VII. Prevalence and intensity of Polydora spp. in C. virginica and C. ariakensis by salinity regime and site in September 1999.
Appendix I. Prevalence and intensity of *P. marinus* in *C. virginica* and *C. ariakensis* by salinity regime, site and date during 1998 (A) and 1999 (B).

A.

<table>
<thead>
<tr>
<th>Salinity</th>
<th>Site</th>
<th>Date</th>
<th>Prevalence</th>
<th>C. virginica</th>
<th>Prevalence</th>
<th>C. ariakensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>CNRV</td>
<td>8/12/98</td>
<td>20% (5/25)</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9/30/98</td>
<td>96% (24/25)</td>
<td>18</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GWRV</td>
<td>8/4/98</td>
<td>88% (22/25)</td>
<td>21</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9/30/98</td>
<td>100% (25/25)</td>
<td>12</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Medium</td>
<td>WOCK</td>
<td>8/3/98</td>
<td>100% (25/25)</td>
<td>7</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9/30/98</td>
<td>100% (24/24)</td>
<td>7</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>YKRV</td>
<td>8/3/98</td>
<td>100% (25/25)</td>
<td>16</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9/29/98</td>
<td>100% (25/25)</td>
<td>7</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>High</td>
<td>BUBY</td>
<td>8/6/98</td>
<td>100% (25/25)</td>
<td>20</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10/7/98</td>
<td>80% (20/25)</td>
<td>13</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BOBY</td>
<td>8/6/98</td>
<td>50% (25/50)</td>
<td>19</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10/13/98</td>
<td>100% (25/25)</td>
<td>13</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

Site codes: CNRV = Coan River, GWRV = Great Wicomico River, WOCK = Woodas Creek, YKRV = York River, BUBY = Burton Bay, BOBY = Bogues Bay. In parenthesis number of oysters examined/number of oysters infected. * = Number of oysters with, respectively, light, moderate, and heavy infections. NS = No live oysters remaining for sampling.

B.

<table>
<thead>
<tr>
<th>Salinity</th>
<th>Site</th>
<th>Date</th>
<th>Prevalence</th>
<th>C. virginica</th>
<th>Prevalence</th>
<th>C. ariakensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>CNRV</td>
<td>5/3/99</td>
<td>52% (13/25)</td>
<td>12</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8/2/99</td>
<td>100% (25/25)</td>
<td>10</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9/21/99</td>
<td>100% (14/14)</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>GWRV</td>
<td>5/3/99</td>
<td>56% (14/25)</td>
<td>11</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8/2/99</td>
<td>100% (24/24)</td>
<td>9</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9/21/99</td>
<td>100% (6/6)</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Medium</td>
<td>WOCK</td>
<td>5/5/99</td>
<td>56% (14/25)</td>
<td>11</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8/2/99</td>
<td>100% (3/3)</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9/22/99</td>
<td>NS</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>YKRV</td>
<td>5/4/99</td>
<td>37% (3/8)</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8/3/99</td>
<td>NS</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9/21/99</td>
<td>NS</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>High</td>
<td>BUBY</td>
<td>5/6/99</td>
<td>84% (21/25)</td>
<td>19</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8/5/99</td>
<td>100% (13/13)</td>
<td>12</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9/2/99</td>
<td>NS</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>BOBY</td>
<td>5/6/99</td>
<td>56% (14/25)</td>
<td>13</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8/4/99</td>
<td>100% (25/25)</td>
<td>19</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9/21/99</td>
<td>NS</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Site codes: CNRV = Coan River, GWRV = Great Wicomico River, WOCK = Woodas Creek, YKRV = York River, BUBY = Burton Bay, BOBY = Bogues Bay. In parenthesis number of oysters examined/number of oysters infected. * = Number of oysters with, respectively, light, moderate, and heavy infections. NS = No live oysters remaining for sampling.
Appendix II. Effects of species, salinity regime, and time on *P. marinus* prevalence.

Three-way ANOVA

<table>
<thead>
<tr>
<th>Effect</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>1</td>
<td>21480.17</td>
<td>32.669</td>
<td><0.0005**</td>
</tr>
<tr>
<td>Salinity</td>
<td>2</td>
<td>2515.50</td>
<td>3.825</td>
<td>0.052</td>
</tr>
<tr>
<td>Time</td>
<td>1</td>
<td>486.17</td>
<td>0.712</td>
<td>0.415</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>657.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** denotes significance at p = 0.01

Appendix III. Effects of species, salinity regime, and time on *P. marinus* weighted prevalence.

A. Three-way ANOVA

<table>
<thead>
<tr>
<th>Effect</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>1</td>
<td>0.787</td>
<td>91.964</td>
<td><0.0005**</td>
</tr>
<tr>
<td>Salinity</td>
<td>2</td>
<td>0.078</td>
<td>9.112</td>
<td>0.004**</td>
</tr>
<tr>
<td>Time</td>
<td>1</td>
<td>0.029</td>
<td>3.427</td>
<td>0.089</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>0.008</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** denotes significance at p = 0.01

B. Multiple comparison (Newman-Keuls test)

<table>
<thead>
<tr>
<th>Comparison</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low salinity C. virginica and C. ariakensis</td>
<td>0.002**</td>
</tr>
<tr>
<td>Medium salinity C. virginica and C. ariakensis</td>
<td><0.0005**</td>
</tr>
<tr>
<td>High salinity C. virginica and C. ariakensis</td>
<td>0.001**</td>
</tr>
<tr>
<td>C. virginica Low salinity vs. medium salinity</td>
<td>0.014*</td>
</tr>
<tr>
<td>C. virginica Low salinity vs. high salinity</td>
<td>0.579</td>
</tr>
<tr>
<td>C. virginica Medium salinity vs. high salinity</td>
<td>0.012*</td>
</tr>
<tr>
<td>C. ariakensis Low salinity vs. medium salinity</td>
<td>0.149</td>
</tr>
<tr>
<td>C. ariakensis Low salinity vs. high salinity</td>
<td>0.852</td>
</tr>
<tr>
<td>C. ariakensis Medium salinity vs. high salinity</td>
<td>0.091</td>
</tr>
</tbody>
</table>

* denotes significance at p = 0.05, ** denotes significance at p = 0.01

Appendix IV. Effect of salinity regime on *P. marinus* prevalence in *C. ariakensis*.

One-way ANOVA

<table>
<thead>
<tr>
<th>Effect</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salinity</td>
<td>2</td>
<td>1154.167</td>
<td>2.270</td>
<td>0.251</td>
</tr>
<tr>
<td>Error</td>
<td>3</td>
<td>508.333</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix V. Effect of salinity regime on *P. marinus* weighted prevalence in *C. ariakensis*.

One-way ANOVA

<table>
<thead>
<tr>
<th>Effect</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salinity</td>
<td>2</td>
<td>0.011</td>
<td>2.140</td>
<td>0.264</td>
</tr>
<tr>
<td>Error</td>
<td>3</td>
<td>0.005</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix VI. Mean (SD) biomass and condition index of *C. virginica* and *C. ariakensis* by salinity regime and site in September 1999.

<table>
<thead>
<tr>
<th>Salinity</th>
<th>Site</th>
<th>Species</th>
<th>n</th>
<th>Whole wt. (g)</th>
<th>Shell wt. (g)</th>
<th>Wet wt. (g)</th>
<th>Dry wt. (g)</th>
<th>CI (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>CNRV</td>
<td>Cv</td>
<td>14</td>
<td>70.3 (15.8)</td>
<td>47.8 (14.5)</td>
<td>5.6 (1.6)</td>
<td>1.0 (0.3)</td>
<td>4.5 (1.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ca</td>
<td>11</td>
<td>83.5 (42.7)</td>
<td>48.2 (27.9)</td>
<td>12.8 (6.0)</td>
<td>2.8 (1.6)</td>
<td>8.2 (2.5)</td>
</tr>
<tr>
<td></td>
<td>GWRV</td>
<td>Cv</td>
<td>5</td>
<td>73.3 (13.3)</td>
<td>42.4 (19.3)</td>
<td>4.6 (2.1)</td>
<td>0.7 (0.4)</td>
<td>2.8 (1.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ca</td>
<td>20</td>
<td>82.2 (21.1)</td>
<td>50.3 (13.9)</td>
<td>10.1 (3.1)</td>
<td>1.6 (0.7)</td>
<td>5.1 (1.8)</td>
</tr>
<tr>
<td>Medium</td>
<td>WOCK</td>
<td>Ca</td>
<td>20</td>
<td>191.7 (58.6)</td>
<td>115.3 (35.2)</td>
<td>29.0 (10.3)</td>
<td>5.7 (2.3)</td>
<td>7.4 (1.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YKRV</td>
<td>20</td>
<td>351.8 (151.4)</td>
<td>211.3 (66.2)</td>
<td>57.3 (17.9)</td>
<td>14.5 (5.0)</td>
<td>12.1 (3.4)</td>
</tr>
<tr>
<td>High</td>
<td>BUBY</td>
<td>Ca</td>
<td>20</td>
<td>247.5 (95.4)</td>
<td>161.2 (57.0)</td>
<td>28.9 (10.9)</td>
<td>5.1 (2.4)</td>
<td>6.2 (2.7)</td>
</tr>
<tr>
<td></td>
<td>BOBY</td>
<td>Ca</td>
<td>20</td>
<td>334.1 (75.8)</td>
<td>211.2 (44.4)</td>
<td>33.6 (11.2)</td>
<td>4.6 (1.8)</td>
<td>4.5 (1.9)</td>
</tr>
</tbody>
</table>

Site codes: CNRV = Coan River, GWRV = Great Wicomico River. WOCK = Woodas Creek, YKRV = York River, BUBY = Burton Bay, BOBY = Bogues Bay. Species codes: Cv = *C. virginica*, Ca = *C. ariakensis*.

Appendix VII. Prevalence and intensity of *Polydora* spp. in *C. virginica* and *C. ariakensis* by salinity regime and site in September 1999.

<table>
<thead>
<tr>
<th>C. virginica</th>
<th>C. ariakensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence</td>
<td>Prevalence</td>
</tr>
<tr>
<td>Low</td>
<td>CNRV</td>
</tr>
<tr>
<td></td>
<td>GWRV</td>
</tr>
<tr>
<td>Medium</td>
<td>WOCK</td>
</tr>
<tr>
<td></td>
<td>YKRV</td>
</tr>
<tr>
<td>High</td>
<td>BUBY</td>
</tr>
<tr>
<td></td>
<td>BOBY</td>
</tr>
</tbody>
</table>

Site codes: CNRV = Coan River, GWRV = Great Wicomico River. WOCK = Woodas Creek, YKRV = York River, BUBY = Burton Bay, BOBY = Bogues Bay. In parenthesis number of oysters examined/number of oysters infected. * = Number of oysters with Polydora infestations categorized as (I) Mudblisters affecting less than 25% of the valve; (II) 25%-50% of the valve affected; (III) 50%-75% of the valve affected; (IV) More than 75% of the valve affected. NS = No live oysters remaining for sampling.
ACKNOWLEDGEMENTS

We would like to thank Rita Crockett, Paige Ross, and Francis O’Beirn for assistance in the field. Juanita Walker and Rita Crockett conducted disease diagnoses. Stan Allen, Greg DeBrosse and staff at Rutgers University produced the triploid oysters used in this study. Ploidy analysis was conducted by Aimee Howe and Whitney Chandler under the direction of Stan Allen at VIMS. Mingfang Zhou assisted with Chinese translation. Wanda Cohen and Kay Stubbfield at VIMS publications assisted with preparation of the report. We would like to extend our appreciation to Odus Cockrell, Lake Cowart, Jr., Ken Kurkowski, Tommy Mason, John Register and John Vigliotta.