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Abstract: We show that goldfish (Carassius auratus) voluntarily ingest liquid canola oil at the 1 

surface of the water and can swallow significant quantities of oil. The ability of fish to separate 2 

floating oil from water has not been tested previously, and the mechanisms used to retain oil in 3 

the form of suspended droplets, globules, or a surface film are unknown. Chromatograms of fatty 4 

acid methyl esters (FAMEs) prepared from gut samples confirmed that goldfish were able to 5 

obtain a substantial proportion of their daily lipid intake from canola oil at the surface of 6 

laboratory aquaria. Quantification of goldfish suspension-feeding, processing, and spitting 7 

behavior suggested that upper jaw protrusion with a closed mouth during processing was 8 

important for the handling of different food types, including oil. Crossflow filtration and the 9 

generation of vortices could be involved in oil retention by goldfish, as these processes are used 10 

industrially to separate oil from water. These results have implications for the uptake of 11 

hydrophobic pollutants and dietary lipids at the surface by suspension-feeding fishes.12 

Page 2 of 41

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences



Draft

 
 

 2

Introduction 13 

Suspension-feeding fishes with economic and ecological importance, including carp, 14 

menhaden, and many tilapia, can filter particles as small as 5 microns from enormous volumes of 15 

water (Beveridge et al. 1991; Friedland et al. 2006; Smith and Sanderson 2013). Rather than 16 

using mechanical dead-end sieving during which water is forced to travel perpendicularly 17 

through the filter, most suspension-feeding fishes that have been studied use crossflow filtration, 18 

during which the water to be filtered is moved tangentially across filtering structures inside the 19 

oral cavity (Sanderson et al. 2001; Callan and Sanderson 2003; Motta et al. 2010). Although 20 

industrial crossflow filtration is a major technology for separating oils from wastewater 21 

(Masoudnia et al. 2013; Tashvigh et al. 2015), the possibility that suspension-feeding fish may 22 

be able to ingest lipids by separating liquid oil from water inside their oral cavities has not been 23 

investigated. In addition, principles of vortical cross-step filtration (Sanderson et al. 2016) could 24 

enable fish to generate vortices inside their oral cavities, potentially concentrating oil, surfactant-25 

coated air bubbles, and other positively buoyant materials with a density (g·cm-3) less than that 26 

of water.   27 

Goldfish (Carassius auratus, Cyprinidae) are omnivorous benthic feeders (Sibbing and Witte 28 

2005) that also use crossflow filtration during facultative suspension feeding (Sanderson et al. 29 

2001). In aquaria, goldfish often suspension feed at the surface on small neutral and low-density 30 

food particles (Burggren 1982). In manmade outdoor ponds, goldfish can use continuous 31 

suspension feeding at the surface, drawing the surface layer of water through their oral cavities 32 

and out past the opercula repeatedly (personal observation).  33 

Based on our observations of this suspension-feeding behavior at the surface in goldfish and 34 

other fish species, we designed experiments to determine whether goldfish can use liquid oil at 35 
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 3

the surface as a potential food source. The aquatic surface microlayer at the water-air interface, a 36 

few microns to a millimeter thick, accumulates microorganisms and organic nutrients including 37 

surfactants such as fatty acids and other lipids (Wotton and Preston 2005; Drudge and Warren 38 

2014; Seliskar and Gallagher 2014). In lakes and ponds, the surface microlayer can become 39 

enriched with bacteria, ciliates, flagellates, amoeba, and phytoplankton (Södergren 1979, 1993; 40 

Parker and Hatcher 1974; Maki and Hermansson 1994), and has been shown to attract larvae of 41 

insects such as blackflies and mosquitoes (Wotton 1982; Wotton et al. 1997). Surface 42 

microlayers rich in organic nutrients have also been well studied in marine environments 43 

(Cunliffe et al. 2013; Elliott et al. 2014; Zhou et al. 2014) and can be important habitats for larval 44 

fish (Wurl and Obbard 2004). 45 

Lipids are important in the diets of all animals, for use in the structure of cell membranes as 46 

well as energy provision and storage (Leaver et al. 2008). Pozernick and Wiegand (1997) 47 

reported that juvenile goldfish are capable of producing important polyunsaturated fatty acids 48 

using fatty acid precursors from the canola oil in their pellet food. The main sources of fatty 49 

acids in wild goldfish are likely to be from their natural diet of detritus, diatoms, and 50 

zooplankton (Specziár et al. 1997; Specziár and Rezsu 2009).  51 

In this study, we assess quantitatively whether untrained goldfish (1) feed voluntarily on 52 

liquid oil at the surface of the water and (2) can ingest measurable amounts of liquid oil. We 53 

performed fatty acid analysis on goldfish gut contents after feeding experiments using canola oil, 54 

a component of commercial fish feeds (Tacon et al. 2011). Previous studies have developed 55 

methodologies for using fatty acid analysis of gut contents and tissues to determine diets and 56 

food webs for marine and freshwater organisms (Carreón-Palau et al. 2013; Couturier et al. 57 

2013a). We also conducted feeding experiments with a combination of liquid oil and Tetramin™ 58 
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flakes to test whether the introduction of a familiar food at the surface would lead to higher oil 59 

consumption. After establishing that the goldfish were ingesting canola oil, we defined and 60 

quantified three feeding behaviors (surface feeding, spitting, and processing), to determine 61 

whether the occurrence of these behaviors was correlated with food type (oil and/or Tetramin™) 62 

and with oil consumption. 63 

 64 

Materials and methods 65 

 66 

Feeding experiments 67 

Juvenile comet goldfish (5.2 – 7.3 cm standard length, SL; approximately 9 g body weight), a 68 

conventional pond variety, were obtained through the aquarium trade and maintained in the 69 

laboratory in a 284 L aquarium at 24 °C. The fish were cared for in accordance with the Guide 70 

for the Care and Use of Laboratory Animals (National Academies Press, 2011), and the research 71 

protocol was approved by the Institutional Animal Care and Use Committee of the College of 72 

William & Mary (IACUC-2015-02-03-10023-slsand). Goldfish were fed daily with Tetramin™ 73 

flakes (1–10 mm diameter) that were introduced at the water surface, but the fish were not 74 

exposed to canola oil prior to the experiments. 75 

For all experiments, goldfish were transferred individually into 38 L aquaria equipped with a 76 

bubble-up filter (Second Nature Whisper Size 2). Each fish was allowed to acclimate for 3–5 d, 77 

during which the fish was fed twice daily at the surface on finely ground Tetramin™ flakes (0.1–78 

0.5 mm diameter). For 36 h prior to the experiment, fish were not fed and plastic grating (1.5 cm 79 

x 1.5 cm x 1.0 cm) was inserted on the bottom of the aquarium to reduce feeding on sunken food 80 

particles or feces. The bottom of the aquarium was cleaned by siphoning twice each day. 81 
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 82 

Canola oil feeding experiments 83 

In the oil treatment (n = 10 fish), 2.0 mL of liquid canola oil (Crisco®) was added with a 5 84 

mL syringe as evenly as feasible on the water surface, and the oil was spread with a spatula. The 85 

bubble-up filter was then turned off, the aquarium lid was put back into place, and the 86 

experimenters stepped away from the aquarium. The fish was allowed to feed on the canola oil 87 

for 20.0 min, timed from the first feeding. During this period, the time spent feeding at the 88 

surface was recorded using a stopwatch and the fish was videotaped at 30 fps on MiniDV 89 

cassettes using a Sony Handycam (DCR-HC36) for subsequent behavioral analyses. After 20.0 90 

min, the fish was caught in a hand net that was pulled through the surface layer of oil. 91 

In the control for the oil treatment (n = 10 fish), the bubble-up filter was turned off and 92 

removed from the aquarium before oil was added. This provided space for additional pieces of 93 

plastic grating (described above) that were used to sequester the fish away from the surface. The 94 

grating was inserted from the top of the aquarium at an angle such that one edge rested along the 95 

bottom length of the aquarium and the opposite edge of the grating rested against the aquarium 96 

glass directly beneath the surface. The angled grating allowed water to move freely in the 97 

aquarium. Approximately one-half of the aquarium volume was accessible to the fish swimming 98 

beneath the grating, but the fish could not reach the surface. After the grating was in place, 2.0 99 

mL of canola oil was added and spread by the method described above. As these control fish did 100 

not have access to the surface and did not exhibit feeding behavior, they were not videotaped and 101 

20.0 min were allowed to pass after the grating was added. The grating was then removed and 102 

the fish was caught in a hand net that was pulled through the surface layer of oil. Thus, this 103 
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control for the oil treatment enabled quantification of potential contamination in gut contents 104 

from goldfish that had been exposed to surface oil but had been unable to feed on the oil.  105 

 106 

Canola oil + Tetramin™ feeding experiments 107 

In the canola oil + Tetramin™ treatment (n = 5 fish), 0.3 mL of canola oil from the same 108 

container of oil used in the above experiments was added with a 1 mL syringe and was spread by 109 

spatula, and the bubble-up filter was turned off. Next, 15.0 mg of finely ground Tetramin™ 110 

flakes (0.1–0.5 mm diameter), measured on a Fisher Scientific XA-100 analytical balance, was 111 

sprinkled directly from the weighing pan evenly across the water surface. The aquarium lid was 112 

put back into place and the experimenters stepped away from the aquarium. The fish was 113 

allowed to feed on the canola oil and Tetramin™ for 20.0 min, timed from the first feeding. 114 

During this period, the time spent feeding at the surface was recorded using a stopwatch and the 115 

fish was videotaped at 30 fps on MiniDV cassettes using a Sony Handycam (DCR-HC36) for 116 

behavioral analysis. After 20.0 min, the fish was caught in a hand net that was pulled through the 117 

surface layer of oil and Tetramin™. 118 

In the control for the oil + Tetramin™ treatment (n = 5 fish), the filter was turned off first, and 119 

then 15.0 mg of Tetramin™ was sprinkled evenly across the surface. The filter was turned off 120 

before Tetramin™ was added because the action created by the air bubbles rising to the surface 121 

caused the flakes to sink. Canola oil was not added to the aquarium and the fish were allowed 122 

free access to the surface. The aquarium lid was put back into place and the experimenters 123 

stepped away from the aquarium. The fish was allowed to feed on the Tetramin™ for 20.0 min, 124 

timed from the first feeding. During this period, the time spent feeding at the surface was 125 

recorded using a stopwatch and the fish was videotaped at 30 fps on MiniDV cassettes using a 126 
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Sony Handycam (DCR-HC36) for behavioral analyses. After 20.0 min, the fish was caught in a 127 

hand net that was pulled through the surface layer of Tetramin™. 128 

 129 

Preparation of gut samples and lipid extraction  130 

After removal from the aquarium using a hand net, goldfish were transferred into a paper 131 

towel to absorb any oil from the body surface. Fish were euthanized immediately using cervical 132 

transection followed by pithing, while being held lightly to avoid redistributing the gut contents. 133 

Fish were then blotted with paper towel before dissection to avoid transfer of any residual 134 

surface oil into the body cavity. While still connected, the anterior portion of the gut was 135 

straightened and laid flaccidly across the exposed body cavity. The first 2.5 cm of the gut 136 

immediately posterior to the esophageal sphincter was measured, forceps were clamped at each 137 

end of this section, and the section was removed using microdissection scissors. This gut 138 

segment was transferred directly into a 1.5 mL centrifuge tube. The total length, fork length, and 139 

standard length of each fish were recorded.  140 

The gut segment was then cut longitudinally using microdissection scissors while held with 141 

forceps inside the centrifuge tube, to transform the gut to an open sheet with contents exposed. 142 

The scissors and forceps were rinsed with 750 µL of heptane (Fisher Scientific, 99.7%) into the 143 

centrifuge tube using a Pipetman micropipette. The sample was then vortexed for 30 s with a 144 

Fisher Scientific Vortex Genie 2. The empty gut wall was removed from the centrifuge tube and 145 

the forceps used were rinsed into the tube with 250 µL of heptane. This 1.0 mL sample was 146 

centrifuged at 5000 rpm for 5 min with a Fisher Scientific Micro 7 microcentrifuge. A 500 µL 147 

subsample was micropipetted from the surface of this gut sample and transferred directly into a 148 

15 mL centrifuge tube. 149 
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 150 

Fatty Acid Methyl Ester (FAME) preparation 151 

Fatty acid methyl ester (FAME) preparation was carried out using the protocol described by 152 

Zhang et al. (2014). 1.0 mL each of diethyl ether, petroleum ether, and 0.4 M KOH in methanol 153 

were added to 500 µL of the gut subsample in that order. This mixture was vortexed for 30 s and 154 

left at room temperature (21 °C) for 2.5 h. 2.0 mL of deionized water was added and the mixture 155 

was centrifuged at 3400 rpm for 2 min with a Fisher Scientific Centrific Model 228.  156 

A 100 µL subsample was micropipetted from the top (organic) layer of this mixture and added 157 

to 400 µL of diethyl ether in a 1.5 mL glass sample vial (Thermo Scientific). When these 158 

FAMEs were stored at -5 °C, the meniscus was noted on the sample vial so that evaporation 159 

could be detected. If diethyl ether evaporation occurred before analysis, diethyl ether was 160 

replaced one drop at a time using a Pasteur pipette until the volume was reestablished at the 161 

meniscus. 162 

 163 

Gas chromatography-mass spectrometry (GC-MS) analysis 164 

FAME samples in diethyl ether were injected into an Agilent 6890N gas chromatograph 165 

interfaced to an Agilent 5973 mass spectrometer detector (MSD). A fused silica Rxi-1ms 166 

nonpolar column was used  (30 m, 25 mm ID, 0.25 µm film, Restek). The column flow rate was 167 

1.1 mL·min-1 and helium was used as the carrier gas. The inlet temperature was 280 °C with a 168 

split injection set at 100:1. The initial oven temperature was 150 °C, which was increased at a 169 

rate of 5 °C·min-1 until the final temperature of 260 °C was reached. The total run time was 22 170 

min.  171 
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Identification of methylated fatty acids from the gut extracts was verified using a NIST mass 172 

spectral library which compares mass fragmentation and ion intensity patterns of known 173 

compounds within the database to mass spectra from unknown samples. The methylated fatty 174 

acids were consistently identified with 95-99% confidence in all cases when a sufficient quantity 175 

of compound was detected from the extracts. As the first step in calculating the mass of canola 176 

oil in the 2.5 cm sections of gut from the feeding experiments, we quantified the area of the oleic 177 

acid (18:1n-9) peak of each FAME injection sample, which had a retention time of 13.0 min as 178 

determined from preparation of FAMEs using known concentrations of canola oil. Oleic acid is 179 

the major fatty acid component of canola oil (approximately 63% by mass; Syed 2012), which 180 

when converted into a methyl ester becomes methyl oleate. A known standard of methyl oleate 181 

(99%, Aldrich) was diluted to a concentration of 1 mg·mL-1 in heptane by dissolving 100 mg 182 

into 10 mL of heptane (Fisher Scientific, 99.7%) and then dissolving a 1 mL subsample into 183 

another 10 mL of heptane. The methyl oleate standard was analyzed each day of experiments 184 

using the same GC-MS procedure as above, and the area of this standard peak was compared to 185 

the area of the 18:1n-9 peak from each FAME injection sample that was analyzed with the GC-186 

MS on that day. Peak areas were quantified using the AutoIntegrate function of MSD 187 

ChemStation software (Agilent Technologies) or a Manual Integration function for peaks with 188 

low signals to define the base width of the 18:1n-9 peak. The areas of the 18:1n-9 peak from the 189 

FAME injection samples were compared with the known concentration of the methyl oleate 190 

standard to determine the solution concentration. The fatty acid composition of canola oil, based 191 

on 63% oleic acid composition (Syed 2012), and the dilution factors used to prepare the gut 192 

sample were then used to calculate the mass of canola oil in the original 2.5 cm gut segment. 193 

194 
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Calculations of mass of oil ingested 195 

Equation (1) below uses the ratio of the known concentration in mg·mL-1 of the standard 196 

methyl oleate solution to the peak area of the standard in order to calculate the concentration of 197 

oleic acid in the FAME sample that had been injected into the GC-MS, where A = area of 18:1n–198 

9 peak, C = concentration of 18:1n–9, s = methyl oleate standard, and f = FAME sample. This 199 

calculation is shown simplified in equation (3), which is possible since the concentration of the 200 

standard was known to be 1 mg·mL-1 (equation (2)). Equation (4) shows the calculations 201 

necessary to convert the concentration of oleic acid in the FAME sample to the mass of canola 202 

oil in the 2.5 cm gut segment. The FAME sample concentration is multiplied by 2.5 mL, the 203 

volume of the organic layer (including ethers and heptane) at the end of the initial FAME 204 

preparation process. This value is then divided by 0.63 since canola oil is only 63% oleic acid 205 

(Syed 2012). The FAME sample concentration in Equation 4 is also divided by 0.2 to account for 206 

the 100 µL sample dilution to 500 µL with diethyl ether during FAME preparation and by 0.5 to 207 

account for only one half of the original heptane gut extract being used for the FAME. By 208 

substituting equation (3) into equation (4), all of the above steps were calculated at once as 209 

shown in equation (5) to obtain the mg canola oil in the 2.5 cm gut sample.  210 

(1) !"
#"

 = !%
#%

  211 

(2) Cs =
(	*+
*,

 212 

(3) Cf = 	 .
!%
!"
/ .(	*+

*,
/ 213 

(4) #%		(1.3	*,)
(5.67)	(5.3)	(5.1)

= mass	of	canola	oil	in	2.5	cm	gut	segment	(mg) 214 

(5) 
.EFEG

/	.H	IJ
	IK /	(1.3	*,)	

(5.67)	(5.3)	(5.1)
= 	mass	of	canola	oil	in	2.5	cm	gut	segment	(mg) 215 

 216 
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Behavioral analyses 217 

The videos taken during feeding experiments were viewed frame-by-frame on a Sony DVCam 218 

(DSR-11) using a remote control with a jog/shuttle (DSRM-20). Videos were analyzed for the 219 

presence of three main behaviors, which were defined after preliminary review of multiple 220 

videos: feeding bouts, spitting bouts, and processing bouts. Occurrences of each type of bout 221 

were counted for the duration of the 20 min experiments. 222 

 223 

Statistical analysis 224 

Analyses were performed with the statistical software R (v.3.2.1), using tests appropriate for 225 

small sample sizes with high variance within treatments and non-normal distributions. For the 226 

comparison of mass of oil in the gut segment, a non-parametric permutation test was chosen 227 

because the data lacked a normal distribution and the treatment and control groups had different 228 

variances (Whitlock and Schluter 2015). Using the R package “coin” (Hothorn et al. 2008), two-229 

sample Fisher Pitman permutation tests were used to compute an exact p-value for the mass of 230 

oil ingested during each of the two feeding experiments. In addition, a Pearson’s product-231 

moment correlation was done to determine if a relationship existed between the time spent 232 

feeding at the surface and the mass of oil in the gut segments from fish in the canola oil 233 

treatment. 234 

The first five fish of the canola oil feeding experiments were not videotaped. Therefore, 235 

feeding time data and behavioral counts were not recorded for these first fish and they were not 236 

included in the behavioral analyses. A regression analysis showed that the feeding time data and 237 

the feeding bout behavioral counts were highly correlated (r2 = 0.85).  Therefore, feeding time 238 

data were excluded from the MANOVA described below.  239 
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Due to the large differences in variances and the non-normal shape of the data distribution, the 240 

behavioral data were transformed using a log transformation (Y’ = ln(Y)). A series of F-tests was 241 

then performed to compare the variances of the counts for the different feeding behaviors, which 242 

gave non-significant results for all pairs, indicating that the transformed datasets did not have 243 

significant differences in variance. A MANOVA was performed on the transformed behavioral 244 

data with food type (canola oil only, canola oil + Tetramin™, Tetramin™ only) as the 245 

independent variable and type of behavior (feeding bouts, spitting bouts, processing bouts) as the 246 

dependent variable. This was followed by univariate post-hoc ANOVAs with Bonferroni 247 

adjustments for repeated tests. A separate one-way ANOVA was also performed on data for 248 

feeding time and was followed by post-hoc Tukey-Kramer tests. 249 

 250 

Experienced goldfish feeding on oil  251 

Following completion of all experiments, seven juvenile goldfish (approximately 7.0 – 7.5 cm 252 

SL) that had not been introduced previously to canola oil were maintained in a 284 L aquarium. 253 

Using a polyethylene cannula (1.14 mm I.D., 1.57 mm O.D., Intramedic PE-160) on a 5 mL 254 

syringe that was held manually in one corner of the aquarium, the experimenter released a total 255 

of 1 mL of canola oil into the aquarium over a period of approximately 15 min. Oil was released 256 

from the cannula either above the water surface or approximately 1 cm beneath the surface. This 257 

procedure was followed once each day for 4 – 5 d each week. Goldfish were fed their typical diet 258 

of Tetramin™ after each oil-feeding session as well as on days when oil was not fed to the fish.   259 

 260 

Results 261 

 262 
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Mass of canola oil in the gut  263 

While there was high variability among fish, canola oil was present in the guts of the majority 264 

of the canola oil treatment fish and in two of five fish from the canola oil + Tetramin™ treatment 265 

(Table 1). Overall, nine of 15 fish that fed at the surface in the presence of oil had detectable oil 266 

in their guts. In contrast, none of the 15 control fish samples showed a peak at the 18:1n-9 267 

retention time, indicating that the oil in the experimental samples resulted from ingestion during 268 

feeding in the presence of oil and that contamination of gut samples with oil did not occur. The 269 

guts of the fish in the canola oil treatment group had a significantly higher mass of oil than the 270 

guts in the control group, which contained no detectable oil (two-sample Fisher Pitman 271 

permutation test, p = 0.005, ni = 10). The mass of oil in the guts of the canola oil + Tetramin™ 272 

group was not significantly different than the zero mass of oil in the control group (p = 0.22, ni = 273 

5). No correlation was found between the time spent feeding at the surface and the mass of oil in 274 

the gut segments from fish in the canola oil treatment (Pearson’s product-moment correlation, r2 275 

= 0.24, p = 0.19, n = 10). 276 

 277 

Detection limit 278 

One of the FAME samples analyzed from the canola oil treatment had a detectable peak at the 279 

expected retention time for 18:1n-9, but the peak area was too small to be identified or quantified 280 

by the GC-MS software. This sample was reanalyzed at 167% of the original concentration by 281 

dissolving the 100 µL FAME subsample in half the volume of diethyl ether (200 µL was added 282 

instead of 400µL) before GC-MS analysis. This provided a quantifiable peak that could be 283 

identified as 18:1n-9, resulting in a calculation of 0.3 mg of canola oil in the 2.5 cm gut segment. 284 

All calculations for mass of oil in the 2.5 cm gut segment were rounded to the nearest milligram.  285 
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Therefore, the value of 0.3 mg was rounded to zero, as indicated by an asterisk in Table 1. No 286 

other mass chromatograms had a peak that was not identifiable by the GC-MS software, so the 287 

above procedure was not performed on other samples. 288 

The detection limit, when a peak that is detectable above background noise at the expected 289 

retention time for 18:1n-9 is so low that it cannot be identified as 18:1n-9 by the GC-MS 290 

software, was determined to occur between 0.3 and 0.6 mg of canola oil in the 2.5 cm gut 291 

segment. This was established by performing a serial dilution with five known volumes of canola 292 

oil (0.16 µL, 0.31 µL, 0.63µL, 1.25µL, 2.5 µL) dissolved in 500 µL of heptane and then treated 293 

with the same FAME preparation process and data analysis procedure as the experimental 294 

samples. The known volumes of canola oil were converted from µL to mg using 0.92 g·mL-1 as 295 

the density of canola oil (Rousseau 2004). All of the FAMEs from this serial dilution resulted in 296 

a detectable peak at the expected retention time, but the peak at the lowest oil volume of 0.16 µL 297 

could not be identified by the mass spectral compound identification software. This indicates that 298 

the GC-MS would have detected a peak for 18:1n-9 in the FAME sample prepared from any 2.5 299 

cm gut segment that contained ≥ 0.3 mg of canola oil (equivalent to 0.16 µL of oil in the 500 µL 300 

gut subsample).  301 

 302 

Behavioral analyses  303 

Three main behaviors associated with feeding were defined: feeding bouts, spitting bouts, and 304 

processing bouts (Table 2). Because a series of repeated motions usually composed a bout, we 305 

counted bouts rather than singular motions. The bouts tended to follow a sequence, beginning 306 

with a feeding bout and followed by a spitting bout, a processing bout, neither, or both. 307 

Occasionally a fish performed two bouts of the same behavior in a sequence, but these never 308 

occurred consecutively, with the exception of feeding bouts. For example, a spitting bout would 309 

Page 15 of 41

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences



Draft

 
 

 15 

be followed by a processing bout or a feeding bout before another spitting bout took place, but a 310 

feeding bout could be followed immediately by another feeding bout. 311 

The number of bouts was counted for each 20-min video (Table 3), and a MANOVA was 312 

performed to determine whether counts of each type of behavior (feeding bouts, spitting bouts, 313 

processing bouts) differed significantly among food types (canola oil only, canola oil + 314 

Tetramin™, Tetramin™ only). The MANOVA gave results as follows – Pillai-Bartlett: p = 0.09, 315 

Roy: p = 0.006, Hotelling-Lawley: p = 0.03, Wilks: p = 0.05. The Pillai test is considered to be 316 

the most conservative and robust, with the Roy giving a lower bound of the p-value (Quinn and 317 

Keough 2002). The post-hoc ANOVAS showed feeding bouts as the only dependent variable to 318 

have significant differences between independent variable groups (p = 0.04), indicating that the 319 

number of feeding bouts differed significantly among food types: canola oil only, canola oil + 320 

Tetramin™, and Tetramin™ only. Because of the high correlation between feeding time and 321 

number of feeding bouts, feeding time was not included in the MANOVA. A separate one-way 322 

ANOVA was performed on the feeding time data that also gave a significant result (p < 0.001) 323 

and post-hoc Tukey-Kramer tests revealed significant differences between all treatment groups. 324 

Although by definition the number of feeding bouts affects the number of spitting and 325 

processing bouts, the number of spitting bouts and the number of processing bouts did not differ 326 

significantly among food types (post-hoc ANOVAs, p = 1.00). This suggests a relationship not 327 

visible in the previous MANOVA. Therefore, a one-way ANOVA was performed on the ratio of 328 

processing bouts to feeding bouts, following a reciprocal transformation (Y’ = 1/Y). The ratio of 329 

processing bouts to feeding bouts was significantly different among food types (p = 0.002). 330 

Tukey-Kramer tests showed significant differences between the canola treatment and the canola 331 

+ Tetramin™ treatment (p = 0.001) and the Tetramin™ treatment and the canola + Tetramin™ 332 
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treatment (p = 0.02), but not between the canola treatment and the Tetramin™ treatment (p = 333 

0.29) (Figure 1). The ratio of processing bouts to feeding bouts in the canola oil + Tetramin™ 334 

treatment was significantly lower than this ratio in the treatments that used only one food type. 335 

When a reciprocal transformation and one-way ANOVA were applied to the ratio of spitting 336 

bouts to feeding bouts, there was no significant difference among food types (p = 0.06).  337 

 338 

Experienced goldfish feeding on oil 339 

Naive goldfish that had not been exposed previously to canola oil exhibited feeding bouts at 340 

the surface throughout the aquarium when canola oil was released from the cannula tip. In 341 

addition, one goldfish swam repeatedly to the underwater cannula tip and engulfed the globule of 342 

oil that was being extruded from the tip. Within two weeks after the first oil-feeding session, 343 

multiple goldfish exhibited feeding bouts directly beneath the cannula that was held just above 344 

the water surface as oil was released in drops from the tip. Goldfish also learned to engulf 345 

globules in a film of oil on the water surface that had been released from the cannula tip as the 346 

tip was being removed from the water (Video S1).  347 

In manmade outdoor ponds, goldfish that had been introduced sporadically to liquid oil 348 

engulfed a thin layer of canola oil and interspersed oil globules at the surface, using continuous 349 

suspension feeding (personal observation, Video S2). 350 

 351 

  352 
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Discussion 353 

 354 

Liquid oil ingestion by goldfish 355 

Untrained naive goldfish fed voluntarily on liquid canola oil at the surface of the water and 356 

were able to retain and swallow liquid oil. All ten goldfish that had access to the surface during 357 

the canola oil feeding experiments exhibited feeding behavior, and 70% of these fish had 358 

detectable quantities of canola oil in the anterior 2.5 cm of their gut (Table 1). These fish 359 

ingested between 0.01% and 14% of the 2.0 mL of oil present during the 20-min experiment. In 360 

the canola oil + Tetramin™ feeding experiment, all five goldfish exhibited feeding behavior at 361 

the surface and 40% of these fish ingested oil. The anterior 2.5 cm of the gut in these two fish 362 

contained 11% and 32% of the 0.3 mL of oil present during the 20-min experiment. The gut oil 363 

content quantified in these experiments is likely to have been underestimated because only the 364 

anterior 2.5 cm of the gut was sampled. Oil was observed visually in some fish guts posterior to 365 

the location where the gut segment was removed.  366 

None of the fifteen control fish in the two experiments had GC-MS chromatogram peaks at 367 

the expected retention time for 18:1n-9, suggesting that contamination with oil did not lead to 368 

false positive results in the other treatment groups. The high variability of gut oil content among 369 

fish could be due to small differences in fish personality (Mesquita et al. 2015; Pleizier et al. 370 

2015), preference, or ability that led to differences in performance during the experiments. 371 

Substantial inter- and intra-individual variability in oral flow speed, mucus production, and 372 

particle retention in suspension-feeding fishes has been quantified by previous studies (Smith 373 

and Sanderson 2008, 2013; Holley et al. 2015).  374 
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While some goldfish swallowed a relatively large amount of oil, this alone does not indicate 375 

whether oil ingestion was purposeful or incidental. However, despite the fact that all of the fish 376 

with access to oil at the surface were observed to feed at the surface during the experiments, 377 

some did not have a detectable level of oil in the gut. If ingestion had been incidental, we would 378 

expect a more consistent pattern of oil ingestion correlated with time spent feeding or the number 379 

of feeding bouts. This pattern would be expected particularly in the canola + Tetramin™ 380 

treatment group, where fish in the presence of oil were actively ingesting Tetramin™ particles 381 

from the surface that were later visible in the gut during dissection. Three of the five fish in this 382 

group did not ingest oil despite ingesting Tetramin™, suggesting that the other two fish may 383 

have ingested oil using an unknown selection mechanism rather than incidental ingestion. 384 

 385 

Potential mechanisms of oil ingestion 386 

The ability of fish to separate oil from water has not been tested previously, and potential 387 

mechanisms that fish could use to separate oil from water have not been investigated. In our 388 

experiments, goldfish were observed to feed directly on the film of canola oil with larger 389 

interspersed oil globules that floated on the water surface, although smaller oil droplets and oil-390 

coated air bubbles in suspension near the water surface may also have been available for 391 

ingestion. Many suspension-feeding fish species, including goldfish, use crossflow filtration to 392 

retain and swallow particles within the potential size range of suspended oil droplets to larger oil 393 

globules (approximately 30 µm – 5 mm; Sanderson et al. 2001; Smith and Sanderson 2013). 394 

During crossflow filtration, the gill rakers do not serve as dead-end mechanical sieves, and 395 

particles can be retained without contacting filtering elements. Particles are carried by flow 396 

patterns through the oral cavity to the esophagus (Sanderson et al. 2001; Sanderson et al. 2016). 397 
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A similar mechanism could enable goldfish to retain and subsequently swallow oil droplets, 398 

larger oil globules, and/or surface films. This process could involve emulsion of the oil with the 399 

water inside the oral cavity, caused by the repetitive lower jaw movements that also allow water 400 

and air to mix during aquatic surface respiration (Burggren 1982), resulting in intraoral oil 401 

droplets or oil-coated air bubbles with the properties of a low-density particle rather than a 402 

surface film.  403 

During hypoxia and anoxia, goldfish and some other fish species have the capability of “air 404 

gulping” or aquatic surface respiration (ASR), which is distinct from the well-studied air 405 

breathing in certain species (Burggren 1982; Chapman and McKenzie 2009; He et al. 2015). 406 

During ASR, goldfish protrude the upper jaw above the surface to engulf an air bubble and the 407 

underlying water at the air-water interface. From this position, goldfish repeatedly depress and 408 

raise the lower jaw, mixing the air and water within the oral cavity. This mixture is then passed 409 

between the gill filaments to exit posteriorly from the opercula, resulting in a significant 410 

elevation of blood oxygen content under hypoxic conditions compared to goldfish not using ASR 411 

(Burggren 1982). Engulfment of air and water during feeding at the surface is similar to the 412 

initial step in ASR (Burggren 1982), suggesting a possible connection between the adaptation of 413 

goldfish for ASR during hypoxia and the ability to modify that behavior for suspension feeding 414 

at the surface. 415 

Particle selection in goldfish is aided by action of the palatal organ, a ridged, protrusible, 416 

highly chemosensory pad of tissue on the roof of the anterior pharynx. Muscular projections of 417 

the palatal organ in cyprinids can pin larger solid food particles against the floor of the oral 418 

cavity while inorganic material is expelled by spitting (Sibbing et al. 1986; Callan and Sanderson 419 

2003; Finger 2008). The palatal organ could also assist in differentiating between oil and 420 
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Tetramin™, which could explain how some goldfish were able to ingest Tetramin™ without 421 

ingesting oil, discussed further below.  422 

An alternative mechanism for separating oil from water is that by protruding the upper jaw 423 

above the surface during a feeding bout, goldfish might engulf the entire surface layer and pump 424 

this layer posteriorly along the palatal organ towards the esophagus as a continuous thin film. 425 

This oil ingestion mechanism might be possible due to the goldfish’s angled body position 426 

relative to the water-air interface during surface feeding, which could place regions of the palatal 427 

organ and the esophagus level with the surface of the water. Engulfment and intra-oral transport 428 

of an intact surface film could involve a more passive consumption of oil than the creation of 429 

intra-oral oil emulsions. In this case, ingestion of oil might actually be reduced by repetitive 430 

lower jaw movements during feeding that disrupt the floating film of oil inside the oral cavity. If 431 

the number of repetitive jaw movements within each feeding bout differed among individuals, 432 

this could explain how some fish swallowed substantially larger masses of oil. However, we did 433 

not quantify the number of repetitive jaw movements within each feeding bout. 434 

 435 

Behavioral analyses 436 

The significant relationship between food type and the ratio of processing bouts to feeding 437 

bouts (Figure 1) indicates that processing could be important for handling different food types. 438 

The canola + Tetramin™ group had the lowest ratio of processing to feeding, even lower than 439 

Tetramin™ alone. Processing has been described previously in the closely related common carp 440 

(Cyprinus carpio) as a mechanism for sorting and repositioning food in the oral cavity before 441 

swallowing (Sibbing et al. 1986). Handling multiple food types simultaneously would seem to 442 

require more processing, yet the goldfish in the canola + Tetramin™ group had the lowest ratio 443 
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of processing bouts to feeding bouts of all treatment groups, and two of these five fish still 444 

swallowed oil.   445 

If the canola oil group exhibited relatively more processing bouts, this would suggest that oil 446 

required processing before swallowing, but there was no significant difference between the oil 447 

treatment and the Tetramin™ treatment (Figure 1). One explanation could be that increased 448 

spitting in the canola + Tetramin™ treatment prevented fish from swallowing oil, but the ratio of 449 

spitting to feeding was not significantly different among food types. Fish may have been able to 450 

avoid the larger floating globules of oil visually, but in the canola + Tetramin™ experimental 451 

setup, Tetramin was added on the top of the oil layer, so complete avoidance of oil globules 452 

seems unlikely. 453 

Processing bouts were characterized by repetitive partial upper jaw protrusion with a closed 454 

mouth (Table 2).  A similar closed mouth processing ("closed protrusion") was described as 455 

essential for food handling in experiments conducted by Sibbing et al. (1986) with the common 456 

carp, occurring infrequently throughout feeding but more often as food became “less manageable 457 

or more soiled.” During suspension feeding by carp on small zooplankton, intraoral particle 458 

selection was controlled by palatal organ activity and closed protrusion, which also served to 459 

gather particles that had been retained for transport to the pharynx (Sibbing et al. 1986).  460 

The upper jaw protrusion with a closed mouth that we observed in goldfish during processing 461 

bouts is unique to cypriniforms due to the evolution of an elongated kinethmoid and modified 462 

adductor muscles. These morphological novelties allow for a decoupling of the upper and lower 463 

jaws not found in acanthomorphs (Gidmark et al. 2012; Hernandez and Staab 2015). This 464 

decoupling enables cypriniforms to have more flexible and variable feeding movements 465 

compared to acanthomorphs. Increased functional flexibility could allow cypriniforms to be 466 
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opportunistic in using a greater diversity of food types (Staab et al. 2012; Hernandez and Staab 467 

2015), which, when coupled with cypriniform use of aquatic surface respiration (Fu et al. 2014; 468 

He et al. 2015), makes them important future study species for potential feeding on surface films 469 

as well as oil droplets and globules.  470 

 471 

Potential implications for uptake of hydrophobic pollutants 472 

Ingestion of liquid oil by fish in the form of suspended droplets, floating globules, or a surface 473 

film could be a route for the uptake and transport of hydrophobic pollutants in the wild, 474 

including polycyclic aromatic hydrocarbons (PAHs). The copepod Calanus finmarchicus, the 475 

mussel Mytilus edulis, and the pelagic tunicate Dolioletta gegenbauri actively filter particles < 476 

50 µm in diameter, which is the approximate size of the smallest fraction of petroleum oil 477 

droplets that accumulate in the water column (Lee et al. 2012; Nordtug et al. 2015). Laboratory 478 

and modeling studies indicate that bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) 479 

may occur due to active ingestion of petroleum oil droplets by these suspension-feeding 480 

invertebrates (Viaene et al. 2014; Nordtug et al. 2015). The lower limit of particle size that can 481 

be retained has not been reported for most suspension-feeding fish species, including goldfish. 482 

However, suspended oil droplets < 50 µm in diameter are well within the size range of 483 

polystyrene particles ingested incidentally by suspension-feeding tilapia species (Cichlidae) that 484 

use crossflow filtration (Smith and Sanderson 2013). Since particle retention in these tilapia and 485 

in goldfish is not dependent on mucus entrapment or mechanical dead-end sieving (Sanderson et 486 

al. 2001; Smith and Sanderson 2013), investigation is needed to assess the potential exposure of 487 

such fish species to hydrophobic pollutants through the ingestion of suspended oil droplets, 488 

surfactant-coated air bubbles (Walls et al. 2014), or surface films. 489 
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 490 

Role of lipids in fish nutrition 491 

Due to their importance in determining the growth rate of fish, lipids are an important area of 492 

focus in developing the optimal diet for aquaculture (Leaver et al. 2008). Unlike many terrestrial 493 

vertebrates, fish use lipids, fatty acids, and proteins as major macronutrients rather than 494 

carbohydrates (Leaver et al. 2008). Many studies have investigated the effects of varying fish 495 

dietary lipid levels and sources. There is an optimal level of lipid consumption in fish that 496 

interacts closely with protein utilization (Leaver et al. 2008; Bonvini et al. 2015; González-Félix 497 

et al. 2015). Wang et al. (2015) varied lipid levels in the diets of fish that they identified as a 498 

subspecies, Carassius auratus gibelio, and concluded that the optimal lipid level for juvenile 499 

growth was 11.6% of the diet by dry mass.  500 

A number of studies have evaluated using plant oil sources to replace fish oil in aquaculture 501 

feeds, with varying but promising results (Pozernick and Wiegand 1997; Duan et al. 2014; 502 

Sprague et al. 2015). Given that plant oils can be used as an effective lipid source in solid 503 

aquaculture feeds, further study is needed to determine whether fish in aquaculture settings or in 504 

the wild can ingest plant and animal lipids in the form of suspended oil droplets or a surface film.  505 

Dietary requirements of most fish species are not well defined because they tend to vary with 506 

age, season, and species, and most of what is known is due to the need of aquaculturists to 507 

formulate flesh-maximizing diets. However, in a laboratory study conducted by Sánchez-508 

Vázquez et al. (1998), adult goldfish selected a diet (g·kg body weight-1·day-1) consisting of 509 

approximately 22% protein, 32% fat, and 46% carbohydrate on average by mass from among 510 

three different macronutrient-enriched food types. The goldfish adjusted their diet based on what 511 

they had consumed in the preceding days, suggesting that they were able to select for a balanced 512 
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diet. The g·kg body weight-1·day-1 of oil (pollock visceral oil:soybean oil, 2:3) in the preferred 513 

diet of adult goldfish reported by Sánchez-Vázquez et al. (1998) can be used to calculate a rough 514 

estimate of the dietary importance of the oil ingested by goldfish during our study. Based on 515 

these data, the seven goldfish that ingested a detectable amount of oil in the canola treatment of 516 

our study swallowed approximately 30% of their daily lipid intake during the 20-min 517 

experiment.  518 

In conclusion, this ability of goldfish to ingest liquid oil in the form of suspended oil droplets, 519 

floating oil globules, and/or a surface film could have important ecological and functional 520 

morphological implications. Further study is needed of the mechanisms by which goldfish are 521 

able to retain and swallow liquid oil, particularly in characterizing the location, movement, and 522 

form of the oil within the oral cavity. Such research could determine whether the process is 523 

purposeful or incidental and could aid in explaining the variation in oil ingestion among 524 

individual goldfish in this study. Our results raise the question of whether other fish species can 525 

ingest liquid oil by separating oil from water. Other cypriniforms that use aquatic surface 526 

respiration are candidates for study. Ram suspension-feeding marine fishes such as menhaden 527 

might use a crossflow or vortical cross-step filtration mechanism (Sanderson et al. 2001; 528 

Sanderson et al. 2016) to retain suspended oil droplets or surfactant-coated air bubbles (Walls et 529 

al. 2014), particularly juveniles that swim in shallow-water schools extending to the water-air 530 

interface. In addition, further study is needed to determine whether ingestion of surface films or 531 

surfactant-coated air bubbles might contribute to the unidentified source of fatty acids reported 532 

recently in suspension-feeding manta rays and whale sharks (Couturier et al. 2013a, 2013b; 533 

Rohner et al. 2013), which engulf water while positioning the upper jaw at or above the water 534 

surface (Paig-Tran et al. 2013; Motta et al. 2010). 535 
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Canola oil only 

__________________________ 

 
Canola oil + Tetramin 

____________________________ 

Treatment  Control Treatment    Control 
        52         0         0 0 
          4         0       88 0 
        22         0         0 0 
          0         0       31 0 
          0         0         0 0 
          0         0   
      114         0   
      264         0   
           2         0   

0*         0   
Mean ± SD 
45.8  ± 84.9 

Mean ± SD 
     0 ± 0 

Mean ± SD 
23.8 ± 38.3 

Mean ± SD 
      0 ± 0 

* Peak was visible at retention time for 18:1n-9, but was neither 

identifiable nor quantifiable using the GC-MS. 

Table 1. Mass of oil in gut segment (mg) for each experimental fish, 

calculated from GC-MS analysis of FAMEs.  
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   Feature 
___________________ 

Behavior 
_____________________________________________________________________________________ 

 Feeding Bout Spitting Bout Processing Bout 

Water Column Location 

 

Surface 

 

Anywhere 
Anywhere, but 
generally in the 
midwater 

Upper/Lower Jaw 
Movement 

Upper jaw fully 
protruded at or above 
surface of the water, 
and lower jaw fully 
depressed 

Upper jaw fully 
protruded and lower 
jaw fully depressed 

Partial protrusion of 
upper jaw without 
depression of lower 
jaw 

Jaw Opening 

Alternates between 
fully open and fully 
closed throughout bout 

Fully open, but 
sometimes preceded 
by a series of partial 
openings 

Not open 

Anterior Expulsion 
from Oral Cavity 

None Air bubbles, oil, or food 
particles 

None 

Posterior Expulsion 
from Opercular Cavity 

Occasionally air 
bubbles 

None None 

Sequence 
Always begins the 
sequence 

Follows feeding bout; 
follows or precedes 
processing bout 

Follows feeding bout; 
follows or precedes 
spitting bout 

Repeated Motion 

Full protrusion of 
upper jaw at or above 
surface and then 
closing 

Rapid opening and 
closing of jaws (not all 
repetitions need 
contain a full 
protrusion of the upper 
jaw and depression of 
the lower jaw, as long 
as one is contained 
within the bout) 

Partial protrusion of 
upper jaw 

End Indicator 

Upper jaw is brought 
below and deliberately 
away from the surface 
and jaw is closed 

Either closing of the 
jaw or the expulsion of 
air, oil, or food from 
the oral cavity 

Cessation of motion or 
switch to different 
behavior 

Table 2. Criteria used to distinguish goldfish behaviors during experiments. 
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  Time Fed 
(seconds) 

Feeding 
Bouts 

Spitting 
Bouts 

Processing 
Bouts 

 

 

Canola Oil 
Only*  

 

   70     31   

  

  

   44     32 
   38     25 
   49     40 
   39     35     23       6 
   67     80     45     24 
   95     98     75     40 
 108     50     41     22 
      7     11     13       8 

Mean ± SD 57.4 ±  
31.1 

44.7 ± 
27.7  

39.4 ± 
23.8  

20.0 ± 
13.8 

     
 

Canola Oil           
+ 
Tetramin 

 400  199     71     20 
 307  203   115     13 
 287  182     67     12 
 351  128     60     21 
 288  159     52     11 

Mean ± SD 326.6 ± 
48.5  

174.2 ± 
31.1  

73.0 ± 
24.6  

15.4 ±  
4.7  

     
 

Tetramin 
Only 

 

 197  90  54  9 
 246  147  37  22 
 98  32  18  16 
161 58 34 11 
116 99 68 15 

Mean ± SD 163.6 ± 
60.2 

85.2 ± 
43.6 

42.2 ± 
 19.3 

14.6 ±   
5.0 
 

Table 3. Behavioral data from video analysis of each experimental fish; bouts 

measured in counts for each 20-min experiment.  

* Time Fed and Feeding Bouts were not quantified for the first fish and 

Spitting and Processing Bouts were not counted for the first five fish. 
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Figure 1. Average ratios of processing bouts to feeding bouts with 95% 

confidence intervals. Treatments labeled with different letters are 

significantly different. 
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Video S1. Following completion of experiments, juvenile goldfish in a laboratory aquarium 

learned to engulf globules in a film of canola oil on the water surface that had been released from 

the tip of a polyethylene cannula as the tip was removed from the water (240 frames·s-1; video by 

C.M. LaValley). 

 

Video S2. In outdoor ponds, suspension-feeding juvenile goldfish that had been introduced 

previously to liquid oil engulfed a thin layer of canola oil with interspersed oil globules at the 

surface (30 frames·s-1). 
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