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Abstract. In this paper, we consider an abstract equation F (λ, u) = 0 with
one parameter λ, where F ∈ Cp(R×X,Y ), p ≥ 2, is a nonlinear differentiable

mapping, and X,Y are Banach spaces. We apply Lyapunov-Schmidt procedure
and Morse Lemma to obtain a “double” saddle-node bifurcation theorem with

a two-dimensional kernel. Applications include a perturbed problem and a

semilinear elliptic equation.

1. Introduction. Many examples of bifurcation can be found in the mathematical
studies of models from physics, chemistry, biology and engineering. Analytical
bifurcation theory in infinite dimensional spaces based upon the implicit function
theorem, are most successful in problems with one dimensional kernels, typically
leading to the existence of solution curves. Consider an abstract equation

F (λ, u) = 0, (1)

where F ∈ Cp(R×X,Y ), p ≥ 1, is a nonlinear differentiable mapping, and X,Y are
Banach spaces. Let F (λ0, u0) = 0 so (λ0, u0) is a solution of (1). In [3, 4], Crandall
and Rabinowitz proved two celebrated bifurcation theorems. In both theorems, it
is assumed that 0 is a simple eigenvalue of the linearized operator, that is

(f1) dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1, andN(Fu(λ0, u0)) = span{w0},
where N(Fu) and R(Fu) are the null space and the range of linear operator Fu.

Theorem 1.1 (Saddle-node bifurcation theorem, [4] Theorem 3.2). Let U be a
neighborhood of (λ0, u0) in R×X, and let F : U → Y be a continuously differentiable
mapping. Assume that F (λ0, u0) = 0, F satisfies (f1) at (λ0, u0) and

(f2) Fλ(λ0, u0) 6∈ R(Fu(λ0, u0)).

2000 Mathematics Subject Classification. Primary: 34C23, 35R15; Secondary: 47J15.
Key words and phrases. Saddle-node bifurcation, two-mimensional kernel, Morse lemma.
The research is partially supported by NSFC grant 11071051 and 11101110, Youth Science

Foundation of Heilongjiang Province grant QC2009C73, NCET of Heilongjiang Province of China

grant 1251–NCET–002, Harbin Normal University academic backbone of youth project, and NSF-
US grant DMS-1022648.

2923

http://dx.doi.org/10.3934/cpaa.2013.12.2923


2924 PING LIU, JUNPING SHI AND YUWEN WANG

1. If Z is a complement of span{w0} in X, then the solutions of F (λ, u) = 0
near (λ0, u0) form a curve {(λ0 + λ(s), u0 + sw0 + z(s)) : |s| < δ}, where
s 7→ (λ(s), z(s)) ∈ R × Z is a continuously differentiable function, λ(0) =
λ′(0) = 0, and z(0) = z′(0) = 0.

2. If F is k−times continuously differentiable, so are λ(s) and z(s).
3. If F is C2 in u, then

λ′′(0) = −〈l, Fuu(λ0, u0)[w0, w0]〉
〈l, Fλ(λ0, u0)〉

, (2)

where l ∈ Y ∗ satisfying N(l) = R(Fu(λ0, u0)).

Theorem 1.2 (Transcritical/Pitchfork bifurcation theorem, [3] Theorem 1.7). Let
U be a neighborhood of (λ0, u0) in R×X, and let F : U → Y be a twice continuously
differentiable mapping. Assume that F (λ, u0) = 0 for (λ, u0) ∈ U . At (λ0, u0), F
satisfies (f1) and

(f3) Fλu(λ0, u0)[w0] 6∈ R(Fu(λ0, u0)).

Let Z be any complement of span{w0} in X. Then the solution set of (1) near
(λ0, u0) consists precisely of the curves u = u0 and {(λ(s), u(s)) : s ∈ I = (−ε, ε)},
where λ : I →R, z : I → Z are C1 functions such that u(s) = u0 + sw0 + sz(s),
λ(0) = λ0, z(0) = 0, and

λ′(0) = −〈l, Fuu(λ0, u0)[w0, w0]〉
2〈l, Fλu(λ0, u0)[w0]〉

, (3)

where l ∈ Y ∗ satisfying N(l) = R(Fu(λ0, u0)).

Saddle-node bifurcation Transcritical bifurcation Pitchfork bifurcation

Figure 1. Illustration of bifurcations in Theorems 1.1 and 1.2.

When λ′(0) 6= 0 in Theorem 1.2, then a transcritical bifurcation occurs; and a
pitchfork bifurcation occurs at (λ0, u0) if λ′(0) = 0 and λ′′(0) 6= 0. The saddle-node
bifurcation (turning curve), and transcritical/pitchfork bifurcation (two crossing
curves) illustrate the impact of different levels of degeneracy of the nonlinear map-
ping on the structure of local solution sets. In [10], the authors proved that Theorem
1.2 is a special case of a crossing-curve bifurcation theorem (see [10] Theorem 2.1).

While the bifurcations in Theorems 1.1 and 1.2 are the genetic ones occurring
in numerous applications, bifurcations with higher degrees of degeneracy are also
important in both theory and applications. It is the aim of this paper to discuss
the bifurcation under the assumption of a two-dimensional kernel:

(F1) dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 2,

and the same transversality condition as in saddle-node bifurcation theorem:

(F2) Fλ(λ0, u0) 6∈ R(Fu(λ0, u0)).

Under an additional second order non-degeneracy condition, we prove that the
solution set of (1) near the known solution (λ0, u0) is the union of two smooth
parabola-like curves which both turn at the bifurcation point (see Section 2 for
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details). From the degeneracy of the curves at (λ0, u0), the two curves are tangent
to each other. Moreover the turning directions of the two curves can be same or
opposite (see Section 3 for examples). A finite-dimensional version of our main re-
sult was proved in Tiahrt and Poore [15], but our approach is more general and the
proofs are different. An alternate approach is to use Lyapunov-Schmidt reduction
which reduces the original problem to a finite dimensional one, then use the the-
ory of singularities of differentiable maps and catastrophe theory (see Golubitsky
and Schaeffer [6]). But our method is more direct and convenient for the infinite
dimensional problem, as shown in [10].

Bifurcations with higher dimensional kernels have been considered in previous
work. In [9], we obtained a generalized saddle node bifurcation theorem with finite-
dimensional kernels by using the generalized inverse of the linearized operator.
Krömer, Healey and Kielhöfer [8] proved a bifurcation result with two-dimensional
kernel and a line of trivial solutions. Allgower et.al. [1], del Pino et.al. [5], Mei [11],
Shi [13], Wang et.al. [16] all have considered the bifurcation of special semilinear
elliptic equations on a square, and the kernel is a two-dimensional one. Other earlier
work include Magnus [11], Rabier [12], Taliaferro [14], and more general approach
to bifurcation theory can be found in Chow and Hale [2] and Kielhöfer [7].

In Section 2, we prove the main bifurcation result. In Section 3, we give two
applications of our results. Throughout the paper, we use || · || as the norm of
Banach space X, 〈·, ·〉 as the duality pair of a Banach space X and its dual space
X∗. For a nonlinear operator F , we use Fu as the partial derivative of F with
respect to argument u. For a linear operator L, we use N(L) as the null space of L
and R(L) as the range of L.

2. Double saddle-node bifurcation. Suppose that F satisfies (F1). Then we
have the decompositions ofX and Y : X = N(Fu(λ0, u0))⊕Z and Y = R(Fu(λ0, u0))
⊕Y1, where Z is a complement of N(Fu(λ0, u0)) in X, and Y1 is a complement of
R(Fu(λ0, u0)) in Y . In particular, Fu(λ0, u0)|Z : Z → R(Fu(λ0, u0)) is an isomor-
phism. Since N(Fu(λ0, u0)) is two-dimensional, we assume that N(Fu(λ0, u0)) =
span{w1, w2}, for some w1, w2 ∈ X. Since R(Fu(λ0, u0)) is codimension two, there
exists v1, v2 ∈ Y ∗ such that R(Fu(λ0, u0)) = {h ∈ Y : 〈v1, h〉 = 0 and 〈v2, h〉 = 0}.
If (F2) is also satisfied, then Fλ(λ0, u0) 6∈ R(Fu(λ0, u0)). Without loss of generality,
we assume that 〈v1, Fλ(λ0, u0)〉 6= 0 and 〈v2, Fλ(λ0, u0)〉 = 0. Indeed if the latter

one is not satisfied for v2, we can replace v2 by v2 − 〈v2,Fλ(λ0,u0)〉
〈v1,Fλ(λ0,u0)〉v1.

First we recall the well-known Lyapunov-Schmidt procedure under the condition
(F1). We sketch a proof for the completeness of presentation.

Lemma 2.1 (Lyapunov-Schmidt reduction). Suppose that F : R×X → Y is a Cp

mapping (p ≥ 1) such that F (λ0, u0) = 0, and F satisfies (F1) at (λ0, u0). Then
F (λ, u) = 0 for (λ, u) near (λ0, u0) can be reduced to

〈v1, F (λ, u0 + s1w1 + s2w2 + g(λ, s1, s2))〉 = 0,

〈v2, F (λ, u0 + s1w1 + s2w2 + g(λ, s1, s2))〉 = 0,
(4)

where s1, s2 ∈ (−δ, δ), λ ∈ (λ0−δ, λ0 +δ), δ is a small positive constant, v1, v2 ∈ Y ∗
such that 〈v1, h〉 = 0 and 〈v2, h〉 = 0 if and only if h ∈ R(Fu(λ0, u0)), and g is a Cp

function from a neighborhood of (λ0, 0, 0) into Z such that g(λ0, 0, 0) = 0 and Z is
a complement of N(Fu(λ0, u0)) in X.
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Proof. We denote the projection from Y into R(Fu(λ0, u0)) by Q. Then F (λ, u) = 0
is equivalent to

Q ◦ F (λ, u) = 0, and (I −Q) ◦ F (λ, u) = 0. (5)

We rewrite the first equation in the form

Q ◦ F (λ, u0 + s1w1 + s2w2 + g) = 0, (6)

where s1, s2 ∈ R and g ∈ Z, from the fact that N(Fu(λ0, u0)) = span{w1, w2} and
X = N(Fu(λ0, u0))⊕ Z. Since F satisfies (F1) at (λ0, u0), we have g = g(λ, s1, s2)
is uniquely solvable from the implicit function theorem for (λ, s1, s2) near (λ0, 0, 0),
and g is Cp. Hence u = u0 +s1w1 +s2w2 +g(λ, s1, s2) is a solution to F (λ, u) = 0 if
and only if (I −Q) ◦F (λ, u0 + s1w1 + s2w2 + g(λ, s1, s2)) = 0. Since R(Fu(λ0, u0))
is codimension two, it becomes the two scalar equations in (4).

Next we recall the following fundamental lemma about the zero level curves of a
two-dimensional mapping.

Lemma 2.2 ([10], Lemma 2.5). Suppose that (x0, y0) ∈ R2 and U is a neighborhood
of (x0, y0). Assume that f : U → R is a Cp function for p ≥ 2, f(x0, y0) = 0,
∇f(x0, y0) = 0, and the Hessian H = H(x0, y0) is non-degenerate. Then

1. If H is definite, then (x0, y0) is the unique zero point of f(x, y) = 0 near
(x0, y0);

2. If H is indefinite, then there exist two Cp−1 curves (xi(t), yi(t)), i = 1, 2,
t ∈ (−δ, δ), such that the solution set of f(x, y) = 0 consists of exactly the two
curves near (x0, y0), (xi(0), yi(0)) = (x0, y0). Moreover t can be rescaled and
indices can be rearranged so that (x′1(0), y′1(0)) and (x′2(0), y′2(0)) are the two
linear independent solutions of

fxx(x0, y0)η2 + 2fxy(x0, y0)ητ + fyy(x0, y0)τ2 = 0. (7)

Our main result is the following theorem about the existence of two solution
curves tangent to each other at the bifurcation point.

Theorem 2.3. Let F : R ×X → Y be a Cp mapping, where p ≥ 2. Suppose that
F (λ0, u0) = 0, and F satisfies (F1) and (F2). Let X = N(Fu(λ0, u0)) ⊕ Z be a
fixed splitting of X, N(Fu(λ0, u0)) = span{w1, w2}, and let v1, v2 ∈ Y ∗ such that
R(Fu(λ0, u0)) = {h ∈ Y : 〈v1, h〉 = 0 and 〈v2, h〉 = 0} so that 〈v1, Fλ〉 6= 0 and
〈v2, Fλ〉 = 0. We assume that the matrix (all derivatives are evaluated at (λ0, u0))

H2 = H2(λ0, u0) ≡
(
〈v2, Fuu[w1, w1]〉 〈v2, Fuu[w1, w2]〉
〈v2, Fuu[w1, w2]〉 〈v2, Fuu[w2, w2]〉

)
(8)

is non-degenerate, i.e., det(H) 6= 0.

1. If H2 is definite, i.e. det(H2) > 0, then the solution set of F (λ, u) = 0 near
(λ, u) = (λ0, u0) is {(λ0, u0)}.

2. If H2 is indefinite, i.e. det(H2) < 0, then the solution set of F (λ, u) = 0
near (λ, u) = (λ0, u0) is the union of two Cp−1 curves, and the two curves are
in form of (λi(t), ui(t)) = (λ0 + txi(t), u0 + µiw1t + ηiw2t + tyi(t)), i = 1, 2,
where t ∈ (−δ, δ) for some δ > 0, (µ1, η1) and (µ2, η2) are non-zero linear
independent solutions of the equation

〈v2, Fuu[w1, w1]〉µ2 + 2〈v2, Fuu[w1, w2]〉ηµ+ 〈v2, Fuu[w2, w2]〉η2 = 0, (9)

where xi(t), yi(t) are some functions defined on t ∈ (−δ, δ) which satisfy
xi(0) = x′i(0) = 0, yi(0) = y′i(0) = 0, yi(t) ∈ Z, and i = 1, 2.
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Proof. From the proof of Lemma 2.1, we have

f1(λ, s1, s2) ≡ Q ◦ F (λ, u0 + s1w1 + s2w2 + g(λ, s1, s2)) = 0, (10)

for (λ, s1, s2) near (λ0, 0, 0). Differentiating f1 and evaluating at (λ, s1, s2) =
(λ0, 0, 0), we obtain

0 = ∇f1 = (Q ◦ (Fλ + Fu[gλ]), Q ◦ Fu[w1 + gs1 ], Q ◦ Fu[w2 + gs2 ]). (11)

Since Fλ 6∈ R(Fu(λ0, u0)) from (F2) and w1, w2 ∈ N(Fu(λ0, u0)), we have
Fu(λ0, u0)[w1] = 0 and Fu(λ0, u0)[w2] = 0. So we have

(Q ◦ Fλ +Q ◦ Fu[gλ], Q ◦ Fu[gs1 ], Q ◦ Fu[gs2 ]) = 0. (12)

Notice that gλ, gs1 , gs2 ∈ Z and Fu(λ0, u0)|Z is an isomorphism, thus gs1(λ0, 0, 0) =
0, gs2(λ0, 0, 0) = 0.

Next we define

Gi(λ, s1, s2) = 〈vi, F (λ, u0 + s1w1 + s2w2 + g(λ, s1, s2))〉, i = 1, 2. (13)

From Lemma 2.1, F (λ, u) = 0 for (λ, u) near (λ0, u0) is equivalent to Gi(λ, s1, s2) =
0, i = 1, 2 for (λ, s1, s2) near (λ0, 0, 0).

Since

∂G1

∂λ
(λ0, 0, 0) = 〈v1, Fλ(λ0, u0) + Fu(λ0, u0)[gλ(λ0, 0, 0)]〉

= 〈v1, Fλ(λ0, u0)〉 6= 0,
(14)

we have G1(λ, s1, s2) = 0 is uniquely solvable for λ = λ(s1, s2) near (s1, s2) = (0, 0),
λ is Cp, and λ(0, 0) = λ0.

Now we define

f2(s1, s2) ≡ G1(λ(s1, s2), s1, s2)

= 〈v1, F (λ(s1, s2), u0 + s1w1 + s2w2 + g(λ(s1, s2), s1, s2))〉. (15)

Differentiating f2 and evaluating at (s1, s2) = (0, 0), we have

0 =∇f2
=(〈v1, Fλλs1 + Fu[w1 + gλλs1 + gs1 ]〉, 〈v1, Fλλs2 + Fu[w2 + gλλs2 + gs2 ]〉)
=(〈v1, Fλ〉λs1 , 〈v1, Fλ〉λs2).

Then λsi(0, 0) = 0 holds for i = 1, 2 since 〈v1, Fλ(λ0, u0)〉 6= 0.
Finally, to prove the statement in Theorem 2.3, we apply Lemma 2.2 to

G2(s1, s2) = 〈v2, F (λ(s1, s2), u0 + s1w1 + s2w2 + g(λ(s1, s2), s1, s2))〉. (16)

From Lemma 2.1 and above discussion of G1(λ, s1, s2), F (λ, u) = 0 for (λ, u) near
(λ0, u0) is equivalent to G2(s1, s2) = 0 for (s1, s2) near (0, 0). To apply Lemma 2.2,
we claim that

∇G2(0, 0) = (
∂G2

∂s1
(0, 0),

∂G2

∂s2
(0, 0)) = 0, (17)

and the Hessian matrix Hess(G2) at (0, 0) is non-degenerate.
It is easy to see that

∇G2(0, 0) =

(
〈v2, Fλ(λ0, u0)λs1(0, 0)+Fu(λ0, u0)[w1+gλλs1(0, 0)+gs1(0, 0)]〉
〈v2, Fλ(λ0, u0)λs2(0, 0)+Fu(λ0, u0)[w2+gλλs2(0, 0)+gs2(0, 0)]〉

)T
,
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where PT denotes the transpose of the matrix P . Thus ∇G2(0, 0) = 0 from
λsi(0, 0) = 0, for i = 1, 2. For the Hessian matrix, we have

Hess(G2) =


∂2G2

∂s2
1

∂2G2

∂s1∂s2

∂2G2

∂s1∂s2

∂2G2

∂s2
2

 . (18)

Here for i = 1, 2, we have

∂2G2

∂s2
i

(0, 0) =〈v2, Fλλλ
2
si + 2Fλu[wi + gλλsi + gsi ]λsi + Fλλsisi

+ Fuu[wi + gλλsi + gsi , wi + gλλsi + gsi ]

+ Fu[gλλλsisi + gλλsisi + 2gsiλλsi + gsisi ]〉
=〈v2, Fuu[wi, wi]〉

(19)

since λsi(0, 0) = 0, gsi(λ0, 0, 0) = 0 and 〈v2, Fλ〉 = 0. And similarly we have

∂2G2

∂s1∂s2
(0, 0) =

∂2G2

∂s2∂s1
(0, 0)

= 〈v2, Fλλλs1λs2 + Fλu[w2 + gλλs2 + gs2 ]λs1

+ Fλλs1s2 + Fλu[w1 + gλλs1 + gs1 ]λs2

+ Fuu[w1 + gλλs1 + gs1 , w2 + gλλs2 + gs2 ]

+ Fu[gλλλs2λs1 + gλs2λs1 + gλλs1s2 + gλs1λs2 + gs1s2 ]〉
= 〈v2, Fuu[w1, w2]〉.

(20)

In summary, from our calculation,

Hess(G2) = H2(λ0, u0) ≡
(
〈v2, Fuu[w1, w1]〉 〈v2, Fuu[w1, w2]〉
〈v2, Fuu[w1, w2]〉 〈v2, Fuu[w2, w2]〉

)
. (21)

Therefore from Lemma 2.2, we conclude that the solution set of F (λ, u) = 0 near
(λ, u) = (λ0, u0) is a pair of intersecting curves if the matrix in (21) is indefinite, or
is a single point if it is definite.

Now we consider the two curve case. We denote the two curves by (λi(t), ui(t)) =
(λi(s1i(t), s2i(t)), u0 + s1i(t)w1 + s2i(t)w2 + g(λi(s1i(t), s2i(t)), s1i(t), s2i(t))), with
i = 1, 2. Then

F (λi(s1i(t), s2i(t)), u0 + s1i(t)w1 + s2i(t)w2

+ g(λi(s1i(t), s2i(t)), s1i(t), s2i(t))) = 0.
(22)

Differentiating (22), we obtain that from Lemma 2.2 the vectors vi = (s′1i(0), s′2i(0))
are the solutions of vTHv = 0, which are the solutions (µ, η) of (9). Also λ′i(0) = 0

since λ′i(0) = ∂λi
∂s1

(0)s′1i(0) + ∂λi
∂s2

(0)s′2i(0) = 0.

Note that the two curves in Theorem 2.3 are tangent to each other at (λ0, u0)
since λ′i(0) = 0. For each curve, λ′′i (0) can also be calculated for Cp (p ≥ 2) mapping
F (see Proposition 2.4 next). In the case of a single curve λ(s), if λ′′(0) > 0 at the
bifurcation point, then it is called supercritical; and if λ′′(0) < 0, then it is called
subcritical. Here we call the double saddle-node bifurcation at (λ0, u0) described
in Theorem 2.3 to be supercritical if λ′′i (0) > 0 for i = 1, 2, and it is subcritical if
λ′′i (0) < 0 for i = 1, 2. However it is also possible to have λ′′1(0) · λ′′2(0) < 0, and
we call it a transcritical double saddle-node bifurcation. The following proposition
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gives the calculation of λ′′i (0) and determines the direction of the double saddle-node
bifurcation:

Proposition 2.4. Assume the conditions in Theorem 2.3 are satisfied, then the
direction of the two solution curves are determined by

λ′′i (0) = −〈v1, Fuu[µiw1 + ηiw2, µiw1 + ηiw2]〉
〈v1, Fλ〉

, (23)

for i = 1, 2. Moreover we consider the matrix (all derivatives are evaluated at
(λ0, u0))

H1 = H1(λ0, u0) ≡
(
〈v1, Fuu[w1, w1]〉 〈v1, Fuu[w1, w2]〉
〈v1, Fuu[w1, w2]〉 〈v1, Fuu[w2, w2]〉

)
,

then the double saddle-node bifurcation is supercritical or subcritical if H1 is (posi-
tively or negatively) definite.

Proof. In Theorem 2.3, we have λi(0) = λ0, λ′i(0) = 0, ui(0) = u0, u′i(0) = µiw1 +
ηiw2, for i = 1, 2. Differentiating F (λi(t), ui(t)) = 0 twice with respect to t, we
obtain

Fλλ(λ′i(t))
2 + 2Fλu[u′i(t)]λ

′
i(t)

+Fλλ
′′
i (t) + Fuu[u′i(t), u

′
i(t)] + Fu[u′′i (t)] = 0. (24)

Setting t = 0 in (24), we get

Fλλ
′′
i (0) + Fuu[µiw1 + ηiw2, µiw1 + ηiw2] + Fu[u′′i (0)] = 0. (25)

Applying v1 to (25), we obtain (23). From (23), we have

λ′′1(0) · λ′′2(0) =
1

(〈v1, Fλ〉)2
· [k1H1k

T
1 ] · [k2H1k

T
2 ]

where ki = (µi, ηi), for i = 1, 2. If H1 is positively or negatively definite, then
k1H1k

T
1 and k2H1k

T
2 are both positive or negative, therefore λ′′1(0) · λ′′2(0) > 0 and

the direction of the two bifurcation curves are same.

Remark 2.5. 1. A weaker version of Theorem 2.3 was proved in Tiahrt and
Poore [15]. They prove similar crossing solution curves, but they only show
that the curves are of class Cp−2, and their results are for finite dimensional
spaces only. We prove that the curves are indeed of class Cp−1.

2. If the bifurcation is supercritical, then near the bifurcation point (λ0, u0), (1)
has no solution when λ ∈ (λ0 − ε, λ0), exactly one solution at λ = λ0, and
exactly four solutions when λ ∈ (λ0, λ0 + ε); and it is similar for subcritical
bifurcation. But if the bifurcation is transcritical, then near the bifurcation
point (λ0, u0), (1) has exactly two solutions when λ ∈ (λ0−ε, λ0)∪(λ0, λ0+ε),
and exactly one solution at λ = λ0 (see Figure 2 or Figure 3). Examples for
each case will be shown in Section 3.

3. The reverse of the last statement in Proposition 2.4 is not true. If the double
saddle-node bifurcation is sub(super)critical, then H1 is not necessarily posi-
tively or negatively definite. An example that H1 is indefinite but the double
saddle-node bifurcation is subcritical is shown as part of Example 3.1.
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Supercritical Subcritical Transcritical

Figure 2. Three cases of double saddle-node bifurcations. This
figure is for illustration only as the two curves cannot be in the
same two-dimensional space, see Figure 3 for a real example.

3. Examples. We illustrate our result by several examples. The first one is a
finite dimensional one which shows the canonical form of this double saddle-node
bifurcation.

Example 3.1. Define

F

(
λ,

(
x
y

))
=

(
λ− x2 − 2axy − cy2

λ− y2 − 2bxy − dx2

)
, (26)

where U =

(
x
y

)
∈ R2, a, b, c, d ∈ R and λ ∈ R. From simple calculations, we

obtain

FU =

(
−2x− 2ay −2ax− 2cy
−2by − 2dx −2y − 2bx

)
, Fλ =

(
1
1

)
,

FUU =

((
−2 −2a
−2a −2c

)
,

(
−2d −2b
−2b −2

))
.

(27)

We analyze the bifurcation at

(
0,

(
0
0

))
. It is easy to see that N(FU ) = span{w1, w2},

where w1 =

(
1
0

)
, w2 =

(
0
1

)
, R(FU ) =

{(
0
0

)}
, so obviously Fλ 6∈ R(FU ). We can

choose v1 =

(
1
0

)
, v2 =

(
1
−1

)
(here the functional is represented by elements in

Hilbert space R2). Then 〈v1, Fλ〉 = 1, 〈v2, Fλ〉 = 0. Hence (F1), (F2) are satisfied.
From the above calculation,

FUU [w1, w1] =

(
−2
−2d

)
, FUU [w1, w2] =

(
−2a
−2b

)
, FUU [w2, w2] =

(
−2c
−2

)
.

We find the matrix H2 in (8) to be

H2 =

(
−2 + 2d −2a+ 2b
−2a+ 2b −2c+ 2

)
which is indefinite if

(b− a)2 > (1− c)(d− 1). (28)

Thus we can apply Theorem 2.3 to this equation if (28) hold, and near (λ, x, y) =(
0,

(
0
0

))
, the solution set of F = (0, 0)T is the union of two touching curves.

Moreover we can also apply the results in Proposition 2.4, and the associated matrix
is

H1 =

(
−2 −2a
−2a −2c

)
.
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Hence if det(H1) = 4c − 4a2 > 0, we have the double saddle-node bifurcation is
subcritical or supercritical. We notice that if a = b = 0, c = d = −2, then (28) is
satisfied, H1 is indefinite, but the bifurcation is also subcritical. Thus the reverse of
the last statement in Proposition 2.4 is not true (see Remark 2.5.3). On the other
hand, if a = b = c = d = 0, then (28) holds and the bifurcation is supercritical (see
Fig. 3.)

Figure 3. Three types of double saddle-node bifurcations in Ex-
ample 4.1. (left) λ − x2 = 0 and λ − y2 = 0, supercritical; (mid-
dle) λ − x2 + 2y2 = 0 and λ − y2 + 2x2 = 0, subcritical; (right)
λ− x2 − 2xy = 0 and λ− y2 − 2xy = 0, transcritical.

To obtain a transcritical bifurcation, we choose (µ1, η1) = (µ1, 1) and (µ2, η2) =
(µ2, 1) in Theorem 2.3 and Proposition 2.4, where µ1 and µ2 satisfy

µ1µ2 =
1− c
d− 1

, µ1 + µ2 = 2 · a− b
d− 1

.

From (23) and 〈v1, Fλ〉 = 1, we can calculate that

λ′′1(0) · λ′′2(0) =
4

(d− 1)2
[c2d2 + 4b2c+ 4a2d+ 1− 4abcd− 4ab− 2cd]. (29)

From Remark 2.5, if a, b, c, d satisfies (28) and λ′′1(0) · λ′′2(0) > 0, then near the

bifurcation point (0,

(
0
0

)
), (26) has no solution when λ ∈ (−ε, 0) (or (0, ε)), exactly

one solution at λ = 0, and exactly four solutions when λ ∈ (0, ε) (or (−ε, 0)); if

a, b, c, d satisfies (28) and λ′′1(0)·λ′′2(0) < 0, then near the bifurcation point (0,

(
0
0

)
),

(26) has exactly two solutions when λ ∈ (−ε, 0)∪ (0, ε), and exactly one solution at
λ = 0.

It is easy to see that there are many values of (a, b, c, d) so that (28) is satisfied
and λ′′1(0) · λ′′2(0) < 0. For example c = d = 0 and a = b = 1 (see Figure 3(right)).

Next we consider an infinite dimensional example.

Example 3.2. We consider a coupled logistic type semilinear elliptic equation:
∆u+ λ1u+ λ− v2 = 0, x ∈ Ω,

∆v + λ1v + λ− u2 = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

(30)
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where λ ∈ R, Ω is a bounded domain in Rn, and λ1 is the principal eigenvalue of{
∆φ+ λφ = 0, x ∈ Ω,

φ(x) = 0, x ∈ ∂Ω.
(31)

It is well-known that λ1 is a simple eigenvalue, and its corresponding eigenfunction
φ1 does not change sign in Ω.

We define

F (λ, u, v) =

(
∆u+ λ1u+ λ− v2

∆v + λ1v + λ− u2

)
, (32)

where λ ∈ R, and U = (u, v) ∈ X ×X, where X = {u ∈ C2,α(Ω) : u = 0 on ∂Ω}.
From simple calculations, we obtain

FU (λ, u, v)

(
φ
ψ

)
=

(
∆φ+ λ1φ− 2vψ
∆ψ + λ1ψ − 2uφ

)
, FU (0, 0, 0)

(
φ
ψ

)
=

(
∆φ+ λ1φ
∆ψ + λ1ψ

)
,

Fλ(0, 0, 0) =

(
1
1

)
, FUU (0, 0, 0)

[(
θ1

ψ1

)(
θ2

ψ2

)]
=

(
−2ψ1ψ2

−2θ1θ2

)
.

Then

N(FU (0, 0, 0)) = span

{(
φ1

0

)
,

(
0
φ1

)}
,

R(FU (0, 0, 0)) =

{(
g
h

)
∈ [Cα(Ω)]2 :

∫
Ω

gφ1dx = 0 and

∫
Ω

hφ1dx = 0

}
,

〈v1, Fλ〉 = 〈v2, Fλ〉 =
∫

Ω
φ1dx 6= 0. Thus (F1) and (F2) are satisfied. Moreover

FUU (0, 0, 0)

[(
φ1

0

)(
φ1

0

)]
=

(
0
−2φ2

1

)
, FUU (0, 0, 0)

[(
φ1

0

)(
0
φ1

)]
=

(
0
0

)
,

FUU (0, 0, 0)

[(
0
φ1

)(
0
φ1

)]
=

(
−2φ2

1

0

)
.

Hence we find the matrix H2 in (8) to be

H2 =

(
−2
∫

Ω
φ3

1dx 0
0 2

∫
Ω
φ3

1dx

)
(33)

which is indefinite.

Thus we can apply Theorem 2.3 to this equation, and near (λ, x, y) = (0, 0, 0),

the solution set is the union of two tangent curves in form of

(
λi(t),

(
ui(t)
vi(t)

))
=(

txi(t),

(
µi
ηi

)
tφ1 + tyi(t)

)
, where (µ1, η1) = (1, 1), (µ2, η2) = (1,−1), xi(0) =

x′i(0) = 0, yi(0) = y′i(0) = 0, and λ′′i (0) = 2
∫
Ω
φ3

1dx∫
Ω
φ1dx

> 0, i = 1, 2. Thus the

double saddle-node bifurcation here is supercritical. It is easy to see that from the
construction in Example 3.1, one can also modify (30) to include uv term to obtain
a transcritical double saddle-node bifurcation.

Acknowledgments. We would like to thank reviewers for helpful comments which
improve the manuscript.
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[8] S. Krömer, T. J. Healey and H. Kielhöfer, Bifurcation with a two-dimensional kernel , J.

Differential Equations, 220 (2006), 234–258.
[9] P. Liu and Y. W. Wang, The generalized saddle-node bifurcation of degenerate solution,

Comment. Math. Prace Mat., 45 (2005), 145–150.

[10] P. Liu, J. P. Shi and Y. W. Wang, Imperfect transcritical and pitchfork bifurcations, J. Funct.
Anal., 251 (2007), 573–600.

[11] M. Zhen, “Numerical Bifurcation Analysis for Reaction-diffusion Equations,” Springer Series

in Computational Mathematics, 28. Springer-Verlag, Berlin, 2000.
[12] P. Rabier, A generalization of the implicit function theorem for mappings from Rn+1 into

Rn and its applications, J. Funct. Anal., 56 (1984), 145–170.

[13] J. P. Shi, Saddle solutions of the balanced bistable diffusion equation, Comm. Pure Appl.
Math., 55 (2002), 815–830.

[14] S. D. Taliaferro, Bifurcation at multiple eigenvalues and stability of bifurcating solutions, J.
Funct. Anal., 55 (1984), 247–275.

[15] C. A. Tiahrt and A. B. Poore, A bifurcation analysis of the nonlinear parametric programming

problem, Math. Programming (Ser. A), 47 (1990), 117–141.
[16] J. F. Wang, J. P. Shi and Y. W. Wang, Bifurcation from the second eigenvalue of a class of

semilinear elliptic equations, (Chinese) Natur. Sci. J. Harbin Normal Univ., 21 (2005), 1–4.

Received September 2010; revised July 2012.

E-mail address: liuping506@gmail.com

E-mail address: shij@math.wm.edu

E-mail address: wangyuwen1950@yahoo.com.cn

http://www.ams.org/mathscinet-getitem?mr=MR1109503&return=pdf
http://dx.doi.org/10.1007/978-3-0348-7004-7_1
http://dx.doi.org/10.1007/978-3-0348-7004-7_1
http://www.ams.org/mathscinet-getitem?mr=MR0838795&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0288640&return=pdf
http://dx.doi.org/10.1016/0022-1236(71)90015-2
http://www.ams.org/mathscinet-getitem?mr=MR0341212&return=pdf
http://dx.doi.org/10.1007/BF00282325
http://dx.doi.org/10.1007/BF00282325
http://www.ams.org/mathscinet-getitem?mr=MR1991761&return=pdf
http://dx.doi.org/10.1090/S0002-9939-03-06906-5
http://dx.doi.org/10.1090/S0002-9939-03-06906-5
http://www.ams.org/mathscinet-getitem?mr=MR0508917&return=pdf
http://dx.doi.org/10.1002/cpa.3160320103
http://www.ams.org/mathscinet-getitem?mr=MR2004250&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2182087&return=pdf
http://dx.doi.org/10.1016/j.jde.2005.02.008
http://www.ams.org/mathscinet-getitem?mr=MR2199712&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2356424&return=pdf
http://dx.doi.org/10.1016/j.jfa.2007.06.015
http://www.ams.org/mathscinet-getitem?mr=MR1772261&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0738577&return=pdf
http://dx.doi.org/10.1016/0022-1236(84)90085-5
http://dx.doi.org/10.1016/0022-1236(84)90085-5
http://www.ams.org/mathscinet-getitem?mr=MR1894156&return=pdf
http://dx.doi.org/10.1002/cpa.3027
http://www.ams.org/mathscinet-getitem?mr=MR0733918&return=pdf
http://dx.doi.org/10.1016/0022-1236(84)90012-0
http://www.ams.org/mathscinet-getitem?mr=MR1054845&return=pdf
http://dx.doi.org/10.1007/BF01580856
http://dx.doi.org/10.1007/BF01580856
http://www.ams.org/mathscinet-getitem?mr=MR2241046&return=pdf
mailto:liuping506@gmail.com
mailto:shij@math.wm.edu
mailto:wangyuwen1950@yahoo.com.cn

	A Double Saddle-Node Bifurcation Theorem
	Recommended Citation

	1. Introduction
	2. Double saddle-node bifurcation
	3. Examples
	Acknowledgments
	REFERENCES

