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IBE-Lite: A Lightweight Identity-Based
Cryptography for Body Sensor Networks

Chiu C. Tan, Member, IEEE, Haodong Wang, Member, IEEE, Sheng Zhong, Member, IEEE,
and Qun Li, Member, IEEE

Abstract—A body sensor network (BSN) is a network of sen-
sors deployed on a person’s body for health care monitoring. Since
the sensors collect personal medical data, security and privacy are
important components in a BSN. In this paper, we developed IBE-
Lite, a lightweight identity-based encryption suitable for sensors
in a BSN. We present protocols based on IBE-Lite that balance se-
curity and privacy with accessibility and perform evaluation using
experiments conducted on commercially available sensors.

Index Terms—Body sensor network, identity-based encryption,
privacy, security.

I. INTRODUCTION

THE USE of wireless sensors for health care monitoring
creates new ways of providing quality health care. A di-

verse array of specialized sensors can be deployed to monitor
for instance an at-risk patient with a history of heart attacks.
By continuously collecting a patient’s physiological data in an
unobtrusive manner, these sensors can provide doctors with ad-
ditional information for better medical diagnosis. A body sensor
network (BSN), is an important component in this monitoring
scheme. A BSN consists of sensors placed directly on a patient’s
body or woven into the patient’s clothes, and “travels” with the
patient collecting data.

The fact that a BSN is “always on,” continuously collecting
data, creates additional security and privacy demands. A patient
will rightly want to limit the access and scope of the collected
data to different people. For the purposes of this paper, we
assume the patient wishes to control data access according to
the date, time, and the identity of the person who will access
the data. For example, a patient may want to limit a physical
therapist’s access to BSN data collected on January 1st between
9 and 10 a.m., and no other times. In practice, more stringent
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access conditions can be adopted such as restricting access to
specific locations where the data was collected.

In this paper, we focus on a BSN deployed for medical moni-
toring. The data collected by the BSN can be stored in the sensors
themselves, on a home computer, or forwarded to a publicly ac-
cessible website. We use the term storage site to refer to where
the data is stored. There is a certificate authority (CA) that helps
a patient store and regulate access to decryption keys. Examples
of possible CAs include a local police department or veteran’s
affairs (VA) clinic. A patient will register with a CA ahead of
time, authorizing the CA to release permissions under different
conditions to the appropriate personnel. A doctor wanting to
obtain the data will first contact the CA for the appropriate keys,
and then obtain the needed information from the storage site.
We consider an adversary that seeks unauthorized access to the
patient’s data. These adversaries include criminal elements like
identity thieves, as well as “snoopy” elements like employers.
The adversary in the latter case may have partial access to some
of the data, but may try to learn more. Details of these attacks
will be elaborated later in the paper.

A. Encryption Techniques

We can provide the necessary security protections by design-
ing the BSN to encrypt data with different keys. For instance,
the data collected between 9 and 10 a.m. will be encrypted
with a different key from the data collected between noon and
1 p.m. the same day. This way, the patient can assign the appro-
priate decryption key to different people to limit access to the
information.

Symmetric Key Encryption: In symmetric key encryption, the
same key is used to both encrypt and decrypt the data. So for
a patient wearing a BSN that monitors a patient 24 h a day for
an entire month and only wants his primary doctor to access the
information, will need to store 24 × 30 × 1 = 720 symmetric
keys in the BSN, assuming that a different key is used every
hour. If the patient wishes to control access to different people
(other doctors, in-house caregiver, and so on), then more keys
will have to be assigned to the BSN.

A problem occurs when the BSN or a single sensor from the
BSN is stolen. When this happens, the adversary will be able
to decrypt the data, since the same key is used for both encryp-
tion and decryption. One solution is to increase the number of
encryption keys by letting each sensor use a different key to
encrypt the data collected at the same time. For a BSN with
100 sensors, we will have 10 × 24 × 30 × 1 = 72 000 keys in
the example given above. This makes key management com-
plicated since the decrypting party may not know in advance

1089-7771/$26.00 © 2009 IEEE
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which key is used. For this reason, many conventional proto-
cols such as SSL on the Internet use symmetric keys to encrypt
data, but use public keys to encrypt the symmetric key before
transmission.

Conventional Public Key Encryption: In conventional public
key encryption like Rivest-Shamir-Adleman algorithm (RSA),
two keys are used, an encryption key and a decryption key. Here,
the encryption key is stored on the BSN, and the decryption key
is stored safely elsewhere at a trusted location like the CA.
When the BSN is compromised, the adversary will only learn
the encryption key and cannot decrypt the data.

However, once the secret key is revealed, all encrypted data is
vulnerable. This poses a problem when temporary access to the
BSN data is needed. For instance, consider an on duty doctor
wanting to access the BSN data. If only one public key is used to
encrypt all the data, the doctor after learning the secret key will
be able to decrypt all data even when he is off duty. A possible
defense is to store many public keys in the BSN. However,
this will also lead to similar key management problems as with
symmetric key encryption.

Identity Based Encryption (IBE): IBE is a form of asymmetric
cryptography like RSA. However, unlike RSA which requires
both public and private key to be generated together, IBE allows
a public key to be generated from an arbitrary string [1]. The
corresponding private key can be generated separately later. For
example, the patient may instruct the CA to release the keys
to any ER doctor. Each day, the patient’s BSN will create a
new public key using the string str = {date | time |ER}. The
CA does not have to create the corresponding private key. When
an ER doctor wants to obtain data for January 1st between 9
and 10 a.m., he will first authenticate himself to the CA. The
CA will then create the decryption key using that same string
str = {date | time |ER}. This key can only decrypt data collected
on that date and time.

Storing the syntax in the BSN is secure even if the sensors
are compromised due to the asymmetric property of IBE. An
adversary with access to a BSN sensor and knowledge of the
syntax can only create a public key that cannot decrypt any
information. Only the CA (or the patient himself) can create
the private key to decrypt the data. Key management is also
simplified, since the CA can generate a particular secret key
based on the syntax, for instance date and time, on demand.

B. Our Contributions

We design protocols based on IBE that provide security and
privacy protections while allowing flexible access to stored data.
While IBE has been actively studied and widely applied in
cryptography research, conventional IBE primitives are compu-
tationally demanding and cannot be efficiently implemented on
BSN sensors. We developed IBE-Lite, a lightweight IBE suit-
able for a BSN. Through a proof-of-concept implementation of
IBE-Lite on commercially available sensors, our experimental
results show that IBE-Lite gives reasonable performance when
executed by resource-constrained sensors.

The rest of the paper is as follows. Section II presents our IBE-
based scheme, and Section III presents the security analysis

TABLE I
SIZE OF BASIC ECC PRIMITIVES. y AND P ARE BOTH 320 BITS LONG. p, q,

AND h(.) ARE 160 BITS EACH

and performance of our protocols. Related work is found in
Section IV and Section V concludes.

II. IBE-LITE SOLUTION

The simple examples presented in the previous section rely
on conventional IBE that cannot be efficiently executed by a
sensor in a BSN. Instead, we introduce IBE-Lite, a lightweight
IBE that retains the properties of conventional IBE, and yet
can be executed on a BSN sensor is needed. The two useful
properties are the ability to use an arbitrary string to generate a
public key, and the ability to generate a public key separately
from the corresponding secret key. IBE-Lite is built upon elliptic
curve cryptography (ECC), a public key primitive suitable for
BSN [2].

To setup an ECC, we need to derive a secret key x, and pub-
lic parameters (y, P, p, q, h(.)). Table I shows the size of these
parameters in bits. For the rest of the paper, we denote encrypt-
ing a message m using public key y as ECCEncrypt(m, y), and
decryption of ciphertext c generated by the ECCEncrypt using
the secret key x is given as ECCDecrypt(c, x). Details for gen-
erating the parameters as well as ECCEncrypt and ECCDecrypt
are found in [3].

A. IBE-Lite

From the basic ECC primitives, we derive the following IBE-
Lite primitives, setup, keygen, encrypt, and decrypt.

The intuition behind using IBE-Lite is to let a sensor indepen-
dently generate a public key on-the-fly using an arbitrary string.
For example, a sensor collecting EKG readings on Monday
1 p.m. will first create a string str = (Monday | 1 p.m. |EKG).
Using this string, the sensor can derive a public key, ystr to
encrypt the data and send it to the storage site. There is no cor-
responding secret key created. In fact, the sensor cannot create
the secret key needed to decrypt the message.

When the CA wishes to release this information to a doctor,
the CA will derive the corresponding secret key xstr by using
the same string str = (Monday | 1 p.m. |EKG). This secret key
only allows the doctor to decrypt messages encrypted by a sensor
using the same string. This simplifies the key management, since
the CA can generate the secret key on-demand without keeping
track of which keys were used to encrypt which data. The only
requirement is that the string used to describe the event is the
same. Our primitives are as follows.
Setup: The patient selects an elliptic curve E over GF (p),

where p is a big prime number. We also denote P as the base
point of E and q as the order of P , where q is also a big prime.
The patient then generates n secret keys x1 , . . . , xn ∈ GF (q)
to generate the master secret key

X = (x1 , . . . , xn ). (1)
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The n public keys are then generated to make up the master
public key

Y = (y1 , . . . , yn ) (2)

where yi = xiP , 1 ≤ i < n. Finally, the patient selects a colli-
sion resistant one-way hash function h: {0, 1}∗ → {0, 1}n . The
parameters

〈Y, P, p, q, h(.)〉 (3)

are released as the system public parameters.
Keygen: To derive a secret key xstr corresponding to a

public key generated by a string str, the patient executes
Keygen(str) = xstr

xstr =
n∑

i=1

hi(str)xi (4)

where hi(str) is the ith bit of h(str).
Encrypt: To encrypt a message m using a public key de-

rived from string str, the sensor does Encrypt(m, str) to de-
termine the ciphertext c. Algorithm 1 shows the process. Note
that Algorithm 1 lines 1 and 2 need only be run once to derive
the public key ystr .

Decrypt: The doctor executes Decrypt(c, xstr) to obtain
the original message m which was encrypted using a secret key
derived from str. The process is shown in Algorithm 2.

B. BSN Security Protocols

Here we describe the protocols built upon IBE-Lite. First is
the initialization phase where the patient first uses the BSN.
Next is the data collection phase, which outlines how a sensor
encrypts the collected data. This is followed by the data transfer
phase that describes how a BSN transfers data to a storage site.
Finally, the query phase which occurs when a doctor needs to
obtain data from the storage site.

We assume that an agreed upon syntax is used to describe the
public key, and this description is termed as str. For example,
the patient deciding to collect data on a hourly basis will set the
sensors in the BSN to affix a timestamp rounded to the near-
est hour when creating str. In other words, two EKG readings
collected on Monday at 1:05 p.m. and 1:20 p.m. will both be
described using the same string str = {Monday | 1 p.m. |EKG}.

As mentioned earlier, we assume an honest-but-curious stor-
age site, which will try to learn the contents of the stored data,
but will otherwise not delete the stored data. We also assume a
separate security mechanism is in place so that only the patient
can store BSN data onto the storage site.

Initialization: The patient first executes Setup to ob-
tain the master secret key X = (x1 , . . . , xn ), and public pa-
rameters 〈Y, P, p, q, h(.)〉. The patient loads the parameters
〈Y, P, p, q, h(.)〉 into every sensor in the BSN. The master secret
key is registered with the CA.

Data Collection: Let the sensor collect data d at event str.
The sensor executes Algorithm 3 to encrypt its data.

The tuple (c1 , c2) is then stored in sensor memory. The flag
is a commonly known bitstring several bits long.

Data Transfer: Periodically, each sensor in the BSN will
transfer its data to the storage site. This is done by first aggre-
gating all the data into a cellphone like device [4]. The cellphone
then forwards the aggregated data to the storage site. Assuming
that there are k tuples generated by the BSN, the cellphone will
forward the set {(c1

1 , c
1
2), . . . , (c

k
1 , ck

2 )}. Alternatively, a sensor
with enough storage capacity can opt to store the data within
the sensor itself. In this case, there is no data transfer process.

Querying: A doctor wishing to obtain data collected under
some str will first contact the CA for permission. After the CA
agrees, the CA will run Keygen(str) to derive the corre-
sponding secret key xstr needed to decrypt data.

The doctor then contacts the storage site and retrieves the
data as shown in Algorithm 4. When the data is stored within
the sensor, the role of the storage site will be executed by the
sensor.

Since all the data is encrypted, the storage site cannot return
a specific encrypted data to the doctor. Instead, the storage site
simply lets the doctor try to decrypt each tuple (c1 , c2) belonging
to the patient. The reason the storage site first returns c1 for the
doctor to verify instead of returning c2 directly is to improve
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efficiency. Since the length of c1 is much shorter than that of c2 ,
letting the doctor first attempt to decrypt c1 before sending the
much longer c2 reduces transmission time.

Notice that c2 embeds the same random number n in both
c1 and c2 , and the doctor will only accept the data in c2 to be
legitimate only if both random numbers match. This random n
is known only to the sensor encrypting the data. Consider for
example two sensors belonging to the same BSN encrypting
some data using the same string str. Since both sensors are
legitimate, the use of the random n prevents an adversary from
swapping the c2s from different sensors to confuse the doctor.

C. Query Improvements

A potential bottleneck is the amount of time needed for a
doctor to query a storage site. Consider a storage site with k
tuples (c1

1 , c
1
2), . . . , (c

k
1 , ck

2 ), and a doctor receives l secret keys
from the patient. The storage site will have to transmit ci

1 , i ∈ k
to the doctor, and the doctor will have to try every key xj , j ∈ l
on each ci

1 to determine whether there is any desired data in the
storage site. This takes O(kl) amount of time.

This poor performance is because the storage site is unable to
index any of the tuples since the storage site cannot determine
the actual content of the tuples. This feature protects the privacy
of the patient at the cost of slower searching time. For instance,
consider a storage site have many tuples belonging to the same
patient, and one of the tuples is encrypted using the string str =
{date | ER}. An ER doctor with the corresponding secret key
will still have to go through every tuple in the storage site to
determine whether that single tuple. This is inefficient when a
storage site contains many different tuples.

We can improve the search performance by letting the sensor
encrypt additional hints about the tuples. This hint is a variable
that can summarize several tuples together. For example, the
sensor may have created two tuples (c1

1 , c
1
2) and (c2

1 , c
2
2) using

two different descriptions {date | ER} and {date | gym}. Since
both descriptions contain the same condition date, we can create
a hint η = Encrypt(m, str) where

m = (flag|n|i11 |i21) (5)

and str = {date}. Here i11 and i21 refer to the indices pointing to
c1
1 and c2

1 .
Now the doctor requesting permissions will get an extra key

from the CA for the date to decrypt the hint. The use of hints im-
prove the performance by reducing the number of transmissions
between the storage site and the doctor, since the doctor will
only request c1s from hints he can decrypt. This scheme is still
secure since the doctor still needs the correct key xstr to decrypt
a particular c1 . The privacy of the patient is still protected from
the storage site since the storage site learns nothing from the
hints.

III. ANALYSIS AND EVALUATION

A. Security

Here, we analyze the security of our proposed protocols.
Encryption and decryption are performed using the keys xstr and

ystr derived from string str. Both xstr and ystr do not violate the
discrete logarithm property where, given y = xP , it is infeasible
to determine x given y and P , since both are derived from
addition of points on the same curve.

Eavesdropping Attack: In this attack, the adversary eavesdrop
on the message transmitted from the BSN to the storage site and
learns the tuple (c1 , c2). The adversary succeeds in his attack
if he is able to determine the data d after observing as many
tuples as he wishes. Since our protocol encrypts all data before
broadcast, the adversary learns nothing from the ciphertext.

Tracking Attack: Here, the adversary attacks the patient’s pri-
vacy by observing multiple transmission between a BSN and
a storage site. The adversary is considered able to track the
patient if given two tuples, the adversary is able to determine
whether they come from the same BSN. In our protocol, each
ciphertext (c1 , c2) includes a new random number n. In fact,
even if identical data encrypted using a public key derived from
the same string str in two different broadcasts cannot be linked
together since a different random n will be used. This is impor-
tant when the BSN monitors data such as body temperature that
may remain relatively static for long periods of time.

Compromised Sensor: We assume that the adversary compro-
mises one or more sensors in the BSN, and is able to extract all
data that is stored on the sensor. The adversary succeeds in this
attack if he is able to use the information to determine previously
encrypted data. Since each sensor only stores the public param-
eters (Y, P, p, q, h(.)), the adversary learns no secret knowledge
that can enable him to decrypt any tuples (c1 , c2).

Matching Attack: The adversary launches a matching attack
by first creating many public keys using different strings str. The
adversary then encrypts all possible values using the different
public keys to determine whether there is a match for the tuple
(c1 , c2). This is possible since the number of potential EKG
readings for example are bounded. However, both c1 and c2
contains a random number n generated by the sensor. Since the
adversary cannot predict the value of n, the matching attack
fails.

Honest-But-Curious Storage Site: This type of storage site
will not delete the user’s data but may attempt to determine
the contents of the data. This assumption is common for many
web-based applications. For instance, an e-mail service provider
can generally be assumed to not delete the user’s e-mails, but
may try to use some of the content to place advertisements.
This requirement also covers instances where the storage site
is compromised and data exposed to an adversary. In our pro-
tocol, all data stored on the storage site is encrypted, and no
secret keys are stored in the storage site. Therefore, an ad-
versary with access to all the ciphertexts cannot decrypt the
data.

Note that a malicious storage site can still cause disruption by
deleting the patient’s data. While our protocols do not prevent
this, a practical defense is to store the same encrypted data at
different storage sites so that the data is still recoverable.

Complexity Analysis: Given n public keys Y = (y1 , . . . , yn ),
the time complexity for using IBE-Lite to generate a public key
ystr using string str is O(n), and the time needed to perform the
encryption with ystr is O(1). Similarly, the decryption requires
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a time complexity of O(n) to generate the secret key xstr and
O(1) to decrypt the data.

Since our protocols rely on asymmetric key encryption, only
public keys are stored in the sensors. Thus, our schemes are
resistant against an adversary that can compromise all sensors
in the BSN. However, our protocols are vulnerable to attack if
there are O(n) colluding users each with a single secret key
xstr . The colluding users can use their individual secret keys to
derive the master secret key X given in (1). This vulnerability
can be defended by the rekeying process given in the following.

B. Limitations

A limitation of our scheme is that we can only release n secret
keys x1

str , . . . , x
n
str . Once more than n secret keys are released,

the master secret key X (in 1) is vulnerable to compromise.
The idea is that since each secret key xi

str is computed from a
linear combination of the master secret key X [shown in (4)], an
adversary that can obtain n secret keys x1

str , . . . , x
n
str can solve

for the master secret key X .
While conventional IBE systems [1] do not have this limita-

tion, such systems cannot be implemented on BSN hardware.
IBE-Lite allows us similar properties as conventional IBE so
long as a limited number of secret keys are released. We believe
that this is a reasonable tradeoff due to the following reasons.

First, as a practical matter, since a secret key xi
str is only

released to a trusted party, such as a doctor verified by the CA, it
is less likely that the secret key will be abused. Even if the trusted
party is later found to be an adversary and attempts to colludes
with others to derive the master secret key, the adversary will
still need to determine the identity of these “others.” Since the
CA is responsible for issuing secret keys, only the CA knows
the identities of the other holders of secret keys. Given the CA
is always trustworthy, the adversary cannot easily determine
which other doctors have the remaining keys.

Second, we can select a large enough n such that we will never
release n secret keys. As we will show in later, we can easily
let n be a few thousand keys without incurring heavy storage
penalty. For instance, for n = 500, the BSN can still encrypt
more than 500 pieces of data so long as less than 500 secret keys
are released. This is unlike a symmetric key solution where each
piece of encrypted data requires a new key. This distinction is
important because a BSN that is continuously worn by a patient
will always collect information, but only a subset may be ever
be used. Since we cannot determine in advance what data will
be requested, we have to ensure we have enough keys to encrypt
everything.

Finally, we can rekey the BSN by creating a new set of n
secret keys as the master secret key, and store the new pub-
lic information in the sensors. This rekeying does not have to
be done by the BSN itself. A powerful laptop can be used to
generate these keys, and the information then stored into the
BSN and CA. This is akin to changing a password for a bank
account online. To reduce the rekeying frequency, the CA can
be configured to inform the patient when to rekey his BSN after
it has released a certain number of secret keys, thus avoiding
unnecessary rekeying.

Fig. 1. Amount of storage needed to store n keys for different encryption
methods.

Fig. 2. Data transmission overhead for different encryption schemes. All val-
ues in bytes.

C. Performance

We evaluate our protocols using experiments conducted on
commercially available Tmote Sky sensors. The sensor has a
8 MHz TI MSP430 CPU, 10 KB on-chip RAM, 48 KB pro-
gramming ROM, and a 802.15.4/ZigBee radio.

Fig. 1 shows the amount of storage needed for different en-
cryption schemes. We represent a conventional asymmetric key
encryption scheme using RSA. We see that a symmetric key
encryption requires the least amount of storage, while RSA en-
cryption uses the most amount of storage. Our IBE-Lite gives
us the advantages of asymmetric key encryption while using a
little more storage space than a symmetric key scheme.

Fig. 2 shows the data transmission overhead of the various
encryption schemes. For both the RSA and IBE-Lite, the data
itself is not encrypted. Instead, a symmetric key is first used to
encrypt the data, and then the asymmetric key is used to en-
crypt the data. This is the conventional method when designing
protocols using asymmetric key encryption.

The main overhead of IBE-Lite over other encryption
schemes is the time needed to generate an encryption key ystr
from a string str using n number of public keys y1 , . . . , yn .
In both symmetric key and RSA, the public keys are precom-
puted and stored in the sensor. Fig. 3 shows the amount of time
needed to generate a single ystr with varying values of n. All
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Fig. 3. Time needed to derive one ystr using different n number of public
keys, y1 , . . . , yn .

Fig. 4. Number of passed messages.

n public keys are initially stored in the flash memory. We see
for instance that for n = 360, we need only 0.9 s to generate
ystr . While IBE-Lite does require an additional key generation
time, we note that we can achieve the properties of asymmetric
key encryption like RSA using a much small amount of storage
space. In addition, the amount of time a single public key can be
used is typically much longer than the time needed to generated
a new key.

We use simulation to evaluate the search improvements. Since
the searching is performed by a doctor with access to a more
powerful machine, the simulations focused on the number of
messages passed between a doctor and a storage site. We assume
there are 1000 different possible time periods where a sensor
may collect data. A sensor randomly selects a time period to
collect data, and encrypts the data using a public key derived
from that time period. The doctor is assumed to randomly select
data from five time periods. The results are the average over 100
trials. Fig. 4 shows the improvement when hints are used.

IV. RELATED PAPERS

The motivation behind BSNs is to place low-cost sensors
directly on the patient for health care monitoring, and several
research prototypes have been developed [4], [5]. Our paper
differs from these in that we focus on the security issues in
BSNs.

IBE is a relatively new type of asymmetric key encryption
[1], [6]. Zhang et al. [7] developed protocols using IBE on
sensors used in large scale sensor networks. The sensors used
in a BSN have to worn on the patient, and are likely to be
smaller and weaker. Thus unlike [7], our paper uses IBE that
does not rely on bilinear pairings such as Weil or Tate pairings in
our primitives. Practical public key encryption for sensors have
been proposed by [8]–[10], but these research only focus on
conventional public keys, and do not support the IBE properties
mentioned in this paper.

Mont et al. [11] uses IBE in a medical setting to secure
the communications in a hospital, and Malasri and Wang [12]
considered a security architecture for BSN focusing on the prob-
lem of key exchange between a sensor and a base station. The
main difference between these work and our research is that
we focus on deploying IBE on resource constrained devices to
achieve practical performance. A key distinction is that our work
presents evaluation results based on actual hardware.

Bao et al. [13] proposed a secure system for BSNs using
symmetric keys. While symmetric key schemes use less stor-
age space per key and generate a smaller ciphertext, they do
not have the asymmetric property of public keys schemes like
RSA or IBE-Lite. Our paper takes advantage of recent advances
that allows us to perform faster computation than earlier sensor
hardware platforms. Another paper by Bao et al. [14] uses the
variability of a patient’s heart rate as a means of person authen-
tication. This paper complements our IBE-Lite encryption since
the patient’s heart rate can be used as an input string to generate
encryption keys. Tan et al. [15] also consider using IBE on BSN,
but suffers from slow query performance when searching over
a lot of ciphertext.

V. CONCLUSION

In this paper, we presented IBE-Lite, a lightweight IBE
method suitable for a BSN. We provided protocols based on
IBE-Lite and evaluated the protocols using a combination of
security analysis, simulations, and practical implementation on
actual sensors.
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