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1. Main results

This note concerns operators lying in the von Neumann or W ∗-algebra W ∗(P , Q ) generated by two orthogonal projec-
tions P and Q . In [7], one of the authors explored ranges, null spaces, and related characteristics of operators in W ∗(P , Q )

and established in particular a criterion for Moore–Penrose invertibility. For several special operators in the algebra, Drazin
invertibility was recently studied in [1] (and in a more general context also in [2]), and paper [1] actually prompted us to
write the present note. Our aim is to show that a criterion for Drazin invertibility in W ∗(P , Q ) and an explicit representa-
tion of the Drazin inverse can be easily derived from the corresponding results for Moore–Penrose inverses and that many
of the results of [1] pertaining to various specific operators can be deduced very comfortably from a single general theorem.

Let H be a Hilbert space and B(H) be the algebra of all bounded linear operators acting on H. For A ∈ B(H), a Moore–
Penrose inverse is an operator X ∈ B(H) such that

X A X = X, A X A = A, (A X)∗ = A X, (X A)∗ = X A. (1)

Such X exists if and only if the range of A is closed, in which case it is defined uniquely. The standard notation for the
Moore–Penrose inverse of A is A†. Due to (1), A A† and A† A are the orthogonal projections onto the range of A and of A∗ ,
respectively.

The Drazin inverse, on the other hand, exists by definition if and only if both sequences Im A j and Ker A j stabilize. In this
case there is a smallest non-negative integer k for which Ker Ak = Ker Ak+1 and Im Ak = Im Ak+1, and the Drazin inverse
of A, denoted by AD , is the uniquely determined operator X ∈ B(H) satisfying

Ak+1 X = Ak, X A X = X, A X = X A. (2)

* Corresponding author.
E-mail addresses: aboettch@mathematik.tu-chemnitz.de (A. Böttcher), ilya@math.wm.edu, imspitkovsky@gmail.com (I.M. Spitkovsky).

0022-247X/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2009.05.019

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:aboettch@mathematik.tu-chemnitz.de
mailto:ilya@math.wm.edu
mailto:imspitkovsky@gmail.com
http://dx.doi.org/10.1016/j.jmaa.2009.05.019


404 A. Böttcher, I.M. Spitkovsky / J. Math. Anal. Appl. 358 (2009) 403–409

Obviously, for invertible operators A both the Moore–Penrose inverse and the Drazin inverse coincide with the usual
inverse A−1. Equalities (2) then hold with k = 0.

Now let P ∈ B(H) and Q ∈ B(H) be two orthogonal projections and denote by W ∗(P , Q ) the smallest von Neumann
subalgebra of B(H) that contains P , Q , and the identity operator I . Let L and N denote the ranges of P and Q , respec-
tively. We denote by P M the orthogonal projection of H onto a closed subspace M and may therefore also write P = P L
and Q = P N . The structure of W ∗(P , Q ) was described in [4] on the basis of the pioneering papers [3] and [5]. Namely,
W ∗(P , Q ) consists of all operators of the form

A = (α11,α10,α01,α00) ⊕
(

I 0
0 R∗

)(
ϕ00(H) ϕ01(H)

ϕ10(H) ϕ11(H)

)(
I 0
0 R

)
, (3)

where, in notation slightly different from [7],

(α11,α10,α01,α00) = α11 IM11 ⊕ α10 IM10 ⊕ α01 IM01 ⊕ α00 IM00

with

M11 = L ∩ N, M10 = L ∩ N⊥, M01 = L⊥ ∩ N, M00 = L⊥ ∩ N⊥,

H is the compression of I − P N to the subspace M0 = L � (M11 ⊕ M10), the operator R performs a unitary equivalence of H
with the compression of P N to M1 = L⊥ � (M01 ⊕ M00) (the existence of such unitary equivalence is a non-trivial fact, lying
at the heart of the “two projections theory”), αi j ∈ C, and ϕi j are Borel-measurable and essentially bounded functions on
the spectrum σ(H) of H . The null sets here and in what follows are always in the sense of the spectral type of H , that is,
sets mapped to {0} by the spectral measure of H .

Of course, the first orthogonal sum in (3) is limited to the terms (if any) with dim Mij > 0 and the last term is present
if and only if dim M0 > 0. Observe also that σ(H) ⊆ [0,1] and that the choice of M0 precludes 0,1 from lying in the point
spectrum of H .

Since unitary multiples have no effect on the generalized invertibility of the operators in question, we may without loss
of generality identify the subspaces M0 and M1 via the unitary mapping R : M1 → M0. Consequently, representation (3)
simplifies to

(α11,α10,α01,α00) ⊕
(

ϕ00(H) ϕ01(H)

ϕ10(H) ϕ11(H)

)
. (4)

For the generating projections themselves, representation (4) will then look as

P = (1,1,0,0) ⊕
(

I 0
0 0

)
, (5)

Q = (1,0,1,0) ⊕
(

I − H
√

H(I − H)√
H(I − H) H

)
. (6)

In what follows, we let

ΦA =
(

ϕ00 ϕ01
ϕ10 ϕ11

)
.

Then of course the last term in (4) simply becomes ΦA(H). In particular,

ΦP (t) =
(

1 0
0 0

)
, ΦQ (t) =

(
1 − t

√
t(1 − t)√

t(1 − t) t

)
.

We also put

ωA = detΦA = ϕ00ϕ11 − ϕ01ϕ10, ϕA = |ϕ00|2 + |ϕ01|2 + |ϕ10|2 + |ϕ11|2,
and denote by �r(A) the set of all t ∈ σ(H) such that the rank of ΦA(t) equals r (r = 0,1,2).

Theorem 1 of [7] contains, among other things, a necessary and sufficient condition for Im A to be closed (and thus
for A† to exist). It reads as follows.

Theorem 1.1. Let A ∈ W ∗(P , Q ). Then the range of A is closed if and only if the functions ωA and ϕA are separated from zero on �2(A)

and �1(A), respectively.

If the range of A is closed, the Moore–Penrose inverse A† can be expressed in terms of H as follows. For r = 0,1,2,
denote by M(r) the spectral subspace of H corresponding to the part �r(A) of σ(H) and let Hr be the restriction of H
to M(r) . In [7] it was shown that

A† = (
α

†
11,α

†
10,α

†
01,α

†
00

) ⊕ 0M(0)⊕M(0) ⊕
(

ϕA(H1) 0
0 ϕA(H1)

)−1

ΦA(H1)
∗ ⊕ ΦA(H2)

−1, (7)

where α† = 1/α if α �= 0 and 0† = 0. Note that Φ(H2) is invertible whenever ωA is bounded away from zero on �2.
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To state the result for the existence of AD , we need to stratify the set �1(A) further. Namely, let

�10(A) = {
t ∈ �1(A): trΦA(t) = 0

}
, �11(A) = �1(A) \ �10(A).

Theorem 1.2. An operator A ∈ W ∗(P , Q ) is Drazin invertible if and only if the functions ωA and trΦA are separated from zero
on �2(A) and �11(A), respectively.

Proof. Necessity. It is well known that conditions (2) imply that the range of B := Ak is closed. Indeed, we have Im B = Im B2

and Ker B = Ker B2 and hence B is Drazin invertible with k = 1, which guarantees a Z ∈ B(H) such that B2 Z = B and
B Z = Z B . It follows that if yn = Bxn → y, then yn = B2 Z xn = B Z Bxn = B Z yn and thus y = B Z y ∈ Im B . Since Im A j = Im Ak

for j � k, the range of A j is closed for all j � k. Applying Theorem 1.1 to A j , we conclude that ωA j and ϕA j must be
separated from zero on �2(A j) and �1(A j), respectively ( j � k). It remains to observe that

ωA j = (ωA) j, ϕA j = |trΦA |2( j−1)ϕA on �1(A)

while

�2
(

A j) = �2(A) for j = 1,2, . . . and �1
(

A j) = �11(A) for j = 2,3, . . . .

Sufficiency. In addition to the subspaces M(r) and operators Hr introduced above for r = 0,1,2, we denote by M(r) the
spectral subspace of H corresponding to the part �r(A) of σ(H) and by Hr the restriction of H to M(r) for r = 10 and
r = 11. Then (4) can be rewritten as

A = (α11,α10,α01,α00) ⊕ 0M(0)⊕M(0) ⊕ ΦA(H10) ⊕ ΦA(H11) ⊕ ΦA(H2).

The operator ΦA(H2) is invertible (due to the condition on ωA ), the operator ΦA(H10) is nilpotent of degree two, and

(
ΦA(H11)

)2 =
(

(trΦA)(H11) 0
0 (trΦA)(H11)

)
ΦA(H11),

the first term on the right-hand side being invertible because of the condition on tr ΦA . It can be checked directly that the
Drazin inverse of A is then given by the formula

AD = (
α

†
11,α

†
10,α

†
01,α

†
00

) ⊕ 0M(0)⊕M(0) ⊕ 0M(10)⊕M(10)

⊕
(

(trΦA)(H11) 0
0 (trΦA)(H11)

)−2

ΦA(H11) ⊕ ΦA(H2)
−1, (8)

which completes the proof. �
Observe that M(10) ⊕ M(10) is a reducing subspace for A and therefore for A† as well. Since A|M(10)⊕M(10) is non-zero

(unless M(10) = {0}), the restriction of A† onto M(10) ⊕ M(10) also is non-zero. Comparing this to (8) we conclude that AD

and A† may coincide only if M(10) = {0} (that is, �1(A) = �11(A)).
Suppose now that this condition holds (and consequently H1 = H11). Another glance at (7) and (8) then reveals that

AD = A† if and only if for all t ∈ �1 the matrix

ΦA(t) =:
(

a(t) b(t)
c(t) d(t)

)
(9)

has the property

1

(a + d)2

(
a b
c d

)
= 1

|a|2 + |b|2 + |c|2 + |d|2
(

a c
b d

)
. (10)

Direct computations show that, under the condition ad = bc (which holds since t ∈ �1(A)), (10) is equivalent to

arg a = arg d, |b| = |c|. (11)

On the other hand, normality of the matrix (9) is equivalent to

arg b + arg c = 2 arg(a − d), |b| = |c|. (12)

But (once again, under the condition ad = bc) (11) and (12) are equivalent.
Consequently, AD = A† if and only if M(10) = {0} and the matrix ΦA(t) is normal for t ∈ �1(A).
Note also that k = 0 (that is, the operator A is invertible and therefore A† = AD = A−1) if and only if αi j �= 0 whenever

dim Mij > 0 and M(0) = M(1) = {0}. On the other hand, k = 2 if and only if M(10) �= {0}. In all other cases when AD exists, it
does so with k = 1.
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We now consider the particular situation when A is actually a polynomial in P and Q . Direct computations (see e.g.
formula (2.2) in [8]) show that ϕ00 and ϕ11 in representation (4) are also polynomials, while ϕ10 and ϕ01 are polynomials
times

√
t(1 − t) (explicit formulas for these polynomials are available in [8] but they are not important for our purposes).

Consequently, the functions ωA and trΦA are in this setting polynomials as well, and therefore either vanish identically or
have only isolated roots. Theorem 1.2 may therefore be simplified as follows.

Theorem 1.3. Let A be a polynomial in P and Q . Then A is Drazin invertible if and only if one of the following three situations takes
place:

(i) ωA does not vanish at the limit points of σ(H),
(ii) ωA ≡ 0, and trΦA does not vanish at the limit points of σ(H),

(iii) ωA ≡ 0, trΦA ≡ 0.

Proof. If the polynomial ωA is not identically zero, the set �2(A) is σ(H) with zeros of ωA (if any) deleted. So, for ωA to be
separated from zero on �2(A) it is necessary and sufficient that these zeros are isolated points of σ(H). On the other hand,
�1(A) (and therefore �11(A)) in this case consists of isolated points only, so that the condition on trΦA from Theorem 1.2
holds automatically. Thus, in this setting condition (i) is necessary and sufficient for A to be Drazin invertible.

Let now ωA ≡ 0. Then �2(A) = ∅, so that the condition on ωA from Theorem 1.2 holds again automatically. If in addition
trΦA is not identically zero, then �11(A) differs from σ(H) by at most finitely many points, and trΦA is separated from
zero on �11(A) if and only if its zeros are not limit points of σ(H). This is exactly condition (ii).

Finally, if ωA and trΦA are both identically equal to zero, then the sets �2(A) and �11(A) are void. Conditions of
Theorem 1.2 then hold vacuously, so that A is Drazin invertible. �

Observe that in cases (i) and (ii) of Theorem 1.3 the range of A is closed, so that its Moore–Penrose inverse also exists.
On the other hand, case (iii) corresponds to a nilpotent A, and then Im A may or may not be closed.

2. Examples

The purpose of this section is to demonstrate how Theorems 1.1 and 1.2 and the explicit representations (7) and (8) work
in concrete situations, in particular in the cases studied in [1] and [2].

Let us first consider P + Q . From (5) and (6) we infer that

P + Q = (2,1,1,0) ⊕
(

2I − H
√

H(I − H)√
H(I − H) H

)
. (13)

Theorem 2.1. The following are equivalent: (i) P + Q is Drazin invertible, (ii) P + Q is Moore–Penrose invertible, (iii) M0 = {0} or
M0 �= {0} and H is invertible. If M0 = {0}, then

(P + Q )D = (P + Q )† =
(

1

2
,1,1,0

)

and if M0 �= {0} and H is invertible, then (P + Q )D and (P + Q )† are equal to(
1

2
,1,1,0

)
⊕

(
H−1 0

0 H−1

)(
H −√

H(I − H)

−√
H(I − H) 2I − H

)
. (14)

Proof. If M0 = {0}, then the matrix in (13) is actually absent, so that P + Q = (2,1,1,0), which implies that (P + Q )D and
(P + Q )† exist and are just (1/2,1,1,0). So assume M0 �= {0}. We then have

ΦP+Q (t) =
(

2 − t
√

t(1 − t)√
t(1 − t) t

)
,

whence ωP+Q (t) = t , ϕP+Q (t) = 4 − 2t , trΦP+Q (t) = 2. It follows that

�0 = ∅, �10 = ∅, �11 = �1 = {0}, �2 = σ(H) \ {0}.
Since M(10) is absent (or may be taken to be {0}) and ΦP+Q (t) is normal for t ∈ �1, we conclude that P + Q is Drazin
invertible if and only if it is Moore–Penrose invertible and that the two inverses coincide. Theorem 1.2 shows that P + Q
is Drazin invertible exactly if σ(H) ⊆ {0} ∪ [ε,1) for some ε > 0, which is equivalent to the invertibility of H because 0
is known to be not an eigenvalue of the Hermitian operator H . If H is invertible, then H2 = H and equality (8) yields the
asserted formula for (P + Q )D = (P + Q )†. �

Theorem 2.1 gives the Drazin inverse in terms of H . In paper [6], the authors raised the problem of expressing (A + B)D

via A, B , AD , B D in the case where A and B are arbitrary matrices. We here deal with orthogonal projections P and Q . If A
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is a projection (not necessarily orthogonal), then (2) is obviously true with X = A and k = 1, so that AD = A. Thus, in our
setting the problem of [6] amounts to finding a formula for (P + Q )D in terms of only P and Q . From (8) it follows that
the Drazin inverse of every Drazin invertible operator in W ∗(P , Q ) belongs also to W ∗(P , Q ). This shows that the formula
we are looking for must exist.

The following theorem provides us with such a formula. In connection with this theorem notice that if K and M are
closed subspaces of H, then P K∩M can be expressed in terms of P K and P M as the strong limit

P K∩M = s-lim
n→∞(P K P M)n = s-lim P K P M P K P M P K P M · · · .

This formula goes back to von Neumann [9] and is frequently called the method of alternating projections or von Neumann’s
algorithm. Incidentally, the formula follows easily from (5) and (6), applied to K = L, M = N . Indeed,

P K∩M = (1,0,0,0) ⊕ 0M0⊕M0

while

(P K P M)n = (1,0,0,0) ⊕
(

(I − H)n−1 0
0 (I − H)n−1

)(
I − H

√
H(I − H)

0 0

)
,

and since the Hermitian operator I − H has its spectrum in [0,1] and does not have 1 as its eigenvalue, its powers converge
strongly to zero.

In our context P L = P and P N = Q and hence

P L∩N = s-lim
n→∞(P Q )n, P L⊥∩N⊥ = s-lim

n→∞
(
(I − P )(I − Q )

)n
.

We put

S = P (I − Q )P + (I − P )Q (I − P ) = P + Q − P Q − Q P ,

T = P L∩N + P L⊥∩N⊥ + S.

Theorem 2.2. The operator P + Q is Drazin invertible if and only if T is invertible, in which case

(P + Q )D = 1

2
P L∩N − 2P L⊥∩N⊥ + T −1(2I − P − Q ).

Proof. Suppose first that M0 �= {0}. From (5) and (6) we see that

P (I − Q )P = (0,1,0,0) ⊕
(

H 0
0 0

)
,

(I − P )Q (I − P ) = (0,0,1,0) ⊕
(

0 0
0 H

)
,

which gives

S = (0,1,1,0) ⊕
(

H 0
0 H

)
.

Since P L∩N = (1,0,0,0) and P L⊥∩N⊥ = (0,0,0,1), we obtain that

T = (1,1,1,1) ⊕
(

H 0
0 H

)
.

Clearly, T is invertible if and only if so is H . Thus, by Theorem 2.1, P + Q is Drazin invertible if and only if T is invertible.
In that case

T −1 = (1,1,1,1) ⊕
(

H−1 0
0 H−1

)
.

A straightforward computation yields

2I − P − Q = (0,1,1,2) ⊕
(

H −√
H(I − H)

−√
H(I − H) 2I − H

)
.

Combining the last two formulas we see that T −1(2I − P − Q ) equals

(0,1,1,2) ⊕
(

H−1 0
0 H−1

)(
H −√

H(I − H)

−√
H(I − H) 2I − H

)
,
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which after addition of (1/2)P L∩N −2P L⊥∩N⊥ = (1/2,0,0,−2) becomes (14). This completes the proof under the assumption
that M0 �= {0}. If M0 = {0}, then T = (1,1,1,1) is the identity operator and the theorem is equivalent to saying that P + Q
is Drazin invertible with

(P + Q )D = 1

2
P L∩N − 2P L⊥∩N⊥ + 2I − P − Q =

(
1

2
,1,1,0

)
.

But this is immediate from Theorem 2.1. �
The following theorem is a generalization of Theorem 2.2. The proof is similar to the proofs of the previous two theorems

and is therefore omitted.

Theorem 2.3. Let a,b ∈ C. The operator aP + bQ is Drazin invertible if and only if it is Moore–Penrose invertible, which is in turn
equivalent to the invertibility of the operator T . If T is invertible, then

(P − Q )D = (P − Q )† = T −1(P − Q ),

while if ab �= 0, a + b �= 0, then both (aP + bQ )D and (aP + bQ )† are equal to

1

a + b
P L∩N −

(
1

a
+ 1

b

)
P L⊥∩N⊥ + 1

ab
T −1(a(I − P ) + b(I − Q )

)
.

We now turn to the products P Q and P Q P . Representations (5) and (6) give

P Q = (1,0,0,0) ⊕
(

I − H
√

H(I − H)

0 0

)
, (15)

P Q P = (1,0,0,0) ⊕
(

I − H 0
0 0

)
. (16)

Theorem 2.4. For the operators P Q and P Q P , both Drazin and Moore–Penrose invertibility are equivalent to the condition that either
M0 = {0} or M0 �= {0} and I − H is invertible. If M0 = {0}, then

(P Q )D = (P Q )† = (P Q P )D = (P Q P )† = (1,0,0,0),

and if M0 �= {0} and I − H is invertible, then

(P Q )D = (1,0,0,0) ⊕
(

(I − H)−2 0
0 (I − H)−2

)(
I − H

√
H(I − H)

0 0

)
,

(P Q )† = (1,0,0,0) ⊕
(

(I − H)−1 0
0 (I − H)−1

)(
I − H 0√

H(I − H) 0

)
,

(P Q P )D = (P Q P )† = (1,0,0,0) ⊕
(

(I − H)−2 0
0 (I − H)−2

)(
I − H 0

0 0

)
.

Proof. The case M0 = {0} is trivial. So let M0 �= {0}. We have

ΦP Q (t) =
(

1 − t
√

t(1 − t)
0 0

)
,

and hence ωP Q (t) = 0, ϕP Q (t) = 1 − t , trΦP Q (t) = 1 − t , �0 = {1}, �10 = ∅, �11 = σ(H) \ {1}, �2 = ∅. From Theorem 1.2
we therefore obtain that P Q is Drazin invertible if and only if 1 − t is separated from zero on σ(H) \ {1}, which happens if
and only if σ(H) ⊆ (0,1 − ε] ∪ {1} for some ε > 0. As 1 is not an eigenvalue of H , this is equivalent to the invertibility of
I − H . In the same way we deduce from Theorem 1.1 that P Q is Moore–Penrose invertible exactly if I − H is invertible. In
the case at hand, H11 = H . The representations of the Drazin and Moore–Penrose inverses of P Q are therefore immediate
from (7) and (8). The operator P Q P can be tackled equally. �

Let now

U = P Q P + (I − P )(I − Q )(I − P ), V = P L∩N⊥ + P L⊥∩N + U

and recall that P L∩N⊥ and P L⊥∩N are the strong limits of

P (I − Q )P (I − Q )P (I − Q ) · · · and (I − P )Q (I − P )Q (I − P )Q · · · ,
respectively.
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Theorem 2.5. For each of the operators P Q and P Q P , both Drazin and Moore–Penrose invertibility are equivalent to the invertibility
of V . In case V is invertible,

(P Q )D = V −2 P Q , (P Q )† = V −1 Q P , (P Q P )D = (P Q P )† = V −2 P Q P .

Proof. Since

U = (1,0,0,1) ⊕
(

I − H 0
0 I − H

)
, V = (1,1,1,1) ⊕

(
I − H 0

0 I − H

)
,

this follows from Theorem 2.4 in conjunction with (15) and (16). �
In analogy to Theorem 2.5 one can prove the following.

Theorem 2.6. Let A be one of the operators P Q , P Q P , P Q P Q , P Q P Q P , . . . . Then A is Drazin invertible if and only if it is Moore–
Penrose invertible, and this is in turn the case if and only if V is invertible. If V is invertible, then for every natural number m � 1,

(
(P Q )m)D = V −m−1 P Q ,

(
(P Q )m)† = V −m Q P ,

(
(P Q )m P

)D = (
(P Q )m P

)† = V −m−1 P Q P .
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