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1. Main results

This note concerns operators lying in the von Neumann or W*-algebra W*(P, Q) generated by two orthogonal projec-
tions P and Q. In [7], one of the authors explored ranges, null spaces, and related characteristics of operators in W*(P, Q)
and established in particular a criterion for Moore-Penrose invertibility. For several special operators in the algebra, Drazin
invertibility was recently studied in [1] (and in a more general context also in [2]), and paper [1] actually prompted us to
write the present note. Our aim is to show that a criterion for Drazin invertibility in W*(P, Q) and an explicit representa-
tion of the Drazin inverse can be easily derived from the corresponding results for Moore-Penrose inverses and that many
of the results of [1] pertaining to various specific operators can be deduced very comfortably from a single general theorem.

Let H be a Hilbert space and 3() be the algebra of all bounded linear operators acting on H. For A € B(H), a Moore-
Penrose inverse is an operator X € B(H) such that

XAX=X, AXA=A, (AX)*=AX, (XA)*=XA. (1)

Such X exists if and only if the range of A is closed, in which case it is defined uniquely. The standard notation for the
Moore-Penrose inverse of A is AT. Due to (1), AAT and ATA are the orthogonal projections onto the range of A and of A*,
respectively.

The Drazin inverse, on the other hand, exists by definition if and only if both sequences Im A/ and Ker A/ stabilize. In this
case there is a smallest non-negative integer k for which Ker A¥ = Ker A¥*! and Im A¥ = Im A¥*!, and the Drazin inverse
of A, denoted by AP, is the uniquely determined operator X € B(H) satisfying

At = Ak XAX=X, AX=XA. (2)
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Obviously, for invertible operators A both the Moore-Penrose inverse and the Drazin inverse coincide with the usual
inverse A~!. Equalities (2) then hold with k = 0.

Now let P € B(H) and Q € B(H) be two orthogonal projections and denote by W*(P, Q) the smallest von Neumann
subalgebra of B(H) that contains P, Q, and the identity operator I. Let L and N denote the ranges of P and Q, respec-
tively. We denote by Py the orthogonal projection of H onto a closed subspace M and may therefore also write P = P;
and Q = Py. The structure of W*(P, Q) was described in [4] on the basis of the pioneering papers [3] and [5]. Namely,
W*(P, Q) consists of all operators of the form

A=((111,011o,0l01,0l00)69<é I?*><$?EEZ; :’Z’:EZ;)((I) g) (3)

where, in notation slightly different from [7],
(0r11, 010, @01, @) = A111My; D 10IM,9 © @o11My; D XoolMg,
with
Miy=LNN, Mp=LNNY, Mo =L"NN, Mg=L"NN*,

H is the compression of I — Py to the subspace My =L & (M11 @ M1p), the operator R performs a unitary equivalence of H
with the compression of Py to M = Lt & (Mg; & Moo) (the existence of such unitary equivalence is a non-trivial fact, lying
at the heart of the “two projections theory”), a;j € C, and ¢;; are Borel-measurable and essentially bounded functions on
the spectrum o (H) of H. The null sets here and in what follows are always in the sense of the spectral type of H, that is,
sets mapped to {0} by the spectral measure of H.

Of course, the first orthogonal sum in (3) is limited to the terms (if any) with dim M;; > 0 and the last term is present
if and only if dim My > 0. Observe also that o (H) C [0, 1] and that the choice of My precludes 0,1 from lying in the point
spectrum of H.

Since unitary multiples have no effect on the generalized invertibility of the operators in question, we may without loss
of generality identify the subspaces Mp and M; via the unitary mapping R:M; — Mp. Consequently, representation (3)
simplifies to

@oo(H) </901(H)> (4)
e1o(H) e1(H) )"

For the generating projections themselves, representation (4) will then look as

(11, @10, 001, 0oo) B <

P:(l,l,0,0)@(é 8), (5)

Q=(1,0,1,0)@<\/% VH(;_I_H))

In what follows, we let

4= ((Poo o1 ) .
P10 P11
Then of course the last term in (4) simply becomes @4 (H). In particular,
(1 0 . 1—t¢ Jt(1 —1t)
¢P(t)—(o 0), ¢Q(t)—(m t .
We also put

wp =det P4 = QooP11 — Yo1010, @4 = l9ool* + @01 1* + lg1012 + 1112,

and denote by A;(A) the set of all t € o(H) such that the rank of ®4(t) equals r (r=0,1, 2).
Theorem 1 of [7] contains, among other things, a necessary and sufficient condition for ImA to be closed (and thus
for AT to exist). It reads as follows.

(6)

Theorem 1.1. Let A € W*(P, Q). Then the range of A is closed if and only if the functions ws and @4 are separated from zero on Ay (A)
and A1(A), respectively.

If the range of A is closed, the Moore-Penrose inverse AT can be expressed in terms of H as follows. For r =0, 1, 2,
denote by M the spectral subspace of H corresponding to the part A,(A) of o (H) and let H, be the restriction of H
to M@, In [7] it was shown that

1
oottt wa(Hy) 0 1
AT:(0‘11’0‘10’0‘01’%0)@OM(OJ@M@ @< 0 oa(HY) Da(H1)* @ Pa(H2) ™, (7)

where of = 1/ if o #0 and 0f = 0. Note that @ (Hy) is invertible whenever w4 is bounded away from zero on Aj.
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To state the result for the existence of AP, we need to stratify the set A{(A) further. Namely, let

A10(A) = {t € A1(A): trd(t) =0}, A11(A) = A1(A)\ A1(A).

Theorem 1.2. An operator A € W*(P, Q) is Drazin invertible if and only if the functions wa and tr @, are separated from zero
on Ay (A) and A11(A), respectively.

Proof. Necessity. It is well known that conditions (2) imply that the range of B := A is closed. Indeed, we have Im B = Im B2
and Ker B = Ker B? and hence B is Drazin invertible with k = 1, which guarantees a Z € B(H) such that B2Z = B and
BZ = ZB. It follows that if y, = Bx, — y, then y, = B2Zx, = BZBx, = BZy, and thus y = BZy € Im B. Since Im A/ = Im Ak
for j >k, the range of A/ is closed for all j > k. Applying Theorem 1.1 to A/, we conclude that w,i and @4 must be
separated from zero on Ay(Af) and Aq(AJ), respectively (j > k). It remains to observe that

wai=@a), @4 =Itrdal’IVpa on A1(A)
while
Az(A))=Az(A) forj=1,2,... and Aq(A’)=A11(A) forj=2,3,....
Sufficiency. In addition to the subspaces M™ and operators H, introduced above for r =0, 1,2, we denote by M the

spectral subspace of H corresponding to the part A.(A) of o (H) and by H, the restriction of H to M® for r =10 and
r=11. Then (4) can be rewritten as

A = (a11, @10, @01, ®00) D Opro gy @ Pa(H10) © Pa(H11) © Pa(H2).

The operator @4(H>) is invertible (due to the condition on wj,), the operator @4(Hqp) is nilpotent of degree two, and

2_ ((trda)(H) 0
(@a(H11)) —( 0 (tr@A)(Hn))(pA(H”)’

the first term on the right-hand side being invertible because of the condition on tr@4. It can be checked directly that the
Drazin inverse of A is then given by the formula

D T il T T
AP = (ayy, 019, @y %gp) © Oporgm® ® Oprio) g0

@ ((UQ)A)(HH) 0

-2
-1
0 (tI‘¢A)(H11)) DPa(H11) @ Pa(Ha) ™, (8)

which completes the proof. O

Observe that M9 @ MU0 s a reducing subspace for A and therefore for AT as well. Since Alya0gpao is non-zero
(unless M9 = {0}), the restriction of AT onto M19 @& M9 also is non-zero. Comparing this to (8) we conclude that AP
and AT may coincide only if M9 = {0} (that is, A1(A) = Aq1(A)).

Suppose now that this condition holds (and consequently H; = H11). Another glance at (7) and (8) then reveals that
AP = AT if and only if for all t € A; the matrix

a(t) mn)

c(t) d() (9)

Da(t) =: <

has the property

_ L (ab)_ ! ac (10)
(a+d2\c d) a2+ bP+c2+|d2\b d)°

Direct computations show that, under the condition ad = bc (which holds since t € A1(A)), (10) is equivalent to

arga = argd, |b| = |c]. (11)
On the other hand, normality of the matrix (9) is equivalent to
argbh + argc =2arg(a — d), |b| = Ic|. (12)

But (once again, under the condition ad = bc) (11) and (12) are equivalent.

Consequently, A = AT if and only if M9 = {0} and the matrix @4(t) is normal for t € A1(A).

Note also that k = 0 (that is, the operator A is invertible and therefore AT = AP = A~1) if and only if ajj # 0 whenever
dimM;j > 0 and M@ = M® = {0}. On the other hand, k =2 if and only if M9 = {0}. In all other cases when AP exists, it
does so with k=1.
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We now consider the particular situation when A is actually a polynomial in P and Q. Direct computations (see e.g.
formula (2.2) in [8]) show that ¢go and ¢11 in representation (4) are also polynomials, while @19 and ¢p; are polynomials
times /t(1 —t) (explicit formulas for these polynomials are available in [8] but they are not important for our purposes).
Consequently, the functions w4 and tr&,4 are in this setting polynomials as well, and therefore either vanish identically or
have only isolated roots. Theorem 1.2 may therefore be simplified as follows.

Theorem 1.3. Let A be a polynomial in P and Q. Then A is Drazin invertible if and only if one of the following three situations takes
place:

(i) wa does not vanish at the limit points of o (H),
(ii) wa =0, and tr @ 4 does not vanish at the limit points of o (H),
(iii) wp =0,trd4 =0.

Proof. If the polynomial w4 is not identically zero, the set A(A) is o (H) with zeros of w4 (if any) deleted. So, for wy4 to be
separated from zero on A;(A) it is necessary and sufficient that these zeros are isolated points of o (H). On the other hand,
A1(A) (and therefore A11(A)) in this case consists of isolated points only, so that the condition on tr @4 from Theorem 1.2
holds automatically. Thus, in this setting condition (i) is necessary and sufficient for A to be Drazin invertible.

Let now w4 = 0. Then Ay(A) =, so that the condition on w4 from Theorem 1.2 holds again automatically. If in addition
trd, is not identically zero, then Aq1;(A) differs from o (H) by at most finitely many points, and tr @4 is separated from
zero on Aq11(A) if and only if its zeros are not limit points of o (H). This is exactly condition (ii).

Finally, if ws and tr&,4 are both identically equal to zero, then the sets Ay(A) and Ai11(A) are void. Conditions of
Theorem 1.2 then hold vacuously, so that A is Drazin invertible. O

Observe that in cases (i) and (ii) of Theorem 1.3 the range of A is closed, so that its Moore-Penrose inverse also exists.
On the other hand, case (iii) corresponds to a nilpotent A, and then Im A may or may not be closed.

2. Examples
The purpose of this section is to demonstrate how Theorems 1.1 and 1.2 and the explicit representations (7) and (8) work

in concrete situations, in particular in the cases studied in [1] and [2].
Let us first consider P + Q. From (5) and (6) we infer that

p.{.Q:(Z,],l,O)@(\/% @) (13)

Theorem 2.1. The following are equivalent: (i) P 4+ Q is Drazin invertible, (ii) P + Q is Moore-Penrose invertible, (iii) Mg = {0} or
My # {0} and H is invertible. If My = {0}, then

(P+Q)P=P+Q)f= (1,1,1,0)

2
and if Mg # {0} and H is invertible, then (P + Q)P and (P + Q)" are equal to
1110 ® H1 o0 H —VJHI=H) (14)
20 0 H')\-VHI-=H) 21— H )

Proof. If Mg = {0}, then the matrix in (13) is actually absent, so that P + Q = (2, 1, 1, 0), which implies that (P + Q)? and
(P + Q)T exist and are just (1/2,1, 1, 0). So assume My # {0}. We then have

2—t JE(1 —1t)
Dpiq )= ) ¢ ,

whence wpiq (t) =t, pq (t) =4 —2t, tr@pyq (t) = 2. It follows that
Ap =0, Ao =0, A1 =A1={0}, Ay =0 (H)\{0}.

Since M9 is absent (or may be taken to be {0}) and ®pq (t) is normal for t € A7, we conclude that P + Q is Drazin
invertible if and only if it is Moore-Penrose invertible and that the two inverses coincide. Theorem 1.2 shows that P 4+ Q
is Drazin invertible exactly if o (H) C {0} U [¢, 1) for some ¢ > 0, which is equivalent to the invertibility of H because 0
is known to be not an eigenvalue of the Hermitian operator H. If H is invertible, then H, = H and equality (8) yields the
asserted formula for (P +Q)? =P + Q). O

Theorem 2.1 gives the Drazin inverse in terms of H. In paper [6], the authors raised the problem of expressing (A + B)?
via A, B, AP, BP in the case where A and B are arbitrary matrices. We here deal with orthogonal projections P and Q. If A



A. Bottcher, .M. Spitkovsky /J. Math. Anal. Appl. 358 (2009) 403-409 407

is a projection (not necessarily orthogonal), then (2) is obviously true with X = A and k =1, so that AP = A. Thus, in our
setting the problem of [6] amounts to finding a formula for (P + Q)P in terms of only P and Q. From (8) it follows that
the Drazin inverse of every Drazin invertible operator in W*(P, Q) belongs also to W*(P, Q). This shows that the formula
we are looking for must exist.

The following theorem provides us with such a formula. In connection with this theorem notice that if K and M are
closed subspaces of H, then Pgny can be expressed in terms of Px and Py as the strong limit

PKOM =s-lim (PKPM)n = S-limPKPMPKPMpKPM cee
n— 00

This formula goes back to von Neumann [9] and is frequently called the method of alternating projections or von Neumann’s
algorithm. Incidentally, the formula follows easily from (5) and (6), applied to K =L, M = N. Indeed,

Pxom =(1,0,0,0) @ Opmyepm,

while

n_ (I—H)"1 0 I-H JHU=H)
(PxPwm) —(1,0,0,0)69< 0 (I_H)nq)( 0 0 )

and since the Hermitian operator I — H has its spectrum in [0, 1] and does not have 1 as its eigenvalue, its powers converge
strongly to zero.
In our context P; = P and Py = Q and hence

— ol n ol _ _ n
Pinn = snllm (PQ)", Piinnt = SnllITl ((I P) Q)) .
We put

S=PU-QP+U-P)QU-P)=P+Q—-PQ—-QP,
T:PLQN+PLLQNL+S~

Theorem 2.2. The operator P + Q is Drazin invertible if and only if T is invertible, in which case
1
(P+Q)P = 5 PLow = 2Py + T-1Q2I-P - Q).
Proof. Suppose first that Mg # {0}. From (5) and (6) we see that

P(I— Q)P=(0,1,0,0)@<I(—)I 8),

00
(I-P)QU—-P)=(0,0,1,0)® (0 H) ,
which gives
H 0
S_(O,l,l,O)@<O H)'
Since Py =(1,0,0,0) and Pyt =(0,0,0, 1), we obtain that

T:(l,l,l,l)@(lg 1(-)1>

Clearly, T is invertible if and only if so is H. Thus, by Theorem 2.1, P 4+ Q is Drazin invertible if and only if T is invertible.
In that case

-1
-1_ H 0
T —(1,1,1,1)69( 0 H—1>'

A straightforward computation yields

H —JHI—H
21—P—Q:(0,1,1,2)@<_ T 21(_H )>.

Combining the last two formulas we see that T~1(2] — P — Q) equals

B0 H  —JAT-H)
(0,1,1,2)69(0 H-])(_m 2l —H )
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which after addition of (1/2)Pinn —2P; 1yt =(1/2,0,0, —2) becomes (14). This completes the proof under the assumption
that Mg # {0}. If Mg = {0}, then T = (1,1, 1, 1) is the identity operator and the theorem is equivalent to saying that P + Q
is Drazin invertible with

1 1
(P+Q)D=§PL0N—2PLLmNi +2[-P-Q = (5,1,1,0).

But this is immediate from Theorem 2.1. O

The following theorem is a generalization of Theorem 2.2. The proof is similar to the proofs of the previous two theorems
and is therefore omitted.

Theorem 2.3. Let a, b € C. The operator aP + bQ is Drazin invertible if and only if it is Moore-Penrose invertible, which is in turn
equivalent to the invertibility of the operator T. If T is invertible, then

P-QP=rP-Qf=1""(P-0Q).
while ifab £ 0, a + b £ 0, then both (aP +bQ )P and (aP + bQ)T are equal to

Lp LD +1T—1(a(1 P)+b(I—-Q))
atb "N \a ) N T g '

We now turn to the products PQ and PQ P. Representations (5) and (6) give

PQ:(l,O,O,O)@("OH VH('O_H)>, (15)
PQP:(],O,O,O)@(I_OH 8). (16)

Theorem 2.4. For the operators PQ and P Q P, both Drazin and Moore-Penrose invertibility are equivalent to the condition that either
Mo = {0} or Mg # {0} and I — H is invertible. If Mo = {0}, then

(PQ)°=PQ)'=(PQP)’=(PQP)'=(1,0,0,0),
and if Mg # {0} and I — H is invertible, then

b_ I-m=2 0 G VHCED
(PQ) —<1,0,0,0>@( 0 (1—H>‘2><° ° )

- (I—H)! 0 I-H 0
(PQ) —(1,0,0,0)@( 0 (1—H)71><\/m 0>7

b . (I—H)2 0 I=H 0
(PQP)P’ =(PQP) —(LQU,O)GB( 0 (I—H)_2>< 0 0>'

Proof. The case Mo = {0} is trivial. So let Mg # {0}. We have

@m(t):(lo‘t V“})‘”),

and hence wpq (t) =0, ppg () =1—t, trdPpg(t) =1—t, Ag={1}, Ao=9, A1 =0 (H) \ {1}, Ay =9. From Theorem 1.2
we therefore obtain that PQ is Drazin invertible if and only if 1 —¢ is separated from zero on o (H) \ {1}, which happens if
and only if o(H) € (0,1 — ¢]U {1} for some & > 0. As 1 is not an eigenvalue of H, this is equivalent to the invertibility of
I — H. In the same way we deduce from Theorem 1.1 that PQ is Moore-Penrose invertible exactly if I — H is invertible. In
the case at hand, Hi; = H. The representations of the Drazin and Moore-Penrose inverses of PQ are therefore immediate
from (7) and (8). The operator PQ P can be tackled equally. O

Let now
U=PQP+(I-P)I—-Q)I—-P), V=Pt +Piny+U
and recall that P;~y. and P;iy are the strong limits of
PI-QPUI-QPUI-Q)--- and (I-P)QU-P)QU-P)Q---,

respectively.
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Theorem 2.5. For each of the operators PQ and P Q P, both Drazin and Moore-Penrose invertibility are equivalent to the invertibility
of V. In case V is invertible,

(PQ)P=v—2PQ, (PQ)'=v~lQpr, (PQP)P’=(PQP)=V—2PQP.

Proof. Since

I-H 0 I-H 0
U=(1,0,0,1)69<0 I—H)’ V=(1,1,1,1)69<0 ,_H>,

this follows from Theorem 2.4 in conjunction with (15) and (16). O
In analogy to Theorem 2.5 one can prove the following.

Theorem 2.6. Let A be one of the operators PQ, PQP,PQPQ,PQPQP,....Then A is Drazin invertible if and only if it is Moore-
Penrose invertible, and this is in turn the case if and only if V is invertible. If V is invertible, then for every natural numberm > 1,

(O™’ =v=1pg, (P =vapr, (PQ)"P)” =(PQ)"P) =v1pQP.
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