
W&M ScholarWorks W&M ScholarWorks 

Arts & Sciences Articles Arts and Sciences 

2009 

Persistent Deficits in Heart Rate Response Habituation Following Persistent Deficits in Heart Rate Response Habituation Following 

Neonatal Binge Ethanol Exposure Neonatal Binge Ethanol Exposure 

Katherine C. Morasch 
William & Mary 

Pamela S. Hunt 
William & Mary 

Follow this and additional works at: https://scholarworks.wm.edu/aspubs 

Recommended Citation Recommended Citation 
Morasch, Katherine C. and Hunt, Pamela S., Persistent Deficits in Heart Rate Response Habituation 
Following Neonatal Binge Ethanol Exposure (2009). Alcoholism-Clinical and Experimental Research, 
33(9), 1596-1604. 
10.1111/j.1530-0277.2009.00991.x 

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been 
accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more 
information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/aspubs
https://scholarworks.wm.edu/as
https://scholarworks.wm.edu/aspubs?utm_source=scholarworks.wm.edu%2Faspubs%2F1123&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu


Persistent Deficits in Heart Rate Response Habituation

Following Neonatal Binge Ethanol Exposure

Katherine C. Morasch1 and Pamela S. Hunt

Background: We have previously shown that the rate of habituation of the heart rate orienting
response to a novel odor in rats is negatively affected by neonatal ethanol exposure. Thus far,
however, only young rats (16 days of age) have been tested. Given the persistence of attention
and memory problems evident in humans exposed to ethanol in utero, the purpose of this experi-
ment was to examine the longer-term consequences of ethanol exposure on response habituation.

Methods: Ethanol (5.25 g ⁄ kg ⁄ d) was administered intragastrically to male and female Sprague-
Dawley rats on postnatal days (PD) 4 to 9, and controls were given sham intubations. Animals
were tested for heart rate orienting and response habituation to a novel olfactory stimulus (amyl
acetate) on PD 16, 23, or 30.

Results: Animals tested on PD 16 or 23 showed normal heart rate deceleration to the novel
odor, a measure of the orienting response. However, ethanol-treated subjects showed impaired
response habituation compared with sham controls. While controls exhibited complete habitua-
tion within 4 to 5 trials, ethanol-treated animals continued to respond throughout the testing ses-
sion, with little decrement in heart rate response magnitude across 10 stimulus presentations. A
different pattern of responding was observed in animals tested during adolescence (PD 30). Con-
trol animals failed to show the typical heart rate decrease indicative of orienting, and instead
showed a tendency toward tachycardia. In contrast, ethanol-treated animals tested on PD 30
showed orienting bradycardia that persisted for several trials.

Conclusions: These data suggest that there are relatively long-term consequences of neonatal
ethanol exposure on nonassociative memory. This impairment in habituation may be relevant to
the distractibility and poor focused attention that is pervasive among humans diagnosed with fetal
alcohol spectrum disorders.

Key Words: Fetal Alcohol Spectrum Disorders, Nonassociative Learning, Alcohol, Olfactory,
Rat.

C OGNITIVE OUTCOMES ASSOCIATED with prena-
tal exposure to alcohol include low IQ, impaired short-

term memory, problems with executive function, poor spatial
abilities, and attention deficits. Longitudinal studies in
humans prenatally exposed to alcohol have documented the
persistence of such effects. Early exposure to alcohol can lead
to developmental delays or more permanent impairments in
neurocognitive functioning (Connor et al., 1999; Kerns et al.,
1997; Korkman et al., 2003; Riley, 1990). Studies have found
that although the physical abnormalities associated with pre-
natal alcohol exposure may normalize with maturation,
impairments in attention, memory and executive function can
persist into adulthood (Connor and Streissguth, 1999;
Kodituwakku, 2007; Streissguth, 2007).

Disturbances in attentional processes especially have been
consistently reported across the lifespan of individuals with
known prenatal exposure to alcohol. Such disruptions in
attention have been noted as early as the first day of life
(Streissguth et al., 1983), throughout childhood (Coles et al.,
1997; Nanson and Hiscock, 1990; Streissguth et al., 1984),
during adolescence (Brown et al., 1991; Coles et al., 2002;
Korkman et al., 2003), and into adulthood (Connor et al.,
1999; Kerns et al., 1997; Streissguth, 2007). Attentional prob-
lems are often noted as decreased focus, poor sustained atten-
tion and vigilance, and distractibility. Kerns and colleagues
(1997) reported that adults with a diagnosis of fetal alcohol
syndrome (FAS) were more distractible during a vigilance
task. Distractibility may in part result from deficits in habitu-
ation to sensory stimuli outside the realm of the task, and
such disturbances have often been described as a lack of abil-
ity to tune-out redundant and task-irrelevant information
(Connor and Streissguth, 1999; Streissguth et al., 1989).
Measurements of stimulus orienting have been powerful

tools for examining attention, perception, learning and mem-
ory. The orienting response (OR) consists of a collection of
central, autonomic, and behavioral reactions to the detection
of a novel stimulus (e.g., Graham and Clifton, 1966; Sokolov,
1963). The most commonly used indices of orienting include
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behavioral orientation toward the source of stimulation and
autonomic responses, such as changes in heart rate (HR)
(Campbell et al., 1992; Lang et al., 1997). The HR component
of the OR is defined as a decrease in rate (bradycardia), medi-
ated primarily by activation of the parasympathetic nervous
system (Graham, 1992; Hunt et al., 1994). Parasympathetic
activation is functional in that it serves to reduce background
noise, redistribute blood flow away from skeletal muscles to
brain areas required for attention and vigilance, and can sup-
port faster reaction times (Lacey and Lacey, 1970). A funda-
mental property of the OR is its ability to undergo rapid
habituation, which makes the OR suitable to the study of
stimulus encoding and both short- and long-term recognition
memory processes (e.g., Richardson and Campbell, 1991).
The rate of response habituation has been considered by

many as an index of cognitive development in humans and
other animals, and rate of habituation assessed in infancy has
been regarded as a predictor of later intelligence (e.g.,
Bornstein, 1989; Kavšek, 2004; McCall and Carriger, 1993).
According to comparator theories (e.g., Sokolov, 1963),
habituation of the OR reflects short-term nonassociative
memory processes, as it involves the recognition that a stimu-
lus has been encountered previously and is not biologically
significant. Infant recognition memory performance also pre-
dicts later IQ (Fagan and Singer, 1983; Rose and Feldman,
1995). Indeed, McCall (1994) has proposed that inhibition is
a common feature in habituation and recognition memory
paradigms and that it is the propensity for inhibition that
accounts for the predictive relationship between these mea-
sures and later intelligence test scores. Thus, habituation may
be useful in identifying alcohol-induced cognitive deficits soon
after birth that could be predictive of more complex and per-
sistent problems that span at least into adolescence and early
adulthood (Carmichael Olson et al., 1998; Kerns et al., 1997).
Orienting responses have been examined in infants with a

history of prenatal alcohol exposure. Coles and colleagues
(1987) for example, reported that moderate gestational expo-
sure to ethanol was correlated with reduced orienting and
altered motor development in infants <1 month of age. Fur-
thermore, these researchers found that the initial differences
in orienting and motor competence were highly predictive of
mental and motor performance assessed at 6 months.
Streissguth and colleagues (1983) reported that infants
exposed to moderate doses of ethanol during gestation exhib-
ited reduced rates of response habituation to both auditory
and visual stimuli when tested as early as 24 hours after birth,
with no obvious differences in initial orienting. This same
cohort has been assessed repeatedly and deficits in attention
and memory domains have consistently been reported (for
review see Streissguth, 2007).
Previous studies from our laboratory, using young rats,

support the findings of Streissguth and colleagues (1983) in
that ethanol-treated animals exhibit impaired response habit-
uation with no observable change in stimulus orienting. Spe-
cifically, rats given ethanol on postnatal days (PD) 4 to 9, to
model third-trimester gestational exposure in humans

(Dobbing and Sands, 1979; Goodlett and Johnson, 1999),
exhibit deficits in habituation of the heart rate OR to a novel
olfactory stimulus (Hunt and Morasch, 2004; Hunt and
Phillips, 2004). However, in these experiments the subjects
were tested at only 1 age, shortly after the termination of the
ethanol administration period, on PD 16. Given the well-
documented persistence of attention and memory impair-
ments observed in humans with prenatal exposure to ethanol,
the purpose of the present experiment was to examine
whether ethanol-induced attenuation in rate of response
habituation would persist beyond the period of infancy.

METHODS

Subjects

A total of 94 male and female Sprague-Dawley-derived rats repre-
senting 19 litters served as subjects in this experiment. Animals were
born and reared in a temperature- and humidity-controlled vivarium
in the Psychology Department at the College of William and Mary.
Male and female breeders (Charles River Laboratories, Wilmington,
MA) were housed together in 50.8 · 40.6 · 21.6 cm clear poly-
carbonate cages with wire lids and pine chip bedding. Animals had
free access to high-protein rodent chow (LabDiet Formula 5008) and
water. Cages were checked daily for the presence of pups, and the
day of birth was designated as postnatal day 0 (PD 0). Litters were
culled to 8 to 10 pups on PD 2. Pups remained housed with the
dam and sire until PD 21, at which time they were weaned and
group-housed with siblings in identical polycarbonate cages and in
the same vivarium for the remainder of the experiment. The vivarium
was maintained on a 14:10 hours light:dark cycle with light onset at
06:00 hours. All procedures occurred during the light portion of
the cycle and were approved by the College of William and Mary
Institutional Animal Care and Use Committee.
Animals tested at 16 or 23 days of age were derived from the same

7 litters. The litter was equally divided between the 2 testing ages and
no more than 1 male and 1 female pup from each neonatal treatment
condition (ethanol or sham) was tested at a given age. Ethanol- and
sham-treated animals tested at 30 days were derived from an addi-
tional 7 litters, and no more than 1 male and 1 female from each neo-
natal treatment group was tested. The remaining 30-day-old animals
from each litter were tested in a different behavioral paradigm, the
results of which will be reported at a later date. Finally, a group of
Unhandled control animals was tested at 30 days of age and subjects
were from 5 additional litters. This group was included because of an
unexpected finding in the 30-day-old sham-intubated control group.
These animals were obtained from the same animal colony as the
other subjects but were not treated during the neonatal period. No
more than 1 male and 1 female pup per litter were tested at a given
age, and approximately equal numbers of males and females were
included in each group.

Apparatus

Heart rate was recorded using 2 transcutaneous electrodes made
from 27 gauge stainless steel wire and shaped to resemble small safety
pins. The electrodes with attached teflon-coated lead wires (32 gauge;
Alpha Wire Co., Elizabeth, NJ) were acutely implanted prior to test.
Cardiac potentials were amplified with a Grass Instruments (Quincy,
MA) Model P15 preamplifier. The R-spike activated a Schmitt trig-
ger (Coulbourn Instruments, Allentown, PA). A computer stored
each inter-beat interval (IBI), measured to the nearest millisecond,
and controlled all timing sequences and data collection. The cardiac
signal was continuously displayed on an oscilloscope (Hitachi Model
V-212, Hitachi Denshi America, Ltd., Woodbury, NY).
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Testing occurred in a 25-cm long cylindrical Plexiglas chamber
(14 cm diameter) mounted horizontally inside a sound attenuating
shell (66 · 37 · 81.5 cm). A 7.5-watt white light bulb was mounted
on the inside of the shell to provide constant low-level illumination.
The olfactory stimulus (0.5 ml amyl acetate + 40 ml water) was
introduced into the chamber by means of a custom-made olfactome-
ter system which has been described in detail elsewhere (Hunt et al.,
1997b). The temperature inside the chamber was maintained at 28 to
32�C, depending on the age of the animals at test, by a heated air-
stream. The olfactory stimulus was evacuated from the chamber by
negative pressure generated by an exhaust fan. Subjects were weighed
using a top-loading balance (Ohaus Model GT 8000; Florham Park,
NJ), accurate to 0.01 g.

Procedure

Ethanol Administration. On PD 4 animals were removed from
the home cage. The litter was placed as a group in a
35.2 · 21.9 · 13.0 cm opaque polyethylene holding cage that was
maintained at approximately 34�C by a heating pad placed beneath
it. Four animals (2 male and 2 female) were assigned to receive the
ethanol treatment and 4 animals (2 males and 2 females) were
assigned to the sham control group. The ethanol-exposed subjects
(EtOH) were administered 2.625 g ⁄kg ethanol intragastrically twice
per day, for a total daily dose of 5.25 g ⁄kg. Intubations were
achieved by using a 15-cm length of polyethylene tubing (PE-10;
Clay-Adams, Sparks, MD) lubricated with corn oil and attached to a
1-ml syringe. The ethanol solution was 11.9% v ⁄v 95% ethanol
(Sigma Chemicals, St Louis, MO) mixed with Similac� (Abbott
Laboratories, Columbus, OH). The 2 ethanol administrations were
separated by 2 hours. Although blood–alcohol concentrations
(BACs) were not measured in this experiment, data from other
laboratories using this same dose have reported BACs in the range
of 265 to 325 mg ⁄dl (Goodlett and Johnson, 1997; Stanton and
Goodlett, 1998). A third feeding of the Similac� vehicle was given
2 hours after the second ethanol administration to supplement
nutrition. Sham-intubated controls were subjected to the tube
insertion procedure 3 times daily, but no fluid was delivered because
administration of milk vehicle can cause abnormal weight gain (e.g.,
Goodlett and Johnson, 1997). The litter was immediately returned
to the home cage after each of the 3 daily feedings. Following the
final intubation on PD 9 pups were ear marked to denote neonatal
treatment condition. On PD 21 all pups from the litter were weaned
and group housed for the duration of the experiment. Unhandled
control subjects that were tested at 30 days of age were left
undisturbed, except for routine maintenance, during this time.

Heart Rate Testing. Separate groups of animals were tested on
either PD 16, 23, or 30 (±1 day). For test, HR electrodes were
acutely implanted, 1 at the nape of the neck and the other 1 cm from
the base of the tail. Electrode implantation required approximately
10 seconds per subject and was performed without anesthetic, as the
procedure induces no more discomfort than a subcutaneous injec-
tion. In addition, electrodes and attached lead wires did not appear
to interfere with general comfort or subject movement. Immediately
after electrode implantation, subjects were placed into the test cham-
ber for a 15-minute period of adaptation (Saiers et al., 1990). Next,
animals were given 10 presentations of the 10 seconds olfactory stim-
ulus, separated by 100 to 200 seconds intervals. IBIs (milliseconds)
were recorded for 1 second prior to each stimulus, during the 10 sec-
onds of the stimulus, and for 5 seconds poststimulus offset on each
trial.

Treatment of HR Data. Inter-beat intervals were converted into
a beats-per-minute (BPM) measure for analysis. HR recorded during
the 1-second baseline period was subtracted from that recorded dur-
ing each second of the stimulus and poststimulus periods to obtain

difference scores. Negative difference scores reflected a decrease in
HR (bradycardia) that defines the heart rate OR (Graham and
Clifton, 1966), whereas positive difference scores reflected an increase
in HR (tachycardia).

Statistical analyses

Heart rate data obtained from ethanol- and sham-treated subjects
were analyzed using mixed-design analysis of variance (ANOVA),
with age and neonatal treatment as between-groups variables and
seconds (OR) or trial block (habituation) as the within-subjects
variable. Sex was not included in the data analysis because of the
small number of male and female subjects in each treatment group.
In all cases involving a repeated measure, the Greenhouse-Geisser
correction procedure was used to control for possible inflation of
probability values (Keppel, 1982). The second-by-second changes
from baseline HR obtained from the first test trial were analyzed sep-
arately to assess the integrity of the OR. HR data from all trials were
averaged across blocks of 2 trials for analysis of habituation. The
peak change in HR on a given trial was defined as the largest change
observed, either positive or negative, and has been used previously to
describe this type of data (Hunt and Morasch, 2004; Hunt and
Phillips, 2004). Data from sham-treated and unhandled control
groups tested at 30 days of age were compared statistically using
ANOVA. It should be noted that these 2 control groups did not differ
on any of the measures, as reported below. Where appropriate, post
hoc comparisons were made using Newman–Keuls tests (p < 0.05).

RESULTS

During the ethanol administration procedure (PD 4 to 9), 6
animals assigned to the EtOH group and 2 assigned to the
Sham group were lost due to improper intubations. HR data
from an additional 15 animals were lost due to equipment
malfunction or excessive noise in the HR signal. Data from
the remaining 71 subjects were analyzed and the final ns per
group are indicated in Table 1. There were approximately
equal numbers of males and females in each of the groups.

Body Weights

Body weights of animals recorded during the ethanol
administration procedure (PD 4 to 9) and on the day of test-
ing are shown in Table 1. Body weights recorded on PD 4 to
9 were analyzed using a 2 (neonatal treatment) · 6 (day)
mixed-design ANOVA. This analysis revealed main effects of
neonatal treatment and day, and a Neonatal Treat-
ment · Day interaction [smallest F (1, 74) = 25.40,
p < 0.001]. Post hoc Newman–Keuls tests indicated that on
PD 4 animals had similar body weights, but beginning on PD
5 the ethanol-exposed animals weighed less than the sham
controls. Both groups gained weight during the procedure,
but the ethanol-exposed animals gained less than the sham
controls.
Body weights recorded on the day of HR testing were ana-

lyzed using a 3 (age) · 2 (neonatal treatment) between-groups
ANOVA. The analysis yielded main effects of age [F (2,
67) = 246.98, p < 0.001] and neonatal treatment [F (1,
67) = 5.02, p < 0.05]. Post hoc comparisons indicated that
body weights increased with age and that ethanol-treated
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subjects weighed less than sham controls. Additionally, body
weights of 30-day-old sham-treated and unhandled animals
did not differ (F < 1).

Baseline HR

Baseline HRs recorded during the test session are depicted
in Fig. 1. Baseline HRs were analyzed using a 3 (age) · 2
(neonatal treatment) · 5 (trial block) mixed-design ANOVA.
This analysis yielded significant main effects of age, neonatal
treatment and blocks, as well as neonatal treatment · blocks
and age · neonatal treatment · blocks interactions [smallest
F (4, 220) = 3.42, p < .05]. Follow-up ANOVAs (neonatal
treatment · blocks) were conducted on the data obtained
from each testing age. The ANOVAs yielded main effects of
block at each age [smallest F (4, 76) = 2.85, p < 0.05]. The
ANOVA conducted on the data from the 23-days-old subjects
additionally yielded a neonatal treatment · block interaction,

F (4, 76) = 5.29, p < 0.01. Generally, baseline HRs of all
subjects declined across the test session. For 23 day olds,
however, the sham control group exhibited a more robust
decline in baseline HR than the ethanol-treated group.
Finally, an ANOVA comparing baseline HRs of sham-
treated and unhandled subjects tested at 30 days of age
yielded no significant differences between the 2 control groups
(F < 1).

Heart Rate OR

The HR responses of subjects tested at 16, 23, or 30 days
of age recorded on the first olfactory stimulus presentation
are shown in Fig. 2. Neonatal ethanol administration did not
impact the heart rate OR in subjects tested at 16 or 23 days of
age. The form and magnitude of the response observed in
these subjects was nearly identical to that previously observed
in experimentally-naı̈ve subjects (e.g., Hunt and Phillips,
2004; Hunt et al., 1994, 1997b; Sananes et al., 1988). In con-
trast, however, ethanol had a dramatic effect on the HR

Fig. 1. Mean (±SEM) beats-per-minute baseline heart rate (HR) recorded
during the test session in 16-, 23- and 30-day-old animals. Baseline HR was
averaged across blocks of 2 trials. Data are from ethanol-treated and sham
control animals tested at each age, and also from an unhandled group
tested at 30 days. EtOH animals were administered 5.25 g ⁄ kg ⁄ d ethanol on
postnatal days 4 to 9. Sham controls were also treated on days 4 to 9 but
received no ethanol. Generally, baseline HRs decreased across the test
session and there was little evidence of differences between the groups.
The exception was the 23-day-old subjects; the sham control group tested
at this age showed a larger decline than the EtOH group.

Table 1. Mean (±SEM) body weights (g) recorded from subjects during the ethanol administration period, postnatal days 4 to 9, and on the day of heart
rate testing (postnatal day 16, 23, or 30)

Neonatal
treatment

Postnatal day

Ethanol administration Heart rate testing

4 5 6 7 8 9 16 23 30

Ethanol 14.4 (0.25) 15.4 (0.28) 17.4 (0.33) 19.1 (0.39) 20.9 (0.45) 22.9 (0.53) 37.4 (3.07) n = 9 62.9 (3.45) n = 10 103.5 (3.45) n = 8
Sham 14.0 (0.25) 16.6 (0.28) 19.1 (0.32) 22.2 (0.38) 24.8 (0.44) 28.0 (0.52) 41.9 (2.98) n = 12 70.5 (3.18) n = 11 110.9 (3.67) n = 11
Unhandled 108.7 (4.18) n = 10

Final group sizes (ns) at test are indicated. Ethanol-treated subjects weighed less than sham controls beginning on postnatal day 5 and contin-
uing throughout testing.

Fig. 2. Mean second-by-second beats-per-minute (BPM) changes in
heart rate (HR) recorded on the first presentation of the olfactory stimulus in
animals tested at 16, 23, or 30 days of age. EtOH animals were adminis-
tered 5.25 g ⁄ kg ⁄ d ethanol on postnatal days 4 to 9, and these subjects were
compared to animals not administered ethanol (sham or unhandled on post-
natal days 4 to 9). The dotted line represents baseline HR, and decreases in
HR (negative scores) define the orienting response. At 16 and 23 days,
ethanol treatment had no effect on the OR. At 30 days the control groups
failed to respond with orienting bradycardia while the EtOH group did.
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response displayed by 30-day-old subjects. Thirty-day-old
control animals failed to respond to the novel olfactory stimu-
lus with HR deceleration whereas ethanol-treated animals did.
The HR response exhibited by ethanol-exposed subjects was
highly similar to that observed at the younger ages. These
interpretations were confirmed statistically. The second-
by-second changes in HR were analyzed using a 3 (age) · 2
(neonatal treatment) · 15 (seconds) mixed-design ANOVA.
The analysis revealed significant main effects of age, neonatal
treatment and seconds [smallest F (1, 55) = 6.35, p < 0.05].
The age · neonatal treatment, age · seconds, and age · neo-
natal treatment · seconds interactions were also significant
[smallest F (28, 770) = 2.05, p < 0.05]. The 3-way interaction
was further explored with the use of contrast analyses [SAS v.
9.1 (SAS Institute, Inc.; Cary, NC); p < .05] to compare each
group’s change in HR against its own baseline. These analyses
confirmed that the interaction resulted from the 30-day-old
Sham subjects failing to show a significant heart rate OR to
the olfactory stimulus. In addition, all other groups responded
on the first trial with substantial and roughly equivalent
bradycardia. There was a tendency for the 30-day-old sham
control animals to respond with an increase in HR (tachy-
cardia), although this failed to reach statistical significance.
The response of the 30-day-old Unhandled group, also shown
in Fig. 2, did not differ from that of the Sham group (F < 1).
That is, experimentally-naı̈ve 30-day-olds also failed to exhibit
a reliable heart rate OR to the olfactory stimulus.

Habituation of the Heart Rate OR

The peak changes in HR recorded on trial blocks 1 to 5 are
shown in Fig. 3. The data were analyzed using a 3 (age) · 2
(neonatal treatment) · 5 (trial block) mixed ANOVA. This
analysis yielded main effects of age, neonatal treatment and
trial block [smallest F (4, 220) = 6.62, p < .001]. The
age · neonatal treatment · trial block interaction was also
significant, F (8, 220) = 2.38, p < 0.05. Post hoc Newman–
Keuls tests were conducted to evaluate the 3-way interaction.
At 16 and 23 days of age, the ethanol-treated subjects exhib-
ited persistent heart rate ORs to the olfactory stimulus
throughout the test session, with little evidence of response
decrement. In contrast, control subjects at these ages exhib-
ited response habituation that was evident by the third trial
block. Rate of OR habituation in sham-treated subjects is
comparable to that previously reported in subjects of about
this age (e.g., Hunt and Phillips, 2004; Hunt et al., 1997a;
Siegel et al., 1987). A different pattern was revealed at 30 days
of age. At this age, control subjects showed little evidence of
responding to the olfactory stimulus during the session, while
ethanol-treated animals exhibited bradycardia on the first
few trials. Ethanol-treated subjects did exhibit habituation,
although the magnitude of the HR response of these subjects
was greater than that of sham controls on all trial blocks
except block 5. Subjects in the unhandled group, also shown
in Fig. 3, did not differ in their HR response to the olfactory
stimulus from sham-treated controls (F < 1).

DISCUSSION

The purpose of this experiment was to further explore the
reported deficits in rate of OR habituation resulting from neo-
natal ethanol exposure (Hunt and Morasch, 2004; Hunt and
Phillips, 2004). The results indicate that subjects exposed to
ethanol on PD 4 to 9 and tested 1 to 2 weeks later (on PD 16
or 23) displayed comparable heart rate ORs to the novel
olfactory stimulus, but exhibited deficits in habituation of this
response, relative to sham-intubated controls. When tested at
30 days of age, however, control subjects (both sham-treated
and unhandled) failed to exhibit an OR, whereas ethanol-
exposed subjects did. Data from 30-day-old animals are diffi-
cult to interpret because the control groups did not show the
expected OR. Nonetheless, these findings suggest that ethanol
may have lead to an altered pattern of responding that is not
age-typical, or perhaps to a delay in development of the nor-
mal response pattern to this novel stimulus (Riley, 1990).
However, because subjects were not tested at ages older than
30 days, these issues remain speculative.
Animals showed comparable magnitudes of the heart rate

OR on the first presentation of the olfactory stimulus, with
the exception of the 30-day-old control groups that showed
no significant deviation from baseline. Animals in each of the
other groups exhibited a decrease in HR that peaked at 50 to
60 BPM below baseline. The finding that ethanol-exposed
subjects did not differ from controls in the relative magnitude
or onset latency of the OR when tested at 16 or 23 days of
age is commensurate with the human data reported by
Streissguth and colleagues (1983). In that report, newborn
ethanol-exposed and nonexposed infants were assessed using

Fig. 3. Peak (mean ± SEM) beats-per-minute (BPM) changes in heart
rate (HR) recorded during the 5 trial blocks of testing from 16-, 23- and
30-day-old subjects. Changes in HR reflect the average of 2 trials. EtOH
animals were administered 5.25 g ⁄ kg ⁄ d ethanol on postnatal days 4 to 9.
Controls were either sham-intubated or unhandled on postnatal days 4 to
9. Rate of habituation was severely compromised in EtOH subjects tested at
16 and 23 days of age. For subjects tested at 30 days, the EtOH group
responded with bradycardia that persisted for several trials whereas the con-
trol groups (sham and unhandled) displayed virtually no HR responding
throughout the test.
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the Brazelton Neonatal Assessment Scale. While ethanol-
induced deficits in rate of habituation of the OR to auditory
and visual stimuli were evident in exposed infants, these
authors reported no differences in initial orientation level.
This pattern of results was similarly observed here and in pre-
vious reports from our lab (Hunt and Morasch, 2004; Hunt
and Phillips, 2004). Others, however (e.g., Coles et al., 1987)
have reported changes in orientation and arousal levels in
infants prenatally exposed to alcohol.
The finding that the adolescent control subjects did not

exhibit orienting bradycardia to the olfactory stimulus is
rather perplexing. Previous research has shown that
preweanling (12 to 18 days of age), juvenile (21 to 23 days of
age), and adult (60 to 90 days of age) rats all exhibit substan-
tial decreases in HR to this same stimulus (Hunt and Phillips,
2004; Hunt et al., 1997a,b; Sananes et al., 1988; Siegel et al.,
1987). In these studies, however, adolescents were not tested.
While, as a group, adolescent-aged controls in both the Sham
and Unhandled conditions failed to exhibit an OR defined by
bradycardia (Graham and Clifton, 1966), individual animals
did exhibit HR changes to the first presentation of the stimu-
lus. Some of the control animals did indeed respond with ori-
enting bradycardia (n = 6; peak change = )50.7 BPM), but
the majority of the animals (n = 15) responded with tachy-
cardia (peak change = +50.7 BPM). Graham (1992) has
defined such an increase in HR as a defensive response (see
also Hunt et al., 1994). Spear (2000) has noted that adoles-
cents sometimes exhibit hyper-responsiveness to novel stimuli
compared with either younger or older individuals, while at
the same time exhibiting increased sensation-seeking and risk-
taking behaviors (e.g., Stansfield and Kirstein, 2006). Perhaps
the tachycardia observed in the preponderance of the adoles-
cent control subjects tested here represents this type of
enhanced reactivity to novelty. Regardless, it is interesting to
note that the alcohol-exposed animals failed to show this age-
typical pattern, with the majority of the animals tested (7 of
8) responding with bradycardia. This might suggest that early
alcohol exposure is producing an attenuated stress ⁄defensive
response in the adolescent animals (cf. Weinberg et al., 2008)
or inducing a developmental delay in responding. It is possi-
ble that ethanol-treated subjects tested at a slightly older age
would exhibit the tendency toward tachycardia that is evident
in the 30-day-old control groups.
The neuroanatomical basis for the observed ethanol-

induced deficit in olfactory response habituation is not clear.
One difficulty in identifying a brain locus for ethanol’s effects
is that the anatomical substrates for olfactory habituation
have not been well defined. However, there are some pub-
lished findings that may shed some light on this issue. First,
the main olfactory bulb itself could be an important site for
olfactory habituation (for review see Wilson and Linster,
2008). McNamara and colleagues (2008) for example,
reported that habituation to olfactory cues could occur in
either the main olfactory bulb or the piriform cortex, depend-
ing on the temporal patterns of stimulus presentation. Specifi-
cally, habituation on a short time-scale was found to be

dependent on changes in neural activity within the piriform
cortex. Here, decreases in neural excitability were evident fol-
lowing repeated presentations of a 20-second odorant with
relatively short inter-stimulus intervals (ISI; 10 seconds). In
contrast, long-term habituation to olfactory cues was found
to involve synaptic depression in mitral cells within the main
olfactory bulb. The sequence of stimulus presentations
required for this long-term adaptation involved longer odor-
ant exposures (50 seconds) separated by relatively long
(5 minutes) ISIs. The latter seems more analogous to the stim-
ulus conditions of the present experiment. Notably, changes
in olfactory bulb morphology and function have been
reported in rats exposed to ethanol during either the prenatal
or postnatal periods (Barron and Riley, 1992; Bonthius and
West, 1991; Nyquist-Battie and Gochee, 1985; Rockwood
and Riley, 1990). It is of particular importance that the find-
ings of Maier and colleagues (1999) indicate a significant
reduction in mitral cell numbers in the main olfactory bulb in
rats exposed to ethanol during the neonatal period using a
model very similar to the one employed in the present
research. We know of no studies that have examined neonatal
ethanol-induced alterations in the piriform cortex.
The demonstration that habituation may occur in

olfactory-specific pathways (Wilson and Linster, 2008) may
clarify previous data on response habituation in this animal
model. Hunt and Morasch (2004), for example, not only
found that neonatal ethanol resulted in robust deficits in
olfactory habituation, but also they further reported no effect
of ethanol exposure on rate of habituation to a simple
auditory cue. Kelly and Richards (1998) reported a similar
finding, as well as showing that habituation to visual cues was
unaffected by neonatal ethanol exposure. These data are
somewhat surprising given that humans with a diagnosis of
FAS or Fetal Alcohol Spectrum Disorder (FASD) demon-
strate deficits in both auditory and visual domains (e.g., Coles
et al., 2002; Connor et al., 1999; Streissguth et al., 1983). The
failure to observe auditory and visual deficits following
neonatal ethanol suggests that the administration of ethanol
in this particular fashion is insufficient to compromise the
functional integrity of regions involved in the processing or
habituation of the OR to stimuli within these modalities.
Neonatal ethanol administration does appear, however, to
render olfactory pathways less able to support sensory and
behavioral adaptation to repeated odor presentation. While
the modality specificity of our findings places some limits on
the generalizability of the data to the human condition, it is
noteworthy that many researchers have argued that the
olfactory system in rodents may be comparable in complexity
to auditory and visual functioning in humans (e.g., Kirstein
et al., 1997; Otto and Eichenbaum, 1992a,b). Moreover,
olfactory function in individuals with FASD has not, to our
knowledge, been examined. Because many developmental
and neurological conditions have been associated with
decreased olfactory perception and identification, including
Alzheimer’s disease (Devanand et al., 2008), Parkinson’s dis-
ease (Bohnen et al., 2008), schizophrenia (Compton et al.,
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2006), and attention deficit hyperactivity disorder (Karsz
et al., 2008), it is very possible that individuals with FASD
would also exhibit olfactory deficits. This remains an intrigu-
ing question that awaits further research.
In addition to probable changes in the olfactory bulb, the

hippocampal formation may be involved in the ethanol-
induced deficits in olfactory habituation. Modality-specific
processing within this structure does occur (e.g., Barnet and
Hunt, 2005; Rudy and Morledge, 1994; Sakurai, 1996) and
indeed the hippocampus may play a particularly important
role in olfactory processing (cf. Vanderwolf, 2001). The
hippocampus receives olfactory information via the lateral
entorhinal cortex and is known to be affected by neonatal
ethanol exposure (Barnes and Walker, 1981; Livy et al., 2003;
Miller, 1995; Savage and Swartzwelder, 1992). Animals with
hippocampal lesions exhibit reduced habituation in an open
field and novel object exploration (e.g., Honey et al., 2007).
There has been little work to date on the role of the hippo-
campus and surrounding regions in habituation paradigms
that do not use visuospatial cues, however, so generalizations
to the olfactory domain must be made with caution. Nonethe-
less, Staubli and colleagues (1984) reported that lesions of the
lateral entorhinal cortex in adult rats caused rapid forgetting
of olfactory information in a 2-odor discrimination proce-
dure, and this effect was found to be delay-dependent.
Lesioned animals that were trained to discriminate odors sep-
arated by intervals of up to 2 minutes were relatively unim-
paired compared with controls. However, performance of the
lesioned group dropped markedly when the interval between
odor presentations was extended to 3 minutes or longer. In
the present experiment, the ISI separating presentations of the
olfactory cue averaged more than 3 minutes, and the impair-
ment in habituation observed could reflect rapid forgetting of
the olfactory cue from trial to trial. If this is correct, and in
light of the Staubli and colleagues (1984) findings, it is possi-
ble that within-session habituation in ethanol-exposed
animals might be observed with the use of shorter ISIs
(Wilson and Linster, 2008; see also Nagahara and Handa,
1997). Experiments designed to address habituation in
ethanol-treated animals as a function of ISI duration are
currently underway.
The third-trimester animal model of FASD provides an

important tool for understanding ethanol’s effects on brain
and behavioral development. However, the ethanol-treated
subjects in the present experiment also exhibited reduced
body weights throughout the neonatal and postweanling peri-
ods. It is therefore possible that undernutrition at least par-
tially contributed to the observed effects on olfactory
habituation. There are numerous reports of undernutrition
affecting brain development, many of which also note severe
impairments in several types of learning and memory tasks
(Kar et al., 2008; Wenk, 1992). For example, undernutrition
can result in altered hippocampal structure (Lister et al.,
2005) and function (e.g., Goodlett et al., 1986; Jordan et al.,
1981; Rudy and Castro, 1990). There are also reports of
increased sensory reactivity (Alamy et al., 2005; Lester et al.,

1975). These results are not ubiquitous, however (Campbell
and Bedi, 1989; Hall, 1984; Lester, 1975). In the present
experiment, the ethanol-treated animals weighed less than
controls beginning on PD 5, and this reduction in weight per-
sisted throughout testing; therefore undernutrition could be a
confounding factor in the memory impairments observed
(Weinberg, 1984). Better control over body weights by using
a different vehicle solution or through the administration of
more supplements during the period of ethanol administra-
tion would help to determine the unique contribution of etha-
nol versus undernutrition on habituation impairments.
Collectively, these results suggest that attention and mem-

ory systems required for OR habituation are vulnerable to
third trimester ethanol insult and, further, that this relatively
simple measure can reveal abnormalities that persist at least
into the juvenile period (23 days) and possibly also longer, in
this rodent model. Habituation is a fundamental aspect of
more complex forms of attention, learning and memory as it
allows the organism to filter out extraneous stimulation and
promotes focus and vigilance on the task at hand. As dis-
cussed previously, rate of habituation and simple recognition
memory performance in infancy also predict later cognitive
development, including performance on tests of intelligence.
Thus, habituation paradigms could be particularly useful for
further studies of developmental deficits in cognitive function-
ing arising from early ethanol exposure.
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