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ABSTRACT

Mesozooplankton function as microbial microhabitats and can support 
concentrations of bacteria orders of magnitude higher than in the surrounding water. 
These zooplankton-associated bacteria can have much higher production rates than their 
free-living counterparts. Portions of the zooplankton microhabitat may also be anoxic and 
provide refuge for anaerobic bacteria and their associated processes within the 
oxygenated water column. Despite their common presence in the marine environment, 
zooplankton-associated bacteria are largely ignored by microbial ecologists and 
zooplankton ecologists alike. Consequently, factors which influence zooplankton- 
associated bacterial abundance, community composition and function, and how 
zooplankton-associated bacteria compare to free-living bacteria are not well known. The 
goal of my research was to investigate which environmental parameters and zooplankton- 
specific characteristics influenced the zooplankton-associated bacterial abundance, 
community composition and function. During a year-long field study in the York River, 
VA, free-living bacteria concentration peaked in the summer, while zooplankton- 
associated bacteria concentration peaked in both summer and winter. There were no 
relationships between number of bacteria per individual zooplankter and zooplankter 
size. Ambient ammonium concentration was the one environmental parameter that 
correlated with all zooplankton-associated bacterial concentrations. In laboratory 
experiments, copepods raised in high ammonium concentration had high concentrations 
of loosely attached bacteria, while copepods raised in low ammonium concentration 
supported fewer, firmly attached bacteria, suggesting greater exchange between free- 
living and zooplankton-associated bacterial communities in nutrient rich systems. 
Zooplankton-associated bacterial communities were genetically distinct from free-living 
bacterial communities and utilized a wider array of carbon substrates. Changes in 
ambient environmental conditions played a larger role than zooplankton-characteristics in 
shaping zooplankton-associated bacterial community composition and function. 
Additionally, the potential importance of zooplankton guts as anoxic microhabitats was 
evaluated by comparing carbon substrate usage by the total bacterial (epibiotic + gut) and 
gut bacterial communities of the calanoid copepod Acartia tonsa under aerobic and 
anaerobic conditions. Gut bacteria were responsible for a large portion of the microbial 
activity associated with the copepod under both aerobic and anaerobic conditions. A 
larger variety of substrate subsets were used by zooplankton-associated bacteria than 
free-living bacteria under anaerobic conditions, suggesting that each zooplankton group 
selects for a specific combination of bacteria. In fact, some zooplankton-associated 
bacteria were not detected in the surrounding water and utilized substrates not used by 
free-living bacteria. These results highlight that zooplankton act as microbial hotspots 
and zooplankton-associated bacteria are an important part o f the total bacterial 
abundance, diversity and functionality in aquatic systems.
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INTRODUCTION

Within the aquatic ecosystem, free-living bacteria and mesozooplankton can 

interact in multiple ways. Mesozooplankton can directly stimulate growth of free-living 

bacteria through the release of significant amounts o f dissolved organic matter (DOM) to 

the surrounding water through excretions and sloppy feeding (e.g. Moller 2005, Titelman 

et al. 2008). Free-living bacteria can then utilize this DOM, incorporate it into biomass 

and reintroduce it to the aquatic food web. The bacterial biomass is grazed mainly by 

microzooplankton, which are in turn consumed by mesozooplankton (Azam et al. 1983). 

Bacteria can also contribute directly to the growth o f higher trophic levels through 

ingestion and assimilation by mesozooplankton. Some mesozooplankton can ingest and 

assimilate the bacterial cells directly (Gophen et al. 1974) or indirectly when bacteria are 

attached to algal particles (Lawrence et al. 1993). Although the occurrence of 

mesozooplankton-associated bacteria has long been documented (e.g. Boyle & Mitchell 

1978), mesozooplankton and bacteria are still commonly perceived as two separate 

functional groups within the microbial loop with rare, weak or indirect interactions 

(Azam & Malfatti 2007). Consequently, the direct relationship between 

mesozooplankton and bacteria is largely ignored by zooplankton and microbial ecologists 

alike. The majority of ecological studies only considers free-living bacteria and 

consequently may grossly underestimate bacterial abundance, production and all 

associated microbial processes.

The relationships between bacteria and mesozooplankton extend far beyond 

trophic interactions. A number of studies have detected bacteria in direct association 

with live mesozooplankton through the colonization of the zooplankter’s external
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surfaces or gut (reviewed in Tang et al. 2010), highlighting the importance of 

mesozooplankton as microbial microhabitats. Mesozooplankton are unique microhabitats 

in the respect that they provide a consistent, nutrient-rich environment through constant 

feeding and excretion. Gut bacteria may benefit from a concentrated food source and 

externally attached bacteria may exploit excretions and sloppy feeding for a consistent, 

immediate source of DOM.

Due to the implications for human and aquatic animal health, a large portion of 

earlier research on mesozooplankton-associated bacteria focused on disease-causing 

organisms. The presence of live copepods is essential for the persistence and dispersal of 

Vibrio cholerae, the causative agent o f the disease cholera, in aquatic systems (Huq et al. 

1983). While Vibrio is the most frequently studied, other pathogenic bacteria such as 

Pseudomonas sp. and Helicobacter pylori have also been observed in association with 

copepods (Sochard et al. 1979, Hansen & Bech 1996, Cellini et al. 2005).

There are many ecological implications for the associations between zooplankton 

and bacteria aside from the stimulation of bacterial growth. Colonization of external or 

internal zooplankton surfaces may provide a defense mechanism for some bacteria. It 

has been shown that association with crustacean zooplankton offers bacteria protection 

from environmental stressors such as UV radiation, heat and ozone (Tang et al. 2011). 

Bacteria can repeatedly attach and detach from zooplankton exoskeletons, effectively 

exploiting mesozooplankton’s movement to aid dispersal and overcome physical 

boundaries in the water column such as the pycnocline (Grossart et al. 2010).

Recently there has been an increase in ecologically-based studies concerning 

mesozooplankton-associated bacteria. These studies have highlighted that
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mesozooplankton-associated bacteria concentrations can be on par with or even exceed 

free-living bacteria concentrations (Tang et al. 2010), and mesozooplankton-associated 

bacteria can account for 0.4 -  40% of the total bacteria within a system (Heidelberg et al. 

2002). The mesozooplankton microenvironment may also support anaerobic microbial 

processes within the aerobic water column (Bianchi et al. 1992, de Angelis & Lee 1994, 

Proctor 1997), which may have implication for marine biogeochemical cycles.

The limited data available indicates there are large differences in bacterial 

abundances and bacterial community compositions (BCC) associated with different 

mesozooplankton species from the same system, and between the same mesozooplankton 

species from different systems (e.g. Niswati et al. 2005, Grossart et al. 2009, Brandt et al. 

2010). The stability of these mesozooplankton-associated bacterial communities through 

time, as well as the factors that regulate mesozooplankton-associated bacterial abundance 

and community composition remain uncertain. Copepods and cladocerans collected from 

the same location at the same time exhibited very different bacterial communities, 

suggesting some yet-to-be determined zooplankton-specific characteristics that shape the 

mesozooplankton-associated BCC (Grossart et al. 2009). It has been suggested that the 

number of bacteria on a mesozooplankter may be a function o f habitat size, i.e. larger 

mesozooplankters can support more bacteria (Brandt et al. 2010) and BCC could change 

with molt status (Caro et al. 2012). Other potentially important, yet unexplored 

influential factors include ambient environmental conditions.

Studies that investigated potential controlling factors of free-living bacterial 

communities found correlations to environmental conditions such as temperature, 

phytoplankton biomass, as well as dissolved nitrogen and phosphorus concentrations
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(Muylaert et al. 2002, Crump & Hobbie 2005, Fuhrman et al. 2006, Longmuir et al.

2007). Given the extent to which environmental parameters may influence the free-living 

bacterial community structure and the potential for dynamic exchanges between the 

mesozooplankton-associated and free-living bacterial communities (Moller et al. 2007, 

Grossart et al. 2009, Grossart et al. 2010), it is plausible that mesozooplankton-associated 

communities are impacted by environmental conditions in the same manner as free-living 

bacteria.

The aforementioned studies have started to bridge the gap between zooplankton 

ecology and microbial ecology, and have elucidated the potential for complex and 

ecologically significant interactions between the free-living and mesozooplankton- 

associated bacterial communities.

STRUCTURE OF DISSERTATION

The general term “zooplankton” encompasses a wide range o f zooplankton size 

classes, which can exhibit very different interactions with bacteria. To simplify the 

descriptive process in this dissertation, the term “zooplankton” will refer to 

mesozooplankton (200-2000 pm) from this point forward, unless otherwise noted.

Despite the recent advances and greater amount o f attention that has been drawn to the 

subject, very basic information about zooplankton-associated bacterial communities is 

lacking. The overall goal of my dissertation was to address some of these shortcomings 

and fill in these gaps in knowledge. In particular, I sought to assess which zooplankton- 

specific characteristics and environmental parameters may regulate zooplankton- 

associated bacterial abundance, and their genetic and functional compositions.
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Additionally, I studied the relative importance of zooplankton guts vs. exoskeletons as 

microhabitats for supporting aerobic and anaerobic microbial processes.

This dissertation is divided into three main chapters, with Chapters 2 through 4 

discussing the results of a year-long field study and complementary laboratory 

experiments performed to expand upon the findings o f the field study. Chapter 2 

describes temporal changes in the abundance o f bacteria associated with the calanoid 

copepod Acartia sp. and the barnacle nauplius Balanus sp., which were present nearly 

year-round in the lower York River, a tributary of Chesapeake Bay. Bacterial 

abundances associated with other periodically dominant zooplankters and free-living 

bacterial abundances are also reported. Data from additional laboratory experiments 

conducted to assess the effects of ambient ammonium concentration on zooplankton- 

associated bacterial abundances are also described. Relationships between zooplankton- 

associated bacterial abundances and measures o f zooplankton size and environmental 

conditions are discussed.

Chapter 3 describes the differences among the bacteria communities associated 

with different zooplankton groups and the free-living bacterial community. Temporal 

changes in the composition of all bacterial communities are also addressed. Bacterial 

community fingerprint analyses obtained via denaturing gradient gel electrophoresis 

(DGGE) and carbon substrate utilization patterns of the bacterial communities are 

reported for the calanoid copepod Acartia sp., barnacle nauplius Balanus sp. and other 

prevalent zooplankton groups within each month. The presence of specific DGGE bands 

and usage of certain carbon substrates are analyzed in relation to ambient environmental
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parameters. Differences in the functional and genetic diversity of the different bacterial 

communities are discussed.

Chapter 4 describes the laboratory experiments and field study conducted to 

examine zooplankton guts as potential anoxic microhabitats for anaerobic bacteria and 

their associated processes within the larger oxygenated water column. Carbon substrate 

utilization patterns are reported for all Acartia-associated bacteria and Acartia gut 

bacteria incubated in aerobic and anaerobic conditions. Aerobic and anaerobic substrate 

usage by bacteria associated with six common zooplankton groups from the York River 

is also presented. The relative importance of gut bacterial communities to total substrate 

usage and diversity of substrate usage by each zooplankton group is discussed.

Chapter 5 presents the overall conclusions from the dissertation. Using these 

conclusions, I have identified promising avenues of future research further linking the 

fields of zooplankton and microbial ecologies.

Appendix I contains methods and a brief discussion of fluorescence in situ 

hybridization (FISH) with bacterial group-specific probes to identify zooplankton- 

associated bacteria. FISH was performed to supplement the DGGE data to examine 

changes in bacterial community composition in Chapter 3. However, due to unexpected 

difficulty with the application of all FISH probes, these data were not used. I discuss 

reasons for the unsuccessful application of the FISH probes. Appendix II contains 

alternative acceptable models as determined by AIC which compare environmental 

predictor variables to Acartia-associdAed, Balanus-assocxaXcd and free-living bacterial 

concentrations. Appendix III contains information on zooplankton community 

composition within the York River.
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Bay: Comparison of temporal variations and controlling factors
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ABSTRACT

Zooplankton provide microhabitats for bacteria, but factors which influence 

zooplankton-associated bacterial abundance are not well known. Through a year-long 

field study, we measured the concentration of free-living bacteria and bacteria associated 

with the dominant mesozooplankters Acartia tonsa and Balanus sp. Free-living bacterial 

concentration peaked in the summer while zooplankton-associated bacterial concentration 

peaked in summer and winter. No relationships were found between bacterial abundance 

per individual and zooplankter width, length, surface area or body volume. Multiple 

regression analyses indicated that free-living and A car/z'a-associated bacterial 

concentrations were explained by temperature, salinity, ammonium, chlorophyll and all 

term interactions. Balanus-assocmted bacterial concentration was positively correlated 

with ammonium and phosphate. Ammonium was the one factor which influenced all 

bacterial communities. In laboratory experiments, copepods raised under high 

ammonium concentration had higher bacterial concentrations (2.76x1010 bacteria m l'1 

body volume) than those raised under low ammonium condition (1.23xl010). Transplant 

experiments showed that high ammonium favored loosely attached bacteria, whereas low 

ammonium selected for firmly attached bacteria, suggesting greater exchange between 

free-living and zooplankton-associated bacterial communities in nutrient rich systems. 

Additional sampling of other zooplankton taxa all showed high bacterial concentrations, 

supporting the notion that zooplankton function as microbial hotspots and may play an 

important, yet overlooked, role in marine biogeochemical cycles.
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INTRODUCTION

Bacteria play an important role in organic matter decomposition and regulating 

biogeochemical cycles within aquatic systems. They exist either as free-living cells or 

can be associated with particles and other organisms (Simon et al., 2002). Copepods and 

other crustacean zooplankton are highly abundant in the ocean, and some bacteria 

directly attach to a zooplankter’s chitinous exoskeleton and gut (reviewed in Tang et al., 

2010), highlighting the importance of zooplankton as microhabitats for bacteria. 

Zooplankton-associated bacteria occur in very high concentrations on a cells-per-unit- 

biovolume basis (Tang et al., 2010), and they can account for up to 40% of the total 

bacteria in aquatic systems (Heidelberg et al., 2002). Consequently, studies which 

examine only free-living bacteria may grossly underestimate bacterial abundance, 

production and relevant microbial processes. Investigation into possible relationships 

between zooplankton-associated bacterial abundance and environmental or zooplankton 

specific parameters will shed light into which factors regulate this bacterial community.

Positive correlations between potential habitat size and organism abundance are 

common (e.g. Gaston & Lawton, 1990) even on a microscopic scale: Larger marine 

aggregates provided a larger surface area for bacterial colonization, and as a result 

supported more bacteria (Alldredge & Gotschalk, 1990). Therefore, we hypothesized that 

larger zooplankton, both within and across species, would support higher bacterial 

abundances.

Ambient environmental conditions may also play a role in regulating 

zooplankton-associated bacterial abundances. A multitude of studies have shown that 

free-living bacterial abundance and activity are strongly influenced by temperature (Hoch
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& Kirchman, 1993, Felip et al., 1996, Peierls & Paerl, 2010) and nutrients (Felip et al., 

1996, Kirchman, 1994). Other important environmental factors include salinity (Amon & 

Benner, 1998, Revilla et al., 2000) and primary production (Amon & Benner, 1998,

Hoch & Kirchman, 1993), which is the primary source of labile dissolved organic carbon 

for free-living bacteria (Kirchman, 1994, Peierls & Paerl, 2010). Because these 

environmental factors do not act in isolation, it is important to consider the interactions of 

multiple environmental factors (Pomeroy & Wiebe, 2001, Peierls & Paerl, 2010). For 

example, Pomeroy and Wiebe (2001) highlighted the fact that excess nutrients may 

override temperature limitations on bacterial growth. To our knowledge, the impact of 

individual or interactions of multiple environmental factors on zooplankton-associated 

bacterial abundances has not been investigated. Zooplankton can produce large amounts 

of dissolved organic matter (DOM) via sloppy feeding and excretions (Moller, 2005, 

Moller et al., 2007), allowing attached bacteria to exploit the nutrient-rich environment at 

the zooplankton surface. Association with zooplankton may give attached bacteria access 

to resources not available to free-living bacteria, thereby moderating their responses to 

environmental conditions. We hypothesized that zooplankton-associated bacteria exploit 

zooplankton-derived nutrients and therefore would be less sensitive to ambient nutrient 

concentrations.

To address our hypotheses we used the zooplankton-associated and free-living 

bacteria of the York River, Chesapeake Bay as a test case. Chesapeake Bay is the largest 

estuary in the United States and has been experiencing eutrophication due to human 

activities in the surrounding watershed (Kemp et al., 2005). Free-living bacterial growth 

and abundance in Chesapeake Bay has been linked to temperature and substrate supply
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(Shiah & Ducklow, 1994) and anywhere between 0.01 and 40 % of the total bacterial 

abundance can be associated with bulk zooplankton (Heidelberg et al., 2002). Through a 

year-long, monthly field sampling, we assessed how zooplankton-associated bacterial 

abundance was related to zooplankton body length, width, surface area and volume. 

Additionally, we compared temporal changes among zooplankton-associated and free- 

living bacterial concentrations and assessed how the respective concentrations were 

related to environmental conditions. Complementary laboratory experiments were 

conducted to further explore the effects of inorganic nitrogen availability on zooplankton- 

associated bacterial abundances.
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MATERIALS & METHODS 

Field Sampling

Environmental conditions and free-living bacteria

Monthly samples were collected from May 2010 to April 2011 at a fixed station 

located in the York River estuary near Gloucester Point, VA (37°14’50.36”N, 76°29’ 

58.03W). All samples were collected at or near high tide during daylight hours. Surface 

water was collected to measure ambient water environmental parameters including 

temperature, salinity, chi a concentration, ammonium, phosphate, and free-living 

bacterial concentration. For chi a concentrations, approximately 100 ml of water was 

filtered through a GF/F filter. Chlorophyll was extracted from the filters with 90% 

acetone and measured fluorometrically. Fifty ml o f water was filtered through 0.2-pm 

filters for ammonium and phosphate analyses. Ammonium concentrations were 

measured in duplicate on a Shimadzu UV-1601 spectrophotometer following the phenol 

hypochlorite method (detection limit 0.05 pmol N/L; Koroleff, 1983). Phosphate 

concentrations were run in duplicate on a Lachat QuikChem 8500 autoanalyzer (detection 

limit 0.05 pmol/L; Parsons et al., 1984). Triplicate 1 ml aliquots o f whole water were 

filtered onto 0.2pm pore size filters and stained with DAPI nucleic acid stain to 

enumerate free-living bacteria (Porter & Feig, 1980). Ten fields of view were counted 

within each replicate under 1000X total magnification.
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Zooplankton-associated bacteria

Zooplankton were collected via multiple tows with a plankton net (200 pm mesh, 

V2 m mouth diameter) with non-filtering cod end. Tow samples were combined in a 5- 

gallon container with ambient water and immediately taken back to the laboratory. In the 

lab, the zooplankton sample was gently concentrated down to approximately one liter, 

and split into 4 equal fractions with a plankton splitter. Each fraction was transferred to a 

sterilized glass jar and brought to a final volume of 1 L with 0.2 pm filtered artificial 

seawater (ASW). Zooplankton were allowed to clear their guts overnight to eliminate 

any food-associated bacteria. After gut clearance, one fraction was used to determine 

zooplankton community composition and another was used to assess zooplankton- 

associated bacterial abundance. The remaining two fractions were used to assess the 

genetic and functional diversities o f zooplankton-associated bacteria which will be 

reported elsewhere.

Each zooplankton fraction for bacterial abundance determination was gently 

concentrated onto a sterile, 200-pm mesh sieve and rinsed 4 times with 0.2 pm sterile- 

filtered ASW (20 psu) to remove loosely-attached bacteria. The mixed zooplankton 

assemblage was then back-rinsed into a sterile petri dish with 0.2 pm sterile-filtered 

artificial seawater and narcotized with a small amount of sodium bicarbonate.

Preliminary experiments indicated that use of sodium bicarbonate did not significantly 

affect counts of zooplankton-associated bacteria. After narcotization, ten individuals 

each of A. tonsa, Balanus sp. nauplii and other abundant groups were haphazardly picked 

from the mixed assemblage and transferred to a new, sterile petri dish with approximately 

10 pi of surrounding water. Each individual zooplankter was photographed with a Canon
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Rebel T li EOS500D camera attached to a Nikon SMZ1000 dissecting microscope.

Length (/) and width (w) of each zooplankter were measured from the digital photographs 

with ImagePro imaging software. Total body volume (BV) and surface area (SA) of each 

zooplankter was approximated from length and width measurements with the respective 

equations for a cylinder with closed ends. Surface area o f Acartia was refined further 

using a nested cylinder model to account for the tubular gut surface. The equation for 

Acartia surface was derived from the ratio o f external + gut surface area: external surface 

area measured from 44 Acartia copepodites and adults with full guts. Gut sizes were not 

measured on individuals processed for bacterial abundance as zooplankton were allowed 

to clear their guts prior to measurement, making the guts very difficult to see. The 

following equations were used for SA and B V  calculations:

After being photographed, each individual was transferred to a microcentrifuge 

tube containing 600 pi of sterile sea water. To account for any free-living bacteria 

transferred with the zooplankter in the surrounding water, 10 pi of water from the petri 

dish into which the zooplankton had been rinsed was transferred to a separate 

microcentrifuge tube for use as a control. Three control replicates were prepared every 

month and processed in the same manner as the zooplankton samples. All samples were

SA =271 * (f )2 +2n{z)1
f w \ 2Acartia  S A  =  1 . 2 1 6  * (2n  *
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homogenized on ice with a microprobe sonicator (4W output power, six rounds o f five 

seconds on, five seconds off) to release the attached bacteria (Tang, 2005). After 

sonication, the probe was rinsed with 600 pi of sterile seawater into the same 

microcentrifuge tube with the sample. Each zooplankton homogenate was filtered onto a 

0.2-pm black polycarbonate filter, stained with SYBR-gold (Chen et al., 2001) and 

counted on an epifluorescence microscope with blue light excitation. Twenty fields of 

view were counted under 600X total magnification. SYBR-gold stain displayed greater 

contrast between bacterial cells and zooplankton detritus than DAPI. Preliminary 

experiments indicated the counts with the two staining methods were comparable. Cell 

counts were normalized to unit body volume (pm ) to account for differences in 

zooplankter sizes throughout the year; body volume was converted from pm3 to ml to 

compare zooplankton-associated bacterial concentrations with free-living bacterial 

concentrations.

Laboratory experiment

Copepod cultures under specific ammonium concentrations

Based on results from the field study, ammonium was the only environmental 

factor which influenced free-living bacteria and bacteria associated with both 

zooplankton groups, and was the strongest individual predictor for free-living and 

vfcarfta-associated bacterial concentration. Therefore, we conducted complementary 

laboratory experiments to examine the potential impact of ammonium concentration on 

the abundance and detachment of bacteria associated with A. tonsa. Adult A. tonsa from
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a laboratory culture were divided into two experimental groups in 0.2pm filtered artificial 

seawater: 1) High ammonium (H; ca. lOpM) and 2) low ammonium (L; ca. 2pM). 

lOpM represents the high end of ammonium concentrations observed in the York River 

(Condon et al., 2010). Water was renewed daily with the appropriate nutrient 

concentration. Copepods were fed a saturating concentration (33,000 cells m l'1; Kiorboe 

et al., 1985) o f a 1:1:1 cell mixture o f Rhodomonas salina, Isochrysis galbana and 

Thalassiosira weissflogii. To minimize the nutrients added with the phytoplankton, the 

appropriate volume of each phytoplankton culture was centrifuged for 15 minutes at 200 

RCF. The supernatant was gently pipetted off, and cells were resuspended in a minimal 

amount of media. The three phytoplankton species were combined and added to the 

copepods in typically less than 1 ml o f growth media. Microscopic inspection verified 

that centrifugation did not compromise the integrity of the cells. Water samples were 

taken in duplicate at the beginning and end o f each day for the first 7 days to monitor 

ambient ammonium concentrations. Eggs laid by the adult copepods were collected, 

hatched and grown in the same ammonium conditions at 19°C for two weeks.

Transplant experiment

Copepods from each respective experimental group were gently collected onto a 

sterile 200-pm mesh sieve and back-rinsed into a sterile petri dish. Four replicates, with 

three copepods in each replicate, were used to assess copepod-associated bacterial 

abundance before gut clearance. All remaining copepods were transferred to 250 mL of 

0.2pm filtered ASW of the appropriate ammonium concentration and allowed to clear 

their guts for 3.5 hours to eliminate food-associated bacteria. After gut clearance, each
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experimental group was again concentrated onto a sterilized 200-pm mesh sieve and 

back-rinsed into a sterile petri dish. Four replicates with three copepods in each were 

used to assess copepod-associated bacterial abundance after gut clearance. All copepods 

in the samples were photographed and processed for copepod-associated bacteria in the 

same manner as the field samples with the exception that samples were preserved after 

sonication with formaldehyde (-4%  final concentration) to extend their storage time.

Four separate transplant treatments were established using the copepods with 

clear guts: 1) Copepods raised in low ammonium kept in low ammonium (L-L 

treatment); 2) Copepods raised in low ammonium transferred to high ammonium (L-H 

treatment); 3) copepods raised in high ammonium transferred to low ammonium (H-L 

treatment); and 4) copepods raised in high ammonium kept in high ammonium (H-H 

treatment). For each replicate, 3 copepods with cleared guts were placed in 5 ml of the 

respective water in a well of a sterile 12-well tissue culture plate. Additional copepod- 

ffee controls were established for both high and low ammonium waters. Five ml water 

samples were taken at the start of the experiment for each ammonium concentration to 

determine initial free-living bacterial abundance. Four replicates of each treatment and 

control were performed. All treatments were incubated at 19°C for approximately 24 

hours.

After the incubation, all three copepods from each replicate well were gently 

removed with a pipette, photographed for biovolume estimation, combined into one 

microcentrifuge tube and processed for copepod-associated bacteria as described 

previously. In a few instances one of the copepods within a replicate died during 

incubation and was removed before processing. The total volume of ambient water from
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each replicate was collected in a sterile 15-ml centrifuge tube and preserved with 

formaldehyde (4% final concentration). The entire volume of each sample was stained 

with DAPI for the enumeration of free-living bacteria.

Statistical analyses

Bacterial abundance and concentration (cells m l'1 body volume) data were tested 

for normality with the Kolmolgorov-Smimov test and homogeneity o f variance with 

Levene’s Test, and subsequently log-transformed to normalize the data. Simple linear 

regression was used to test for relationships between log-transformed bacterial 

concentration and individual environmental parameters or zooplankton-specific 

characteristics. Pearson correlation coefficients were also calculated between the log- 

transformed bacterial data and environmental variables. To find the best combination of 

predictors for each bacterial community, multiple linear regression models were 

constructed in the format of:

logio(y) =  b0+b1x 1+b2x 2+ ... + b kxk

where y  is the number of bacteria per ml zooplankton BV for attached bacteria, or 

number of bacteria per ml water for free-living bacteria, and bu...k are the coefficients of 

the predictor variables, x /, X2, ...,xk represent the predictor variables and the interactions 

among the predictor variables. All possible combinations o f environmental predictors 

were tested and ranged from single factor models to multiple factor models (up to six 

predictors) including interaction terms between every two factors. A total o f 120 models
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were tested for zooplankton-associated bacteria and 57 models were tested for free-living 

bacteria. Model fit was assessed using Akaike's Information Criterion (AIC) with 

correction for sample size (Anderson, 2008) and the weighted probability of each model 

was calculated. The model with the highest weighted probability was determined to be 

the best predictor.

For the laboratory experiments, data were tested for normality and homogeneity 

of variance. A one-way ANOVA with post hoc Tukey pairwise comparisons o f 95% 

confidence intervals were performed for both the free-living and zooplankton-associated 

bacterial abundances across the different treatments.
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RESULTS

Field study

Zooplankton Community Composition

All members of the zooplankton community were counted and identified.

Calanoid and cyclopoid copepods, and barnacle nauplii were identified to genus level 

while other zooplankton were placed in larger zooplankton groups. The relative 

abundance of each zooplankton group was determined. The calanoid copepod Acartia 

tonsa and the naupliar forms of the barnacle Balanus sp. are commonly found in the York 

River estuary (Steinberg & Condon, 2009) and were the dominant zooplankters found in 

our samples. They were therefore chosen as the representative organisms for this study. 

Other zooplankton groups were present intermittently throughout the year and were 

sampled when available; these included polychaete larvae, harpacticoid copepods, crab 

zoea, mysid shrimp, fish eggs, the cladoceran Podon sp., the cyclopoid copepod Oithona 

sp. and the calanoid copepods Pseudodiaptomus sp., Centropages sp., Eurytemora affinis, 

Parvocalanus sp., and Temora sp.

Environmental conditions and bacterial abundances

Water temperature ranged from a minimum o f 3.5°C (January) to a maximum of

30.5°C (July; Fig. 1A). Salinity was slightly less variable and ranged from 17.5 psu in

May to 24.5 psu in December (Fig. 1 A). A low of 0.39pM ammonium was noted in

January and a high of 6.92pM in August, while phosphate was below the detection limit

in May and June, and reached a maximum of 0.56pM in December (Fig. 1 B).
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Chlorophyll concentration was lowest in December and highest in April (0.03pg L '1 and 

6.34pg L '1, respectively; Fig. 1C).

In general, free-living bacterial concentration was lowest in the winter and early 

spring (minimum 0.91xl06 cells m l'1 in April), increased during summer and peaked in 

August (3.90xl06 cells m l'1). Zooplankton-associated bacterial abundance changed from 

month to month. The number of bacteria per individual varied from 0.67x105 to 

5.71x10s for Acartia and 0.32xl05 to 7.41xl05 cells for Balanus nauplii. Two peaks were 

observed with /Icar/z'a-associated bacterial abundance: the highest average abundance per 

individual was noted in August (5.71±0.28 xlO5; mean ±SE), while a second peak of 

5.30±0.23 xlO5) was observed in December. A similar pattern was noted among 

Ra/cwus-associated bacteria, with a peak in August (7.28±0.31 xlO5 cells individual'1), 

and a slightly larger peak in winter (7.41±0.41 xlO5 cells individual'1̂  January). On a 

per volume basis, zooplankton-associated bacteria were 2-6 orders o f magnitude more 

concentrated than free-living bacteria, depending on zooplankton group and month (Fig. 

2). The highest and lowest bacterial densities were observed with calanoid copepods:
i  ^  i

Pseudodiaptomus sp. supported 3.58±0.24 xlO cells ml' body volume in August while

8 1 •Eurytemora affinis supported 1.16±0.28 xlO cells ml' body volume m January. Acartia

and Balanus -associated bacterial concentrations exhibited the same temporal pattern as

bacterial abundances, with peaks in August and December/January, with variations

between 1.1 lxlO9 and 2.04xl010 cells m l'1 body volume for Acartia and 1.69xl09 and

5.57 xlO10 cells m l'1 body volume for Balanus. The contribution of zooplankton-

associated bacteria to total bacterial abundance was estimated from monthly average of

Acartia densities in the York River (Elliott & Tang, 2011), the monthly average number
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of bacteria per Acartia and fraction of total zooplankton comprised by Acartia in this 

study. Throughout the year zooplankton-associated bacteria accounted for less than 0.1 

% of the total water column bacteria in the York River.

Predictors o f  bacterial abundance

Based on one-factor regressions and correlation analyses, free-living bacterial 

concentration was strongly positively correlated to ambient water temperature, whereas 

Acartia-associated bacterial concentration was weakly positively correlated (Table 1, 

p<0.0001 for both groups). 5<3/a«w.s-associated bacterial concentration was not related to 

water temperature (p=0.79) (Table 1, Figs. 3A and 3B). Free-living bacterial 

concentration (p<0.0001), Acar/zri-associated and Balanus-associated concentrations 

(p<0.0001) were all positively correlated with ammonium (Figs. 3E and 3F). Both 

zooplankton-associated bacterial concentrations were positively related salinity {Acartia 

p= 0.004; Balanus p<0.001; Fig. 3C). Balanus-associated bacterial concentration was 

positively related to phosphate (p<0.0001; Fig. 3G) and negatively related to chlorophyll 

(p<0.0001; Fig. 31). Linear regressions showed no relationship between zooplankton- 

associated bacterial concentration and free-living bacterial concentration. There were no 

significant relationships between Acartia and Balanus-associated bacterial abundance and 

zooplankter length, width, surface area or body volume (Fig. 4).

The multiple linear regression model with the lowest AIC value and therefore 

highest weighted probability for each bacterial group is presented in Table 2. Free-living 

bacterial concentration was best predicted by the model which included temperature, 

salinity, ammonium, chlorophyll a and all possible interactions of these variables (R =
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0.9131, p<0.0001). The same model had the highest weighted probability for Acartia- 

associated bacterial concentration (R2 = 0.5969, p<0.0001), while Balanus-assocxaied 

concentration was best described only by ammonium, phosphate and the interaction 

between the two terms (R2 = 0.7067, p<0.0001). All models within 3 AIC units of the 

model with the lowest AIC value are presented in Appendix II.

Copepod transplant experiment

Even with daily water changes in an attempt to maintain steady ammonium 

concentrations, a significant drawdown of ammonium (paired t-test, p<0.0001) was still 

observed after 24 hours. Low ammonium (L) cultures decreased from 2.19 ± 0.06|xM to 

0.78 ± 0.02jiM (mean ± S.E.) and high ammonium (H) cultures decreased from 10.86 ± 

0.07jj.M to 1.48 ± 0.17pM. After the two-week acclimation period, copepods with full 

guts in H culture supported significantly higher (one-way ANOVA, p=0.002) bacterial 

concentrations (2.76±0.20 xlO10 cells m l'1 BV; mean ± S.E.) than those in L culture 

(1.23±0.03 xlO10; Fig. 5). After gut clearance, bacterial concentration for H culture 

remained higher (2.38±0.14 xlO10 cells m l'1 body volume) than the L culture (1.28±0.05 

xlO10), although the difference was not significant based on comparison of 95% 

confidence intervals. The concentration of bacteria associated with copepods in the L 

culture was nearly the same before and after gut clearance (Fig. 5A), whereas in H 

culture it showed a small but insignificant decrease (Fig. 5B).

In the transplant experiments, copepod-associated bacterial concentrations in L-L 

(1.34±0.04 x l0 10cells ml"1 BV) and L-H (1.35±0.13 xlO10) treatments were not different 

from the initial values (copepods in L culture after gut clearance; Fig. 5A). For copepods
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raised in high ammonium cultures, the associated bacterial concentration decreased 

insignificantly from 2.38±0.14 xlO10 cells m l'1 BV to 1.35±0.09 xlO10 in H-L treatments 

and 1.99±0.24 xlO10 in H-H treatments (Fig. 5B).

The final free-living bacterial concentrations in the L and H controls for the 

copepod transplant experiments were subtracted from the respective free-living bacterial 

concentrations in the copepod treatments to account for bacterial growth due to 

contamination. In both the L-L and H-H transplants, one of the four replicates for free- 

living bacterial concentration was determined to be a statistical outlier by Grubbs’ test 

(NIST, 2012) and was removed from subsequent analyses. Starting bacterial 

concentrations were comparable in the low ammonium (1,841 ±211 cells m l'1; mean ± 

SE) and high ammonium waters (1,488 ± 93 cells m l'1). There was no significant change 

in free-living bacteria from the starting concentration in the L-H copepod transplant, 

while all other transplants showed a significant increase in free-living bacteria (one-way 

ANOVA, p<0.0001) from initial values. The H-L and H-H treatments demonstrated the 

largest average increases of 21,660 and 20,727 cells m l'1, respectively. Both values were 

significantly higher than the L-L treatment, which showed an average increase of 13,242 

cells m l'1.
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DISCUSSION

Zooplankton-speciflc characteristics

The high variability of bacterial abundance found in association with Acartia and 

Balanus of different sizes (Fig. 4) suggests that bacterial colonization was not a simple 

function of host’s body size. Bacterial distribution on zooplankton body surface can be 

patchy, with the formation of clumps and chains allowing bacteria to reach high 

abundances without using all available surfaces (Carman & Dobbs, 1997, Caro et al., 

2012). Using electron microscopy, Carman and Dobbs (1997) observed that bacteria 

concentrated around the mouthparts and anal region of copepod exoskeletons, 

presumably where nutrient release would be the highest. By primarily colonizing these 

high nutrient areas, the amount o f suitable habitat available for bacteria would be greatly 

reduced and less dependent on the overall size of the zooplankter. Acartia tonsa is a 

holoplanktonic copepod which progresses through 6 naupliar, 5 copepodite and one adult 

stage, molting between each stage. Barnacles are meroplanktonic, remaining in the water 

column for 6 naupliar stages before metamorphosing to a cyprid form and settling onto a 

permanent surface (Qiu et al. 1997). It is conceivable that all external bacteria are lost 

during molting and the exoskeleton must be recolonized by new bacteria. This idea was 

suggested for female marine isopods, which molt throughout their lives forcing bacteria 

to continually recolonize the exoskeleton. Female isopods showed a lower bacterial 

diversity than males, which stop molting at senescence and thus can accumulate a diverse 

bacterial community over time (Caro et al. 2012).
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Field observations

The temporal pattern o f free-living bacterial abundance within this study was 

similar to that observed in the Chesapeake Bay main stem, where abundance was lowest 

in the winter, increased to a maximum in the summer (June-August) and decreased 

during the fall (Shiah & Ducklow, 1994). In this study, free-living bacterial abundance 

showed a strong positive relationship with temperature (R2=0.689). Temperature alone 

was the dominant controlling factor o f bacterial abundance within Chesapeake Bay 

surface waters over a span of 2 years (Shiah & Ducklow, 1994). Likewise, temperature 

was noted as an important factor controlling free-living bacterial abundance and 

production in the York River estuary (Schultz et al., 2003), Delaware estuary (Hoch & 

Kirchman, 1993) and Neuse River estuary (Peierls & Paerl, 2010), which are all 

temperate estuaries on the east coast of the United States.

The concentrations (per ml body volume) of bacteria associated with all examined 

zooplankton groups were two to six orders o f magnitude higher than free-living bacteria 

(per ml). These high bacterial concentrations are similar to those associated with the 

marine copepod Calanus spp., which were three orders of magnitude higher than the 

surrounding North Sea water (Moller et al., 2007). Bacterial concentrations between 10 

and 1011 cells m l'! body volume have been reported for other individual calanoid 

copepods, Artemia, and freshwater cladocerans (reviewed in Tang et al. 2010). Acartia 

were the dominant copepod in the York River and present year-round, which provided 

the opportunity for comparison of zooplankton-associated and free-living bacterial 

abundance. Acartia-associated bacterial abundances and concentrations were among the 

lowest observed for all zooplankton groups (Fig. 2) which yielded a conservative
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estimate that zooplankton-associated bacteria accounted for less than 0.1% o f total water 

column bacteria within the York River. Although zooplankton-associated bacteria were 

not numerically dominant, the high bacterial concentrations associated with individual 

zooplankters support the idea that zooplankton function as microbial hotspots. In 

addition to creating localized areas of elevated bacterial abundance and production 

(Carman, 1994, Moller et al., 2007), zooplankton can support distinct bacterial 

communities and play an important role in shaping the overall microbial diversity and 

functions through the creation of distinct microhabitats (Tang et al., 2010, Grossart & 

Tang, 2010).

Acartia- and Ra/anus-associated bacterial concentrations exhibited different 

temporal patterns than those of free-living bacteria (Fig. 2). Considering that free-living 

bacterial concentration was strongly related to temperature, it is interesting that Acartia- 

associated and Balanus-assoc'mted bacterial concentrations showed only weak or no 

relation to with temperature. The limited relationship with temperature was due to the 

large spike in zooplankton-associated bacterial concentration in December for Acartia 

and December/January for Balanus (Figure 2). Pomeroy and Wiebe (2001) highlighted 

that substrate availability can be as important as, or more important than, temperature in 

regulating heterotrophic microbial processes. Association with zooplankton may give 

attached bacteria access to resources not available to free-living bacteria, thereby 

moderating their responses to environmental temperature.

The field data indicated that both zooplankton-associated bacteria and free-living 

bacteria were strongly influenced by nutrients, ammonium in particular (Table 1, Figs. 3 

E&F). Ammonium is the preferred nitrogen source for many heterotrophic bacteria in
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aquatic systems (Kirchman, 1994) and has been noted as a controlling factor of free- 

living bacteria in the temperate Urdaibai estuary in Spain (Revilla et al., 2000). The 

presence of excess nutrients may override limitations o f bacterial growth in low 

temperatures (Pomeroy & Wiebe, 2001), a phenomenon observed in experimental and 

natural systems. Incubations of bacteria from Conception Bay at 2°C exhibited a three­

fold increase in bacterial respiration when substrates were supplemented (Pomeroy et al., 

1991). Likewise, mid-winter bacterial production rates in Lake Michigan were 

comparable to mid-summer rates after a large storm resuspended nutrient rich sediments 

(Cotner et al., 2000). Within the present study, zooplankton-associated bacterial 

concentration peaked during the coldest months of the year to values comparable to 

summer peaks. Both free-living bacteria and zooplankton-associated bacteria in the York 

River may be limited by cold temperatures in winter (Schultz et al., 2003). However, gut 

flora will benefit from nutrients taken in by the host zooplankter, and excretions by the 

zooplankter also provide an excess of nutrients for externally attached bacteria, such that 

zooplankton-associated bacteria may be able to overcome temperature limitation.

Carman (1994) demonstrated in laboratory incubations that copepod-attached bacteria 

accounted for almost 20% of all bacterial production and suggested that attached bacteria 

can directly exploit the copepod excretions. For these attached bacteria, the relative 

importance of zooplankton-derived nutrients versus those available in the water column 

is unknown, and it is possible that the nutrient status of the system may impact the 

zooplankton-bacteria association. This issue was addressed in the laboratory experiments.
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Effects of ammonium treatments in laboratory experiments

Consistent with the field observations, copepods raised in high ammonium (H) 

condition supported higher bacterial concentrations. Since incubations were conducted in 

0.2pm filtered water, and both initial and final free-living bacterial concentrations were 

very low, we attribute any changes in zooplankton-associated bacterial concentrations to 

growth of attached bacteria rather than colonization by free-living bacteria. The results 

suggest that while attachment to zooplankton surfaces allows bacteria to directly exploit 

nutrient-rich excreta, ambient nutrients also stimulate growth of copepod-associated 

bacteria, leading to more abundant zooplankton-associated bacteria.

Bacterial concentrations associated with copepods raised in low ammonium (L) 

culture remained rather constant after gut clearance and in both L-L and L-H transplant 

experiments (Fig. 5 A), indicating firm attachment o f bacteria selected for by the low 

ammonium environment in the L culture. This is consistent with an earlier report that 

free-living bacteria in oligotrophic lakes had little or no attachment webs, whereas 

attached bacteria had very large fibrillar networks allowing for secure attachment (Paerl, 

1980).

In contrast, high ammonium condition could favor loosely attached bacteria. As 

copepods are stressed through starvation and transplanted to L conditions, loosely 

attached bacteria may detach, leaving only those capable o f firm attachment, similar to 

what would be expected in a low nutrient system, where the benefits from attachment 

would be greater. The observations of more detachment under high nutrients (Fig. 5B) is 

consistent with an earlier study that followed the changes in copepod-associated bacterial 

community composition during nutrient shifts: When copepods from a eutrophic lake
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were incubated in the same eutrophic water, they maintained 78% o f their bacterial 

community composition, while copepods transplanted from the eutrophic lake into an 

oligotrophic lake retained only 28% o f the bacterial community (Grossart et al., 2009). 

Identical attachment web structures were observed on free-living and attached bacteria in 

eutrophic lakes (Paerl, 1980) and identical bacterial phylotypes were found attached to 

copepods and in the surrounding water o f the eutrophic North Sea, suggesting an active 

exchange between the two bacterial communities (Moller et al., 2007). The continual 

detachment o f bacteria associated with H-culture copepods suggests that under high 

nutrients, the majority of bacteria are only loosely attached to copepods and exchange 

between zooplankton-associated and free-living bacteria may be more likely to occur in 

eutrophic systems than in oligotrophic systems.

Interactions of multiple controlling factors

Bacterial abundance is rarely controlled by only one environmental factor. It is 

therefore important to consider the effects of interactions among multiple environmental 

factors (Pomeroy & Wiebe, 2001). The multiple regression model that included 

temperature, salinity, ammonium, chlorophyll a and all possible interactions among the 

variables accounted for 91.31% of the variability associated with free-living bacterial 

concentrations and 59.69% of variability within Acartia-associated bacterial 

concentrations. These environmental factors affected the two bacterial communities in 

different manners (Table 2). The coefficient for chlorophyll a was positive for free-living 

bacteria but negative for Acartia-associdXed bacteria, suggesting an increase in Acartia- 

associated bacterial concentration with decreasing chi a. Phytoplankton is traditionally
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the primary source of DOC for free-living bacteria (Goosen et al., 1997, Pomeroy et al., 

1991, Amon & Benner, 1998), but zooplankton excretions and sloppy feeding also 

produce large amounts of high quality, labile dissolved organic carbon (Moller, 2005, 

Moller et al., 2007), phosphorus (Titelman et al., 2008) and nitrogen (Carman, 1994) 

which can enhance both free-living and attached bacterial production. Zooplankton- 

associated bacteria are therefore unlikely to rely on phytoplankton as the primary source 

of carbon substrates. Although phytoplankton comprises a large portion of copepod diet, 

Acartia can switch to motile microzooplankton prey when phytoplankton concentrations 

are low (Kiorboe et al., 1996). Microzooplankton tend to contain more protein than 

phytoplankton (Kleppel 1993), and consumption of high protein prey would lead to 

higher nitrogen excretion in copepods (Conover & Mayzaud 1975). The ability o f Acartia 

to feed omnivorously would allow them to maintain or even increase excretion rates as 

chi a concentrations decrease. DOC concentrations in Chesapeake Bay are typically high 

but only a small fraction of the bulk DOC pool is labile (Raymond & Bauer, 2001). 

Ambient DOC concentrations were not directly measured in this study. Given that 

zooplankton produce high quality labile DOC, future studies are needed to determine the 

importance of ambient DOC for zooplankton-associated bacterial growth.

Despite the fact that Acartia and Balanus were collected from the same location, 

multiple regression analyses indicated that the bacterial concentrations associated with 

these zooplankton taxa were influenced by different environmental factors. Balanus- 

associated bacteria were solely impacted by ammonium and phosphate, while Acartia- 

associated bacteria were sensitive to more environmental conditions (Table 2). These 

results suggest that individual zooplankton groups are able to buffer the impacts of
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environmental conditions on their associated bacterial communities, perhaps through the 

creation of microhabitats specific to each zooplankter group.

Other ecological implications

Zooplankton-associated bacterial biomass can be directly passed on to higher 

trophic levels when the zooplankton are eaten by planktivores, such as the bay anchovy, 

an important component o f Chesapeake Bay’s food web. To estimate this potential 

trophic transfer of bacterial biomass, we used the copepod Acartia tonsa as the 

representative zooplankter. We assumed each bacterium contains 30.2fg C cell"1 and 

5.8fg N cell'1 (Fukuda et al., 1998), and each copepod contains 0.83 -  2.80pg C 

individual"1 (copepodite — adult) and 0.14 — 0.45gg N individual'1 (Jones et al.,2002). 

Based on the results of this study, bacteria could account for 0.001 -  4.19% o f measured 

copepod carbon and 0.41 — 2.61% of measured copepod nitrogen throughout the year. 

Using the energy flow network constructed by Baird and Ulanowicz (1989), bay anchovy 

could therefore directly consume a maximum of 8.16 mg bacterial C m"2 during the 

summer.

Even though zooplankton-associated bacteria within the York River accounted for 

less than 0.1% of the total water column bacterial abundance, and are not consumed in 

significant amounts by higher trophic levels, all examined members of the zooplankton 

community carried bacterial concentrations orders o f magnitude higher than those found 

in the surrounding waters, making them potential hotspots for microbial activities and 

production. The fact that these zooplankton-associated bacteria were influenced by 

environmental factors differently than free-living bacteria suggests that the two bacterial
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communities have very different ecological roles. Tang (2005) estimated that copepod- 

associated bacteria grow at a rate 3-18 times higher than free-living bacteria.

Zooplankton guts are partially anoxic and can support anaerobic microbial processes that 

are otherwise not favored in the oxygenated water column (Tang et al., 2011). Anaerobic 

bacteria have been found in zooplankton guts (Marty, 1993, Proctor, 1997), and methane 

production by actively grazing zooplankton has been reported (de Angelis & Lee, 1994). 

On average 12% of the global primary production passes through zooplankton via 

grazing alone (Calbet 2001). Hence, the highly concentrated and active bacterial 

communities associated with zooplankton could potentially play a significant but 

previously overlooked role in marine biogeochemical cycles. Further research into the 

compositions and activities of these bacterial communities is warranted.

38



REFERENCES

Alldredge, A. L. & C. C. Gotschalk, 1990. The relative contribution of marine snow of 
different origins to biological processes in coastal waters. Continental Shelf 
Research 10: 41-58.

Amon, R. M. W. & R. Benner, 1998. Seasonal Patterns o f Bacterial Abundance and
Production in the Mississippi River Plume and Their Importance for the Fate of 
Enhanced Primary Production. Microbial Ecology 35: 289-300.

Anderson, D. R., 2008. Model Based Inference in the Life Sciences: A primer on 
Evidence. Springer Science+Business Media, LLC, New York, NY.

Baird, D. & R. E. Ulanowicz, 1989. The Seasonal Dynamics of the Chesapeake Bay 
Ecosystem. Ecological Monographs 59: 329-364.

Calbet, A., 2001. Mesozooplankton grazing impact on primary production: A global 
comparative analysis in marine ecosystems. Limnology and Oceanography 46: 
1824-1830.

Carman, K. R., 1994. Stimulation of marine free-living and epibiotic bacterial activity by 
copepod excretions. FEMS Microbiology Ecology 14: 255-261.

Carman, K. R. & F. C. Dobbs, 1997. Epibiotic microorganisms on copepods and other 
marine crustaceans. Microscopy Research and Technique 37: 116-135.

Caro, A., A. Escalas, C. Bouvier, E. Grousset, N. Lautredou-Audouy, C. Roques, M. 
Charmantier & O. Gros, 2012. Epibiotic bacterial community of Sphaeroma 
serratum (Crustacea, Isopoda) in relation with molt status. Marine Ecology 
Progress Series 457: 11-27.

Chen, F., J. Lu, B. J. Binder, Y. Liu & R. E. Hodson, 2001. Application of Digital Image 
Analysis and Flow Cytometry To Enumerate Marine Viruses Stained with SYBR 
Gold. Applied and Environmental Microbiology 67: 539-545.

Condon, R.H., D.K. Steinberg & D.A. Bronk, 2010. Production of dissolved organic 
matter and inorganic nutrients by gelatinous zooplankton in the York River 
estuary, Chesapeake Bay. Journal of Plankton Research 32: 153-170.

Cotner, J. B., T. H. Johengen & B. A. Biddanda, 2000. Intense winter heterotrophic
production stimulated by benthic resuspension. Limnology and Oceanography 45: 
1672-1676.

de Angelis, M. A. & C. Lee, 1994. Methane Production During Zooplankton Grazing on 
Marine Phytoplankton. Limnology and Oceanography 36: 1298-1308.

39



Elliott, D. T. & K. W. Tang, 2011. Spatial and Temporal Distributions o f Live and Dead 
Copepods in the Lower Chesapeake Bay (Virginia, USA). Estuaries and Coasts 
34: 1039-1048.

Felip, M., M. L. Pace & J. J. Cole, 1996. Regulation of Planktonic Bacterial Growth
Rates: The Effects of Temperature and Resources. Microbial Ecology 31: 15-28.

Fukuda, R., H. Ogawa, T. Nagata & I. Koike, 1998. Direct Determination of Carbon and 
Nitrogen Contents of Natural Bacterial Assemblages in Marine Environments. 
Applied and Environmental Microbiology 64: 3352-3358.

Gaston, K. J. & J. H. Lawton, 1990. Effects of Scale and Habitat on the Relationship 
between Regional Distribution and Local Abundance. Oikos 58: 329-335.

Goosen, N., P. van Rijswijk, J. Kromkamp & J. Peene, 1997. Regulation of annual 
variation in heterotrophic bacterial production in the Schelde estuary (SW 
Netherlands). Aquatic Microbial Ecology 12: 223-232.

Grossart, H. P., C. Dziallas & K. W. Tang, 2009. Bacterial diversity associated with 
freshwater zooplankton. Environmental Microbiology Reports 1: 50-55.

Grossart, H. P. & K. W. Tang, 2010. www.aquaticmicrobial.net. Communicative & 
Integrative Biology 3: 1-4.

Heidelberg, J. F., K. B. Heidelberg & R. R. Colwell, 2002. Bacteria o f the y-
subclass Proteobacteria associated with zooplankton in Chesapeake Bay. Applied 
and Environmental Microbiology 68: 5498-5507.

Hoch, M. P. & D. L. Kirchman, 1993. Seasonal and inter-annual variability in bacterial 
production and biomass in a temperate estuary. Marine Ecology Progress Series 
98: 283-295.

Jones, R.H., K.J. Flynn & T.R. Anderson, 2002. Effect o f food quality on carbon and 
nitrogen growth efficiency in the copepod Acartia tonsa. Marine Ecology 
Progress Series 235: 147-156.

Kemp, W., W. Boynton, J. Adolf, D. Boesch, W. Boicourt, G. Brush, J. Cornwell, T. 
Fisher, P. Glibert, J. Hagy, L. Harding, E. Houde, D. Kimmel, W. Miller, R. 
Newell, M. Roman, E. Smith & J. Stevenson, 2005. Eutrophication of Chesapeake 
Bay: historical trends and ecological interactions. Marine Ecology Progress Series 
303: 1-29.

Kiorboe, T., 2003. Marine snow microbial communities: scaling of abundances with 
aggregate size. Aquatic Microbial Ecology 33: 67-75.

40

http://www.aquaticmicrobial.net


Kiorboe, T., F. Mohlenberg & K. Hamburger, 1985. Bioenergetics o f the planktonic
copepod Acartia tonsa: relation between feeding, egg production and respiration, 
and composition of specific dynamic action. Marine Ecology Progress Series 26: 
85-97.

Kiorboe, T., E. Saiz & M. Viitasalo, 1996. Prey switching behaviour in the planktonic 
copepod Acartia tonsa. Marine Ecology Progress Series 143: 65-75.

Kirchman, D. L., 1994. The uptake of inorganic nutrients by heterotrophic bacteria. 
Microbial Ecology 28: 255-271.

Koroleff, F., 1983. Determination of nutrients. In Grasshoff, K., M. Ehrhardt & K.
Kremling (eds), Methods of Seawater Analysis. Verlag Chemie, New York: 125- 
187.

Marty, D. G., 1993. Methanogenic Bacteria in Seawater. Limnology and Oceanography 
LIOCAH 38: 452-456.

Moller, E. F., 2005. Sloppy feeding in marine copepods: prey-size-dependent production 
of dissolved organic carbon. Journal o f Plankton Research 27: 27-35.

Moller, E. F., L. Riemann & M. Sondergaard, 2007. Bacteria associated with copepods: 
abundance, activity and community composition. Aquatic Microbial Ecology 47: 
99-106.

NIST/SEMATECH e-Handbook of Statistical Methods
,http://www.itl.nist.gov/div898/handbook/, July 2012.

Paerl, H., 1980. Attachment of Microorganisms to Living and Detrital Surfaces in 
Freshwater Systems. In Bitton, G. & K. Marshall (eds), Adsorption of 
Microorganisms to Surfaces. John Wiley & Sons, Inc., New York, NY: 375-402.

Peierls, B. & H. Paerl, 2010. Temperature, organic matter, and the control of
bacterioplankton in the Neuse River and Pamlico Sound estuarine system.
Aquatic Microbial Ecology 60: 139-149.

Parsons, T. R., Y. Maita & C. M. Lalli, 1984. A manual o f chemical and biological 
methods for seawater analysis. Pergamon Press., New York.

Pomeroy, L. & W. Wiebe, 2001. Temperature and substrates as interactive limiting
factors for marine heterotrophic bacteria. Aquatic Microbial Ecology 23: 187-204.

Pomeroy, L., W. Wiebe, D. Deibel, R. Thompson, G. Rowe & Pakulski JD, 1991. 
Bacterial responses to temperature and substrate concentration during the 
Newfoundland spring bloom. Marine Ecology Progress Series 75: 143-159.

41

http://www.itl.nist.gov/div898/handbook/


Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic 
microflora. Limnology and Oceanography 25: 943-948.

Proctor, L., 1997. Nitrogen-fixing, photosynthetic, anaerobic bacteria associated with 
pelagic copepods. Aquatic Microbial Ecology 12: 105-113.

Qiu, J., L. Gosselin & P. Qian, 1997. Effects o f short-term variation in food availability 
on larval development in the barnacle Balanus amphitrite amphitrite. Marine 
Ecology Progress Series 161: 83-91.

Raymond, P. A. & J. E. Bauer, 2001. DOC cycling in a temperate estuary: A mass 
balance approach using natural 14C and 13C isotopes. Limnology and 
Oceanography 46: 655-667.

Revilla, M., A. Iriarte, I. Madariaga & E. Orive, 2000. Bacterial and Phytoplankton
Dynamics along a Trophic Gradient in a Shallow Temperate Estuary. Estuarine, 
Coastal and Shelf Science 50: 297-313.

Schultz, G., E. White & H. Ducklow, 2003. Bacterioplankton dynamics in the York River 
estuary: primary influence of temperature and freshwater inputs. Aquatic 
Microbial Ecology 30: 135-148.

Shiah, F. & H. W. Ducklow, 1994. Temperature Regulation of Heterotrophic 
Bacterioplankton Abundance, Production, and Specific Growth Rate in 
Chesapeake Bay. Limnology and Oceanography 39:. 1243-1258.

Simon, M., H. Grossart, B. Schweitzer & H. Ploug, 2002. Microbial ecology of organic 
aggregates in aquatic ecosystems. Aquatic Microbial Ecology 28: 175-211.

Steinberg, D. K. & R. H. Condon, 2009. Zooplankton of the York River. Journal of 
Coastal Research: 66-79.

Tang, K. W., 2005. Copepods as microbial hotspots in the ocean: effects of host feeding 
activities on attached bacteria. Aquatic Microbial Ecology 38: 31-40.

Tang, K. W., R. N. Glud, A. Glud, S. Rysgaard & T. G. Nielsen, 2011. Copepod guts as 
biogeochemical hotspots in the sea: Evidence from microelectrode profiling of 
Calanus spp. Limnology and Oceanography 56: 666-672.

Tang, K. W., V. Turk & H. P. Grossart, 2010. Crustacean zooplankton as microhabitats 
for bacteria. Aquatic Microbial Ecology 61: 261-277.

Titelman, J., L. Riemann, K. Holmfeldt & T. Nilsen, 2008. Copepod feeding stimulates 
bacterioplankton activities in a low phosphorus system. Aquatic Biology 2: 131- 
141.

42



Table 1 Pearson correlation coefficients for relationships between bacterial communities 

and measured environmental parameters. Temp = temperature, Sal = salinity, NH4 = 

Ammonium, P 0 4 = Phosphate, FLB = free-living bacteria, NA = not applicable. Free- 

living N = 120, Acartia-associated N = 120, Balanus-associated N = 100.

Free-Living 
bacteria 

(logio cells ml'1)

y4car//‘fl-associated 
bacteria 

(logio cells ml'1 
body volume)

Balanus-associated 
bacteria 

(logio cells ml'1 body 
volume)

Temp 0.689*** 0.318*** -0.028
Sal -0.089 0.261** 0.625***
n h 4 0.692*** 0.431*** 0.505***
P 0 4 -0.091 0.213 0.759***
Chi a -0.189 0.034 -0.596***
FLB NA 0.132 0.168

Asterisks denote significant values: * = p<0.05; ** = p<0.01; *** = p<0.001
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Table 2 The best-fitting model produced for each bacterial community as assessed by 

AIC. Values are the coefficients for each of the predictor variables in the model. Temp 

= temperature, Sal = salinity, NH4 = Ammonium, P 0 4 = Phosphate, FLB = free-living 

bacteria, NA = not applicable. Free-living N = 120, /tcar/Za-associated N = 120, Balanus- 

associated N = 100.

Free-Living /tcarf/a-associated 
bacteria bacteria
(logio cells m f ')  (log10 cells m l'1 

body volume)

Z?tf/a«M.s-associated
bacteria
(log10 cells m l'1 
body volume)

Intercept -6.704* 20.757*** 9.045***
Temp 0.548*** -0.381
Sal 0.520*** -0.521*

n h 4 1.216** -5.018*** 0.173***

P 0 4 2.544***

Chi a 1.771*** -2.565**
FLB NA
temp x sal -0.021*** 0.016*
temp x NH4 -0.0003 -0.034***

temp x P 0 4

temp x chi a -0.0322*** -0.043***
temp x FLB NA
Sal x NH4 -0.052** 0.255***

Sal x P 0 4

Sal x Chi a -0.064*** 0.099**
Sal x FLB NA
NH4 x P 0 4 -0.245

NH4 x Chi a 0.07** -0.041 -----

NH4 x FLB NA

P 0 4 x Chi a -----

P 0 4 x FLB -----

Chi a x FLB

R2 0.913 0.597 0.707

p value <0.001 <0.001 <0.001
AICc -50.983 123.147 73.454
weighted probability 0.475 0.359 0.248

Asterisks denote significant values: * == p<0.05; ** =p<0.01; *** 

4 4

= p<0.001



Fig. 1 Monthly values of environmental parameters in the York River, VA between May 

2010 and April 2011. Parameters measured include Temperature and Salinity (a), 

Ammonium and Phosphate (b), and Chlorophyll and Free-living bacteria (c). BLD = 

Below level o f detection.
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Fig. 2 Monthly values (mean ±SE) of ffee-living bacterial concentration (bacteria per ml 

o f water) and zooplankton-associated concentrations (bacteria per ml o f zooplankton 

body volume)

47



B
ac

te
ri

al
 C

on
ce

nt
ra

tio
n

A
(b

ac
te

ria
 

ml
 

)

108

105

^  ̂  O *  < f°  i f  ^  ^

#  Acartia 
—O -  Balanus

f"  Calanoid 
- V ~  Polychaete 

B  Podon 
HD— Oithona

♦  Harpacticoid 
- O -  Crab zoea 
-4 k -  Fish eggs 
—A -  Mysid
—O — Free-living

48



Fig. 3 Linear relationships between environmental parameters and zooplankton- 

associated bacteria (left panels) and free-living bacteria (right panels). Symbols for 

zooplankton-associated bacteria are the same for all panels. Environmental parameters 

include temperature (a & b), salinity (c & d), ammonium (e & f), phosphate (g & h) and 

chlorophyll a (i & j)
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Fig. 4 Number of bacteria per individual zooplankter as a function of zooplankton body 

length (a), width (b), surface area (c), and body volume (d). Filled circles and solid lines 

represent Acartia-associated bacteria, open circles and dotted lines represent Balanus- 

associated bacteria
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Fig. 5 Bacterial concentrations (mean ± SE; n = 4) associated with copepods originally 

raised under low (panel a) or high (panel b) ammonium condition. Bacterial 

concentrations were measured before and after gut clearance, and after transplantation to 

different ammonium treatments, full gut = copepods with full guts, clear gut = copepods 

after gut clearance, L-L = copepods raised in low culture, maintained in low culture; L-H 

= raised in low, transplanted to high; H-H = raised and kept in high; H-L = raised in high, 

transplanted to low. Letters above the error bars indicate statistical differences and are 

applicable within and between panels
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CHAPTER 3

Structure and function of zooplankton-associated bacterial communities in a 
temperate estuary change more with time than zooplankton species
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ABSTRACT

Zooplankton support distinct bacterial communities in high concentrations 

relative to the surrounding water, but little is known about how the genetic and functional 

diversities of these bacterial communities change through time in relation to 

environmental conditions. We conducted a year-long field study of bacterial communities 

associated with common zooplankton groups as well as free-living bacterial communities 

in the York River, a tributary of Chesapeake Bay. Bacterial community genetic 

fingerprints and their carbon substrate usage were examined by DGGE of amplified 16S 

rDNA and by Biolog EcoPlates, respectively. Zooplankton-associated communities were 

genetically distinct from free-living bacterial communities and utilized a wider array of 

carbon substrates. On average, bacteria associated with different zooplankton groups 

were genetically more similar to each other within each month (65.4% similarity) than to 

bacterial communities of the same zooplankton group from different months (28-30% 

similarity), which suggests the importance of ambient environmental conditions in 

shaping resident zooplankton-associated bacterial communities. During winter months, 

cold temperatures and high ambient phosphate concentrations were linked to the 

appearance of a single DGGE band and the usage o f amino acids as carbon substrates 

among zooplankton-associated bacterial communities. Monthly shifts in carbon substrate 

utilization were less extreme for zooplankton-associated bacteria than for free-living 

bacteria, suggesting that the zooplankton microhabitat is more consistent than the 

surrounding water and thus supports specific bacterial groups in the otherwise 

unfavorable conditions in the water column.
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INTRODUCTION

Zooplankton represent dynamic microhabitats for bacteria within aquatic systems, 

often supporting bacterial concentrations which match or even exceed those in the 

surrounding water (Tang et al. 2010). Live zooplankton continually deliver organic 

matter into their guts through feeding, and produce dissolved organic matter through 

sloppy feeding and excretions, all o f which can supplement the growth of zooplankton- 

associated bacteria (Carman 1994, Tang et al. 2001, Tang 2005, Moller et al. 2007). 

Zooplankton-associated bacterial communities may be seeded via the attachment of free- 

living bacteria or ingestion of free-living and food-associated bacteria (Hansen & Bech 

1996), whereby the physical conditions created within the zooplankton microenvironment 

may select for a specific bacterial community (i.e. a specific subset o f the free-living and 

food-associated bacterial communities, Tang et al. 2010). While similar bacterial groups 

may be found on zooplankton and in the water column (Moller et al. 2007), the 

zooplankton -associated bacterial community, as a whole, can be quite dissimilar from 

the free-living one (Grossart et al. 2009). Prior studies have focused primarily on bacteria 

associated with bulk zooplankton (Heidelberg et al. 2002, Parveen et al. 2011) or a single 

zooplankton species (Moller et al. 2007, Tang et al. 2009, Freese & Schink 2011, 

Homonnay et al. 2012). The few studies that have investigated co-occurring zooplankton 

found each zooplankton group supported a different bacterial community (Niswati et al. 

2005, Grossart et al. 2009, Brandt et al. 2010). Nevertheless, little is known about how 

bacterial community compositions (BCCs) o f zooplankton co-occurring in the same 

habitat compare to each other and to free-living bacterial communities, or how their 

compositions change through time.
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A number o f studies have investigated temporal variability of free-living or total 

BCCs and the factors driving these shifts. A recent review and meta-analysis showed that 

freshwater bacterial communities were highly correlated with pH and the ratio of 

dissolved organic carbon (DOC) to total phosphorus (Newton et al. 2011). Temporal 

patterns of estuarine and riverine free-living BCC have been related to temperature and 

chlorophyll a concentration (Kan et al. 2006) and river discharge (Crump & Hobbie 

2005). In their long-term study in lakes, Roesel et al. (2012) found consistent differences 

in re-occurring patterns of free-living and particle-associated bacteria. In particular, 

particle-associated bacteria were much more variable over time and often directly related 

to phytoplankton and zooplankton dynamics. Moreover, Fuhrman and colleagues (2006) 

concluded that the distribution and abundance of specific microbial groups in a marine 

system can be predicted from environmental conditions such as temperature, oxygen, 

salinity, virus abundance and dissolved nitrate. Given that environmental parameters 

strongly influence the free-living bacterial community structure and that there is a 

constant exchange between zooplankton-associated and free-living bacteria (Moller et al. 

2007, Grossart et al. 2009, Grossart et al. 2010), zooplankton-associated bacterial 

communities may be directly or indirectly shaped by environmental conditions as well.

In addition to environmental conditions, each zooplankton group may shape its 

own BCC due to differences in their lifestyle. For example, copepods and cladocerans 

collected from the same lake at the same time exhibited very different bacterial 

communities (Grossart et al. 2009). When the same cladocerans were transplanted into a 

different lake, they retained >83% of their BCC, indicating a rather stable bacterial 

assemblage regardless of the environment. In contrast, the copepod-associated bacteria
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were greatly influenced by the surrounding environment (Grossart et al. 2009). There are 

likely complex interactions between the environment and zooplankton themselves which 

may help to select for specific bacterial communities.

Generally, zooplankton-associated bacteria have higher production rates than their 

free-living counterparts (Carman 1994, Moller et al. 2007, Tang et al. 2009), but the 

underlying mechanisms such as carbon substrate utilization supporting this elevated 

production are largely unknown. Biolog EcoPlates™ offer an efficient method for 

assessing the ability of a mixed microbial assemblage to utilize 31 common carbon 

substrates. EcoPlates have been used to delineate carbon substrates utilized by free-living 

estuarine bacteria and bacteria associated with organic aggregates, which also function as 

microbial hotspots in aquatic systems and support bacteria that are more metabolically 

active and diverse than their free-living counterparts (Tang et al. 2006, Tang & Grossart 

2007, Lyons et al. 2010, Lyons & Dobbs 2012).

The goal o f this study was to assess the genetic and functional diversities of 

bacterial communities associated with co-occurring zooplankton groups and the free- 

living bacterial community over time within a temperate estuary. We hypothesized that 

each zooplankton group would support a genetically and functionally distinct bacterial 

community. Additionally, we sought to determine whether and which environmental 

conditions influence zooplankton-associated bacterial community composition and 

functionality, causing seasonal shifts. To address these goals, we conducted a year-long 

field study in the York River, a tributary of Chesapeake Bay on the East coast of the 

United States. The genetic and functional components of bacteria associated with the
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dominant meroplanktonic and holoplanktonic zooplankton groups were assessed each 

month, compared to the free-living bacteria, and related to environmental conditions.
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MATERIALS & METHODS 

Zooplankton Collection

Zooplankton were collected on a monthly basis from May 2010 to April 2011 at a 

fixed station in the York River, VA (37o14’50.36”N, 76°29’ 58.03W), with a 0.5m mouth 

diameter, 200pm mesh net. All samples were collected at high or near high tide during 

daylight hours, and transported immediately back to the laboratory. In the lab, the sample 

was split into 4 equal fractions. Each fraction was gently concentrated onto a 200pm

/g \

mesh sieve and transferred to sterile filtered Instant Ocean artificial seawater (ASW) 

and the zooplankton were allowed to clear their guts overnight to eliminate food- 

associated bacteria. After gut clearance, sub-samples were used to assess 1) zooplankton- 

associated bacterial genetic fingerprint via denaturing gradient gel electrophoresis 

(DGGE) of 16S rDNA amplified using eubacterial primers, 2) zooplankton-associated 

bacterial functionality via carbon substrate usage measured by Biolog EcoPlates, 3) 

zooplankton-associated bacterial abundance, and 4) zooplankton community 

composition. Subsamples 1, 2 and 4 will be discussed in this manuscript. Zooplankton- 

associated bacterial abundance and its influencing factors will be reported in detail 

elsewhere.

The sub-sample for zooplankton community composition was filtered onto a 

200pm nitex mesh dish and frozen at -40°C until analysis. Zooplankton were identified to 

the lowest practical taxon. Relative percentages o f each zooplankton group within the 

sampled community were calculated for each month.
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Water samples were collected at the same time as the zooplankton and water 

temperature, salinity, chlorophyll a, ammonium, phosphate and free-living bacterial 

abundance, as well community composition, were determined. Salinity was measured 

with a refractometer and temperature was measured with a thermometer. Chlorophyll a 

was extracted from the filters with 90% acetone and measured fluorometrically. 

Ammonium concentrations were measured in duplicate on a Shimadzu UV-1601 

spectrophotometer following the phenol hypochlorite method (detection limit 0.05 pmol 

N/L; Koroleff 1983). Phosphate concentrations were run in duplicate on a Lachat 

QuikChem 8500 autoanalyzer (detection limit 0.05 pmol/L; Parsons et al. 1984). Free- 

living bacterial abundance was counted in triplicate by DAPI direct counts (Porter & Feig 

1980).

DNA extraction and DGGE

After gut clearance, zooplankton were gently concentrated onto a sterile 200p.m 

mesh sieve and rinsed three times with sterile filtered ASW to remove any free-living or 

loosely attached bacteria. Zooplankton were back-rinsed into a sterile petri dish and 

narcotized with sodium bicarbonate. Preliminary experiments indicated that narcotization 

with sodium bicarbonate did not influence the abundance o f zooplankton-associated 

bacteria. Two or three replicates of 5 to 10 individuals of the same zooplankton species 

were transferred to a sterile microcentrifuge tube, preserved in 95% molecular biology 

grade ethanol and stored at -40°C until analysis. To assess the genetic composition of 

free-living bacteria, approximately 60ml of 5 pm pre-filtered York River water was 

filtered on to a 0.2pm pore size polycarbonate membrane filter and stored at -40°C until
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analysis. Zooplankton samples were centrifuged for two minutes at room temperature at 

17,000 RCF to pellet out the zooplankton and any bacteria that may have detached from 

the zooplankter during the preservation process. Excess ethanol was pipetted off after 

centrifugation and discarded. DNA was extracted using the phenol - chloroform - 

isoamylalcohol method with smoldered zirconia beads (Zhou et al. 1996). Extracted 

DNA was PCR amplified for DGGE using eubacterial primers 341f-gc with a 5’ GC 

clamp (5’ CGCCCGCCGCGCCCCGCGCCCGTCCCGCCGCCCCCGCCCGCCTACG 

GGAGGCAGCAG 3’) and 907r (5’ CCGTCAATTCMTTTGAGTTT 3’) (Muyzer & 

Ramsing 1995). Each 50pl PCR reaction contained 5pi 10X PCR buffer, 2.5pi 50mM 

MgCb, 5pl of 2.5mM dNTP, lOpmol of each primer, 0.5pl BSA, 0.5 pi red-Taq DNA 

polymerase (Bioline), 2-3 pi of template DNA and was brought to volume with PCR 

water. The PCR cycling program was as follows: initial denaturation for 3 min at 95°C 

followed by 35 cycles of 1 min denaturation at 95°C, 1 min annealing at 54°C, 2 min 

extension at 72°C with a final extension at 72°C for 10 min.

DGGE was performed according to Muyzer (1993). An average of 540 ng PCR 

product was loaded into each well of a 7% acrylamide gel with 40-70% denaturing 

gradients (formamide and urea). Gels were run at 100V for 18h then stained with IX 

SYBR-gold for 30 min, destained with Milli-Q water and imaged on a UV light table. 

Due to the limited number of samples that can fit on one gel, only one replicate o f each 

sample was run on the analyzed gel. Preliminary analyses indicated a high degree of 

similarity among replicate samples (average of 90.5% similarity), with the exception of 

all samples from June.
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Carbon Substrate Utilization

Biolog EcoPlates were used to assess each bacterial community’s ability to utilize 

a variety of carbon substrates. EcoPlates contain triplicate wells of 31 carbon substrates, 

and control wells with no substrate addition. Each well also contains minimal growth 

media and the redox dye, tetrazolium violet, which changes from colorless to purple in 

the presence of electron transfer, indicating bacterial usage o f the respective substrate 

(Bochner 1989). The carbon sources can be grouped into the larger biochemical 

categories of polymers, carbohydrates, carboxylic acids, amino acids, amines and 

phenolic compounds (Table 3, Choi & Dobbs 1999).

After they cleared their guts, zooplankton were concentrated onto a sterile sieve, 

rinsed and back-rinsed into a sterile petri dish as described previously, however, 

zooplankton were not narcotized. Twenty five to 35 individuals of each of the most 

abundant zooplankton groups were picked and transferred to sterile 15mL centrifuge 

tubes with 5mL of sterile filtered, autoclaved York River water. To assess the free-living 

bacterial community, 5ml of 5pm filtered York River water was added to a sterile 15-mL 

centrifuge tube. Each sample was sonicated for 40 second on ice with an ultrasonic 

homogenizer at 4 W output power to break apart zooplankton bodies and dislodge any 

attached bacteria (modified from Tang 2005). Samples were brought to 15mL final 

volume with sterile filtered, autoclaved York River water and centrifuged for 10 minutes 

at 102 RCF to precipitate any zooplankton debris. The supernatant was gently pipetted 

into a sterile loading chamber and 150pl of supernatant was added to each well of the 

EcoPlate. Free-living bacterial samples were processed in the same manner as 

zooplankton samples. Optical density (OD; >,=590nm) of each well was measured
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immediately with a BioTek EXL800 plate reader and after a 7-day incubation at 19°C in 

the dark. Final OD measurements were adjusted by subtracting control values and initial 

OD for each well. The average adjusted OD for each substrate (n=3) was compared to an 

arbitrary threshold of 0.250: A value greater than 0.250 indicated the substrate was used, 

and a value less than 0.250 indicated the substrate was not used (Lyons et al. 2010). The 

total number of substrates utilized by the microbial community was used as a measure of 

functional potential o f the heterotrophic community (Zak et al. 1994). Each individual 

zooplankter supported 105 bacteria (Chapter 2) which led to an initial inoculum density of 

105 cells m l'1 for zooplankton-associated bacteria. Likewise, free-living bacteria 

inoculum densities were 105 m l'1. While this is at the very low end o f recommended 

inoculum densities (Konopka et al. 1998), Christian and Lind (2006) demonstrated that 

inoculum density had no impact on average well color development after 72 hours o f 

incubation.

Statistical Analyses

Cluster analysis of DGGE banding patterns was performed with GELCOMPARE 

II, v.3.5 (Applied Maths) using the unweighted pair group method with arithmetic 

averages. Cluster analysis of carbon substrate utilization patterns was performed in 

PRIMER 6 (PRIMER-E Ltd.), also using the unweighted pair group method with 

arithmetic averages. Pairwise similarity matrices were calculated for both DGGE banding 

patterns and carbon substrate utilization patterns using the Dice similarity index (Dice, 

1945). Multidimensional Scaling (MDS) was performed in PRIMER 6 using the 

similarity matrices to determine the genetic and functional similarities o f the different
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bacterial communities based on their distances from each other on a 2 dimensional plot. 

Water quality parameters were analyzed with the multivariate statistical method of 

Canonical Correspondence Analysis (CCA) to determine which environmental 

parameters contributed to the presence or absence o f specific DGGE bands, or use of 

particular substrates among zooplankton-associated and free-living bacterial 

communities. The environmental parameters included temperature, salinity, Chi a, 

ammonium, phosphate and free-living bacterial abundance. All CCA analyses were 

performed with the statistical software R.
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RESULTS

Environmental parameters

Water temperatures were lowest in winter (3.5° C in January), increased through 

spring and early summer to a peak of 30.5°C in July, and then decreased again in fall 

(Table 1). Salinity was typically between 20 and 24.5 PSU, with the exception of May 

2010, when it was only 17.5 PSU (Table 1). Ammonium reached its highest 

concentration in late summer (6.92 pmol L"1 in August). In contrast, phosphate was 

lowest in late spring and peaked in December (0.56pmol L '1). Chi a concentration was 

lowest in December, increased during late winter and peaked in early spring. Free-living 

bacterial abundance followed a trend similar to temperature, with highest abundances in 

summer, decreasing through fall to lowest values in winter (Table 1).

Zooplankton community composition

The calanoid copepod Acartia sp. was present year-round and composed 23-99% 

of the zooplankton community (Table 2). The barnacle nauplius Balanus sp. was the 

second most common zooplankter, present in 10 of 12 months and composing up to 5- 

55% of the zooplankton community. Other common zooplankton included polychaete 

larvae, harpacticoid copepods, the cladoceran Podon sp., and the calanoid copepods 

Parvocalanus sp., Pseudodiaptomus sp. and Centropages sp. (Table 2).
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Bacterial Community Composition

There was a large month to month variation in the number of DGGE bands in 

each of the zooplankton-associated bacterial communities. The /fcart/a-associated 

bacterial community ranged from only 1 band in December and February to 7 bands in 

October. Similarly, Balanus-associated bacteria ranged from 1 band in February to 7 

bands in August. Free-living bacteria ranged from 2 bands in January to 10 bands in 

February (Fig. l).The patterns o f DGGE band abundance were similar for Acartia and 

Balanus, with the highest number of DGGE bands observed in the late summer and fall 

and the lowest numbers observed in winter, with the exception of June Balanus (Fig. 1). 

During some months, different zooplankton groups supported a similar number of DGGE 

bands (e.g., mysid, crab zoea and Acartia each supported 4 DGGE bands in July; data not 

shown), while the number of bands per zooplankton group were drastically different in 

other months (e.g. Pseudodiaptomus contained 4 DGGE bands and Acartia supported 7 

bands in October; data not shown). On an annual average, free-living bacteria supported a 

slightly more genetically diverse bacterial community with 5.27 DGGE bands per month 

while Acartia- and Balanus-associated bacteria had 3.91 and 3.80 bands, respectively.

Although the zooplankton-associated and free-living bacterial communities 

contained similar numbers of DGGE bands, the composition of the bacterial community 

(determined by the position of the DGGE bands within the gel) was notably different. 

Cluster analysis (Fig. 2A) and MDS (Fig. 2B) indicated that free-living bacterial 

communities were dissimilar (<10% similar) from all zooplankton-associated bacterial 

communities. Within the free-living bacteria there were two main groups: a winter/spring 

group (December through April) and a summer/fall group (May through November). The
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within-month similarities among zooplankton-associated bacterial communities ranged 

from 22% in June to 100% in February (Figure 2A), with an average monthly similarity 

of 65.4%. Lower similarities among BCC of zooplankton groups occurred when more 

DGGE bands were present, while identical BCCs occurred when only one DGGE band 

was present. There were no distinct seasonal groupings among the zooplankton- 

associated bacteria.

Bacterial Substrate Usage

Substrate usage was highest in November for free-living and Acartia-assocxaXed 

bacteria (12 and 20 substrates, respectively), in December for Balanus-assoc\&XQ& bacteria 

(22 substrates) and in February for bacteria associated with polychaete larvae (21 

substrates; Fig. 3). Jcar/m-associated bacteria used as few as 2 substrates in April; 

polychaete larvae-associated bacteria used 3 substrates in October and Balanus- 

associated bacteria used 5 substrates in October and February. Free-living bacteria 

showed the lowest substrate usage of all samples, utilizing only the carbohydrate D- 

mannitol in March (Fig. 3). Within each month, zooplankton-associated bacteria used 

more substrates than the free-living bacteria (Fig. 3). On an annual average, Acartia- 

associated bacteria used 9.3 substrates, Balanus-associated bacteria used 11.8 substrates, 

polychaete larvae-associated bacteria utilized 12.6 substrates and free-living bacteria only 

used 3.3 substrates. Free-living bacteria predominantly utilized carbohydrates and 

occasionally carboxylic acids and the polymer glycogen. In contrast, zooplankton- 

associated bacteria regularly utilized substrates from all of the biochemical categories 

except phenolic compounds (Table 3). The most commonly used substrates among all
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samples were the polymer glycogen and the carbohydrates N-acetyl-D-glucosamine and 

D-cellobiose (Table 3). Carbon substrate utilization patterns of free-living bacteria from 

January, February and March were dissimilar from all other samples (<20% similar, Fig. 

4A &B). Substrate usage by free-living and zooplankton-associated bacteria was 65% 

similar in November and identical between Acartia-associated and free-living bacteria in 

April. Substrate usage profiles for bacteria associated with different zooplankton groups 

were 30% to 80% similar within each month (Fig. 4). When both DGGE and substrate 

usage patterns were considered, both Acartia- and Zla/awws-associated bacteria had fewer 

DGGE bands but used a higher number of substrates than free-living bacteria.

Relationship with Environmental Factors

Environmental parameters accounted for 33.9% of genetic variability in all 

zooplankton-associated bacteria (Fig. 5A). The first two canonical axes accounted for 

10.3% and 9.4 % of the variability, respectively. Three DGGE bands (18, 21 and 26) 

were related to high salinity, high phosphate and low temperatures. Many of the bands 

were not related to measured environmental parameters. A higher proportion of the 

variation (56.3%) among 4 car/z'tf-associated bacteria (Fig. 5B) was explained by 

environmental conditions. Again, bands 21 and 26 were linked to high salinity, high 

phosphate and low temperatures, and a number of bands were not explained by any 

environmental variables. Among the free-living bacteria (Fig. 5C), environmental 

parameters accounted for 64.2% of the variability in the bacterial community 

composition, with the first and second axes contributing 25.9% and 12.7%, respectively. 

Five DGGE bands (bands 12-14, 21 and 23) were linked to high salinity and free-living
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bacterial abundance. Another group of bacteria (bands 4, 5, 20 and 36) was linked to high 

chi a concentrations.

Environmental parameters explained only 31.7% of variability in substrate usage 

among all zooplankton-associated bacteria (Fig. 6A). The first two canonical axes 

accounted for 8.4% and 6.7% respectively. Use of the carbohydrate D-xylose and the 

amine phenylethylamine were linked to high chlorophyll a concentrations, while use of 

the carboxylic acid D-galacturonic acid was linked to high phosphate levels. When only 

Acartia-associated bacteria were examined (Fig. 6B), 77.4% of variation in substrate 

usage was explained by environmental conditions, with the first two axes accounting for 

29.2% and 18.8% respectively. Usage of the amino acid, L-asparagine was tied to high 

chlorophyll concentrations, while utilization of i-erythritol, D-L-a glycerol phosphate and 

putrescine were related to high temperatures and free-living bacterial abundances. Use of 

amino acids L-arginine, L-serine, L-threonine, as well as the carboxylic acid itaconic 

acid, was linked to higher phosphate concentrations and to a lesser extent ammonium 

concentrations. Environmental conditions explained all variations (100%) among 

substrate usage by free-living bacteria (Fig. 6C). Usage of N-acetyl-D-glucosamine was 

linked to higher salinity, while the usage of the glycogen and D-cellobiose was linked to 

higher temperatures.
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DISCUSSION

Comparison of zooplankton-associated bacterial communities

The genetic similarity of BCCs associated with co-occurring zooplankton groups 

ranged from 22% to 100% within each month (Fig. 2A), with an annual average 

similarity of 65.4%, indicating more similarities than differences among the BCCs of 

different zooplankton groups. Previous DGGE analyses o f zooplankton-associated 

bacteria have shown distinct banding patterns by the bacterial communities associated 

with the calanoid copepods Acartia sp. and Temora sp. collected from the North Sea 

(Brandt et al. 2010). Likewise, copepods and cladocerans from the same freshwater lake 

supported different bacterial communities (Grossart et al. 2009), as did five different 

crustaceans from a rice paddy field (Niswati et al. 2005). However, none of these studies 

quantified the level of similarity or dissimilarity among bacterial communities. These 

differences in BCC of co-occurring zooplankton suggest that zooplankton-specific 

characteristics may still influence the associated bacterial community composition. 

Although the initial source of zooplankton-associated bacteria is not known, it is likely 

that zooplankton exoskeletons are colonized by free-living bacteria (Grossart et al. 2010), 

whereas food-associated bacteria may be selectively retained within the gut (Harris

1993). Thus, during the exchange between free-living and zooplankton associated 

communities (Grossart & Tang 2010), each zooplankter may act as a selective filter, 

concentrating a specific, distinct bacterial community which ultimately depends on the 

initial bacterial community to which the zooplankter was exposed. Within this study, 

free-living and zooplankton-associated bacterial communities were less than 10% similar 

within each month, which suggests that food-associated bacteria may be more important
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for seeding the zooplankton-associated bacterial community. A previous study showed 

the bacterial community composition of Acartia with full guts is influenced by type of 

food source and whether or not the food carries bacteria (Tang et al. 2009). Acartia 

collected directly from the North Sea supported a different bacterial community than 

those collected from the field and cultured in the lab on a fixed diet (Brandt et al. 2010). 

The types of phytoplankton available for consumption by zooplankton in the York River 

vary throughout the year (Sin et al. 2000), which in turn may elicit changes in the 

zooplankton-associated bacterial communities via selective retention of food-associated 

bacteria. It remains to be investigated if  differences in the BCC of Acartia, Balanus and 

other co-occurring zooplankters are attributable to their different dietary preferences.

Temporal shifts in zooplankton-associated bacteria

To our knowledge, this is the first study to document changes in the zooplankton- 

associated bacterial community over a period longer than 3 months. Because there were 

large monthly changes in the BCC of each zooplankton group, bacterial communities of 

different zooplankters were more similar within each month than BCC o f one 

zooplankton group over time. For example, the average genetic similarity among BCCs 

of different zooplankton groups within each month was 65.4%, but across all months the 

genetic similarity of ̂ cart/a-associated BCCs was only 30.8% and ita/am/s-associated 

BCCs was only 28.4%. The large monthly shifts in composition and functionality of 

bacteria associated with each zooplankton group suggest that the physical, chemical and 

biological conditions of the ambient environment are largely responsible for shaping the
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bacterial communities, which are then further refined by the zooplankton 

microenvironment.

The shifts in bacterial community composition were accompanied by shifts in the 

bacterial carbon substrate usage. The month to month changes in substrate utilization 

patterns were less extreme than metrics of genetic change, with 51, 53 and 49% similarity 

among months for Acartia and Balanus and polychaete larvae-associated bacteria, 

respectively (Fig. 4A). In contrast, substrate usage profiles by free-living bacterial 

communities were only 21% similar from month to month (Fig. 4A). Free-living bacteria 

in the York River previously showed distinct shifts in the carbon substrate usage patterns 

between winter/spring and summer/fall bacterial communities (Schultz & Ducklow 

2000). Seasonal changes in substrate utilization by free-living bacteria were much less 

pronounced in eutrophic Mediterranean harbors with stable nutrient and dissolved 

organic carbon (DOC) inputs than in oligotrophic regions (Sala et al. 2006). While 

environmental conditions within the York River varied throughout the study period 

(Table 1), nutrient and DOC availability within the zooplankton microenvironment were 

likely much more consistent due to constant supply of nutrients and DOC via ingestion, 

excretion and sloppy feeding (Moller 2005, Moller et al. 2007).

The most commonly used substrates were responsible for the similarities in 

substrate usage through time. Glycogen was utilized in 92% of all zooplankton-associated 

bacteria samples and is commonly used by bacteria for carbon storage which allows for 

energy production and biosynthesis during long periods in the absence of nutrients. D- 

cellobiose was consumed in 85% of all zooplankton-associated samples. D-cellobiose is 

an intermediate product during the breakdown of cellulose, one of the earth’s most
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abundant biopolymers. McCallister and colleagues (2004) noted that marsh-derived 

organic matter supported up to 29% of bacterial biomass production in the mesohaline 

York River. Additionally, bacteria can preferentially utilize cellulose from the saltmarsh 

plant Spartina alterniflora (Coffin et al. 1990), which is prevalent in the York River near 

our sampling site (Perry & Atkinson 2008). The carbohydrate N-acetyl-D-glucosamine 

was also used in 85% of zooplankton-associated samples. N-acetyl-D-glucosamine is the 

structural monomer of chitin and is used in the formation of peptidoglycan in bacterial 

cell walls. In aquatic systems amino sugars can be present on the same order of 

magnitude as amino acids (Nedoma et al. 1994) and autoradiography indicated that N- 

acetyl-glucosamine was used by bacteria in all freshwater systems studied (Nedoma et al.

1994). Additionally, chitinase gene diversity was correlated with crustacean zooplankton 

biomass in a mesotrophic lake (Beier et al. 2012). Many marine bacteria also have the 

ability to utilize N-acetyl-D-glucosamine as a potential carbon and nitrogen source, 

especially Vibrionaceae (Riemann & Azam 2002), which can comprise up to 27% of all 

bacteria associated with bulk zooplankton (Heidelberg et al. 2002).

While these carbon substrates may potentially be broken down by the 

zooplankter’s digestive enzymes (Mayzaud 1986), cleavage by digestive enzymes alone 

would not produce a color change of the redox dye. The colorless tetrazolium violet acts 

as an alternative electron acceptor in the electron transport chain and is reduced to purple 

formazan (Siedler 1991), which is then quantified spectrophotometrically. Therefore, 

unless the substrate is broken down to fuel cellular respiration, a color change will not 

occur.
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Zooplankton-associated bacteria utilized more of the available amino acids in 

November (75% of available amino acids), December (44%) and January (38%) than in 

all other months (17-33% utilization). This increase was largely due to the utilization of 

L-phenylalanine, L-serine and L-threonine. Amino acids can be an important source of 

carbon and nitrogen for heterotrophic bacteria (e.g. Wheeler & Kirchman 1986), in fact, 

uptake of dissolved free amino acids accounted for 28% and 80.6% of bacterial carbon 

and nitrogen production during February in Chesapeake Bay, respectively (Fuhrman 

1990). It is likely that bacteria associated with the surface o f the zooplankton are more 

tightly linked to zooplankton-produced substrates in the winter when ammonium 

concentration in the surrounding water is low (Table 1).

Environmental influence on bacterial communities

Temporal differences in BCC associated with a particular zooplankter were 

greater than differences in BCC of co-occurring zooplankton groups (Fig. 2), suggesting 

that ambient environmental conditions are a stronger selective force on zooplankton- 

associated bacteria than zooplankton-specific selective forces. Likewise, Kan and 

colleagues (2007) noted a similar bacterial composition throughout Chesapeake Bay at 

any given point in time. However, large seasonal changes in the bacterial community 

indicated that environmental conditions with strong seasonality played a larger role in 

shaping the microbial community than any regional dynamics. The community 

composition of aquatic free-living and particle-associated bacteria can be shaped by 

biological, chemical and physical parameters such as temperature (Muylaert et al. 2002, 

Kan et al. 2006, Fuhrman et al. 2006, Roesel et al. 2012), chlorophyll concentration
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(Muylaert et al. 2002, Kan et al. 2006), nitrogen and phosphorus concentrations 

(Muylaert et al. 2002, Fuhrman et al. 2006, Longmuir et al. 2007, Leflaive et al. 2008, 

Roesel et al. 2012) and even grazing pressure (Muylaert et al. 2002). Environmental 

parameters may act directly on the zooplankton-associated communities, shaping them in 

a comparable manner as free-living bacterial communities. Alternatively, the influence 

may be indirect, with environmental conditions shaping the free-living and particle- 

associated bacterial communities, which ultimately serve as sources for zooplankton- 

associated bacteria.

Certain environmental parameters were associated with specific DGGE bands and 

substrate usage, most notably DGGE band 26, present only in zooplankton samples 

collected in November -  February, and a major component o f the genetic composition 

during these months. Despite the low numbers of DGGE bands during these winter 

months, bacterial abundances associated with zooplankton were as high as in summer 

(unpubl. data). CCA results indicated that Band 26 was linked to phosphate 

concentrations (Fig. 5A&B), which were highest from November - January (Table 1). A 

decreased diversity o f attached bacteria was previously noted in replete phosphorus 

conditions. For example, the genetic diversity of bacteria associated with the green alga 

Scenedesmus obliquus was lower when grown in high phosphorus conditions than when 

nitrogen and phosphorus were limiting (Leflaive et al. 2008). In aquatic systems, low 

species richness is commonly observed when resources are in excess, especially among 

phytoplankton, zooplankton and macrophytes (Dodson et al. 2000). Therefore, the 

decreased species richness associated with excess resources is likely due to a strong 

response by one species which out-competes others (Mittelbach et al. 2001).
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As with DGGE Band 26, amino acids L-arginine, L-serine and L-threonine were 

also linked to elevated phosphate levels; they were used predominantly during the months 

when Band 26 was present. Zooplankton excreta and sloppy feeding produce dissolved 

amino acids which were important bacterial substrates during late winter in Lake 

Constance (Rosenstock & Simon 2001) and in Chesapeake Bay (Fuhrman 1990). As 

ambient ammonium concentrations reached their absolute lowest levels during January 

(Table 1), the attached bacteria may have utilized amino acids as their primary nitrogen 

source (Middelboe et al. 1995). This suggests that DGGE band 26 represents a 

zooplankton specific, cold-adapted bacterium that thrives under higher phosphate 

conditions and potentially uses amino acids as the primary nitrogen and carbon source.

Environmental parameters accounted for 33.9% and 56.3% of the variation in 

bacterial community composition associated with all zooplankton and Acartia, 

respectively, which are within the range of previous studies o f free-living bacteria. 

Environmental parameters explained 12.7 -  27.5% o f variation in free-living bacterial 

community structure in 4 shallow, eutrophic lakes (Muylaert et al. 2002), 32% of 

bacterial community variation in 31 British Columbian lakes (Longmuir et al. 2007) and 

100% of variation in 5 Swedish lakes of varying eutrophic status (Lindstrom 2000).

Zooplankton-associated vs. free-living bacteria

Multidimensional scaling of DGGE results showed a large difference between 

zooplankton-associated and free-living bacterial communities (Fig. 2), supporting the 

idea that zooplankton create a unique microhabitat supporting a bacterial community 

different from that in the surrounding water (Grossart and Tang 2010). Of the 36 DGGE
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bands detected, 13 were unique to zooplankton-associated communities, 11 were found 

only in free-living bacterial communities and 12 were shared by both communities. These 

results support the notion of an active exchange between free-living and zooplankton- 

associated bacterial communities (Moller et al. 2007, Grossart et al. 2010).

Month to month substrate usage was more stable among zooplankton-associated 

bacteria (49-53% similarity over 12 months, Fig. 4) than for free-living bacteria (21% 

similarity over time). In the Mediterranean Sea, oligotrophic regions that received 

sporadic inputs o f dissolved organic carbon (DOC) having variable composition 

exhibited larger seasonal shifts in substrate usage than eutrophic harbors that received a 

consistent supply of DOC of relatively stable composition (Sala et al. 2006). The authors 

hypothesized that the stable DOC supply allowed a stable bacterial community to 

establish. While the present study indicates that zooplankton-associated bacteria can be 

influenced by ambient environmental conditions, zooplankton themselves constantly 

produce large amounts of DOC and nutrients (e.g. Gaudy et al. 2000, Moller 2005), 

creating a stable baseline microenvironment. Thus the impacts of ambient environmental 

fluctuations on bacterial communities may be buffered in the zooplankton 

microenvironment. This unique zooplankton microenvironment could allow certain 

bacteria to persist in a system even when ambient water conditions are not conducive for 

their growth (Grossart & Tang 2010).

The lower number of DGGE bands and higher number of substrates utilized by 

zooplankton-associated bacteria suggests that zooplankton-associated bacteria may 

exhibit a larger degree of functional plasticity, while free-living bacteria are more 

functionally redundant. Bacterial colonization of the macroalgae Ulva australis was
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described by the competitive lottery model (Burke et al. 2011), where a number of 

bacterial species with the same functional capacity were present within a source 

community. The specific niches in the Ulva ecosystem were assigned randomly, filled by 

whichever species from the source community colonized the Ulva first (Burke et al.

2011). Viewing zooplankton in the same manner, functional niches on zooplankton 

would be filled by a subset of a more genetically diverse free-living bacterial community. 

Within the York River samples, 15 substrates were utilized by zooplankton-associated 

but not by free-living bacteria (Table 3). The functionality o f free-living bacteria is 

limited by the availability of substrates in the water column. In contrast, bacteria 

associated with zooplankton would have access to substrates in the water column as well 

as substrates generated by the zooplankter via ingestion, excretion or sloppy feeding. 

Thus, the zooplankton-associated bacterial community would have the opportunity to 

exploit a wider array of substrates.

Conclusions

This study demonstrates that seasonal changes in ambient environmental 

conditions impact the community composition and functionality of zooplankton- 

associated bacteria. Zooplankton create unique microenvironments within their guts and 

on their external surfaces which may allow certain bacterial groups to flourish, increasing 

their overall presence and importance within an aquatic system. It is known that 

zooplankton-associated bacteria have higher production rates than free-living bacteria 

(Carman 1994, Moller et al. 2007), and our results indicate that zooplankton-associated 

bacteria may utilize a wider variety of substrates than free-living ones. Taking into
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account zooplankton-associated bacteria will not only lead to better estimations o f total 

bacterial abundance within a system, but also o f the system’s overall bacterial diversity 

and functionality.
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Table 1. Water quality measurements and free-living bacterial abundances for the York River during the field study. BLD = below

level of detection

Month

Water
Temperature

(°C)

Salinity

(PSU)

Ammonium 

(pmol L'1)

Phosphate 

(pmol L"1)

Chi a

(pg L-1)

Free-living
Bacterial

Abundance

(106 cells mL'1)
May 2010 22.5 17.5 0.56 BLD 2.69 3.65
Jun 2010 28.0 22.0 3.87 BLD 3.52 3.27
Jul 2010 30.5 22.0 1.11 0.21 2.48 1.42
Aug 2010 28.5 23.5 6.92 0.36 2.71 3.90
Sep 2010 26.0 24.0 3.76 0.22 0.71 3.76
Oct 2010 16.0 23.0 3.08 0.31 0.18 2.31
Nov 2010 13.0 22.0 1.62 0.49 4.15 1.71
Dec 2010 4.0 24.5 1.64 0.56 0.03 1.20
Jan 2011 3.5 24.0 0.39 0.45 0.38 0.94
Feb 2011 9.0 23.0 0.45 0.03 3.69 1.04
Mar 2011 11.0 21.0 1.03 0.08 3.22 1.05
Apr 2011 16.0 20.0 || 0.54 0.03 6.34 0.91

87



Table 2. Zooplankton community composition during the field study.

May Jun Jul Aug Sep Oct Nov Dec Jan Feb M ar Apr

Acartia 27.12 87.71 99.08 75.18 50.68 30.34 94.34 91.74 67.47 48.23 23.09 38.26

CM Balanus 55.02 5.53 0.00 16.31 23.24 8.72 0.00 4.96 24.15 15.71 52.79 53.62
E5o Polychaete Larvae 5.50 0.00 0.00 0.00 0.25 1.25 0.21 0.41 1.45 8.65 0.29 0.50
e
-2"EL Podon 9.27 0.00 0.00 0.00 5.19 0.09 0.00 0.21 0.16 0.24 0.00 1.19
c©
N Harpacticoid 0.58 0.00 0.00 0.71 0.00 7.38 0.00 0.41 0.64 0.12 0.00 0.40
"5+mi© Parvocalanus 0.48 0.00 0.23 1.42 12.61 13.79 0.00 0.41 1.45 5.36 3.82 0.50

Pseudodiaptomus 0.39 0.00 0.69 2.84 4.45 35.77 4.19 1.65 0.48 1.83 7.79 4.46

Centropages 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.38 19.00 8 . 6 8 0.50

Other 1.64 6.76 0.00 3.55 3.58 2.67 1.26 0.21 0.81 0.85 3.53 0.59
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Table 3. Monthly carbon substrate utilization by zooplankton-associated and free-living 

bacteria o f the York River, Chesapeake Bay. Black squares indicate the substrate was 

used. Carbon substrates are grouped according to their biochemical category. Substrate 

numbers correspond to numbers used in CCA analyses of the EcoPlate data (Figs. 7 & 8). 

Not all zooplankton groups were present in all month. Within substrates: P.C. = phenolic 

compounds. For sample names: A = Acartia, B = Balanus, Po= Polychaete larvae, Ps = 

Pseudodiaptomus, C = Crab zoea, M = Mysid, FL = Free Living. AUG = August, SEP = 

September, OCT = October, NOV = November, DEC = December, JAN = January, FEB 

= February, MAR = March, APR = April.
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Fig. 1. Total number of DGGE bands present in monthly samples from zooplankton- 

associated and free-living bacterial communities. Figure key: Filled circles = Acartia; 

open circles = Balanus; Filled triangles = Free-living bacteria.
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Fig. 2. UPGMA dendrograms of similarities among DGGE banding patterns for 

zooplankton-associated and free-living bacterial communities (A). MDS plot for DGGE 

banding patterns o f zooplankton-associated and free-living bacteria (B). Stress = 0.1. 

Figure key: Filled circles = Acartia', open circles = Balanus; Filled triangles = free-living 

bacteria; open triangles = Crab zoea; filled squares = Pseudodiaptomus', open squares = 

Mysid
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Fig. 3. Total number of carbon substrates utilized by zooplankton-associated and free- 

living bacteria communities. No samples were collected in May, June or July. Figure 

key: Filled circles = Acartia; open circles = Balanus\ Filled triangles = Free-living 

bacteria; filled squares = Pseudodiaptomus; filled diamond = polychaete larvae
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Fig. 4. UPGMA dendrograms of carbon substrate usage profiles for zooplankton- 

associated and free-living bacterial communities (A). MDS plot of carbon substrate usage 

profiles for and zooplankton-associated and free-living bacteria collected from the York 

River (B). Stress = 0.14. Filled circles = Acartia', Unfilled circles = Balanus; Filled 

triangles = Free-living; Unfilled triangles = crab zoea; filled squares = Pseudodiaptomus', 

open squares = Mysid; Filled diamonds = polychaete larvae

97



Axis 2
■ • • I

K 3 - * _ k O O O - * - * M
b b b b i b b b b i ' o

>x
w

o

to

Similarity

P o O C T  - 
A_APR| 

FL_APR' 
A _O C T - 
B _O C T- 

FL_NOV - 

B_APR - 
A__SEP - 

Po_MAR - 

Ps NOV - 
A N O V  - 

B_JAN 

B_DEC - 
P o F E B - 

B_SEP - 
Po_SEP - 
Po_AUG - 

B_AUG - 
M_DEC - 

A_DEC - 

A_JAN - 
A_FEB - 

A_AUG - 

B_M AR- 
C_FEB - 

B FEB - 

A_MAR| 
Ps JAN I 

FL FEB - 

FL JAN - 
FL MAR-



Fig. 5. CCA biplots illustrating the relationship between environmental variables and 

presence of DGGE bands from (A) all zooplankton-associated bacteria; (B) Acartia- 

associated bacteria and (C) free-living bacteria. DGGE bands present in the gel were 

arbitrarily numbered 1 through 36. Bact = Free-living bacterial abundance, Sal = Salinity, 

Chi = Chlorophyll a, P04 = Phosphate, NH4 = Ammonium, Temp = Temperature.
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Fig. 6. CCA biplots illustrating relationship between environmental conditions and the 

usage of specific carbon substrates by (A) all zooplankton-associated bacteria; (B) 

Acartia-associated bacteria and (C) free-living bacteria. The substrates were denoted as 

XI through X31 as defined in Table 3. Bact = Free-living bacterial abundance, Sal = 

Salinity, Chi = Chlorophyll a, P04 = Phosphate, NH4 = Ammonium, Temp = 

Temperature.
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CHAPTER 4

Carbon substrate usage by aerobic and facultative anaerobic bacteria associated
with estuarine zooplankton
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ABSTRACT

Previous studies which documented the occurrence o f anaerobic bacteria in 

association with zooplankton assumed the anaerobic bacteria reside within the anoxic 

zooplankton guts. In this study we examined the carbon substrate usage patterns of the 

entire bacterial community and gut bacterial community o f the calanoid copepod Acartia 

tonsa under aerobic and anaerobic conditions. The gut microbial community utilized the 

same number o f substrates as the entire microbial community under aerobic (11 

substrates) and anaerobic (13 substrates) conditions. Different substrate subsets were 

utilized under aerobic and anaerobic conditions, but gut bacteria and the total bacteria 

utilized very similar substrate subsets in each aerobic condition, suggesting that gut 

bacteria were responsible for a large portion of the heterotrophic microbial activity 

associated with the copepod. Aerobic and anaerobic carbon substrate usage patterns 

were also assessed for bacterial communities associated with six common zooplankton 

groups and free-living bacteria within the York River Estuary. Free-living bacteria used 

more substrates than each zooplankton-associated bacterial community under both 

aerobic and anaerobic conditions. More combinations of substrate subsets were used by 

the cumulative zooplankton-associated bacteria under anaerobic conditions. These 

results suggest each zooplankton group selects for a specific combination of bacteria such 

that the number and type of substrates used by the entire zooplankton-associated bacterial 

community are regulated by the composition of the zooplankton community.
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INTRODUCTION

Zooplankton provide a nutrient rich microhabitat for associated bacteria which 

can be orders of magnitude more concentrated than in the surrounding water (Tang et al. 

2010). In addition to colonizing a zooplankter’s external surfaces, aquatic bacteria can 

utilize zooplankton guts as microhabitats. Zooplankton guts may provide even more 

concentrated nutrients and different pH and oxic conditions than external surfaces and the 

surrounding water column (Tang et al. 2011). These strong selective forces may play an 

important role in shaping the enteric microbial composition and function.

While a number of studies have detailed the presence of both external and gut 

bacteria (e.g. Huq et al. 1983, Nagasawa 1992) and shown that zooplankton-associated 

bacteria are more metabolically active than free-living bacteria (Carman 1994, Moller et 

al. 2007), differentiation between epibiotic bacteria and gut bacteria is difficult. 

Consequently very few studies have addressed the differences in the functional roles 

between external and gut microbial communities. Donachie & Zdanowski (1998) 

suggested that bacteria provide a digestive function in the gut of the euphausiid 

Euphausia superba. Other studies indicate that gut bacteria may play an important role 

in nutrient cycling, especially with regard to anaerobic processes (Bianchi et al. 1992, 

Marty 1993, de Angelis & Lee 1994, Stief et al. 2009). Although zooplankton typically 

reside in the aerobic water column, multiple studies have demonstrated the occurrence of 

anaerobic microbial processes in association with zooplankton materials. Incubations of 

fecal pellets and copepods with empty guts collected from the Mediterranean Sea 

produced low but measurable rates o f methanogenesis (Bianchi et al. 1992, Marty 1993). 

Also, methane production was noted in association with live copepods fed radiolabeled
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phytoplankton at levels up to 20.4 pmol d '1 copepod'1 (de Angelis & Lee 1994), 

demonstrating the potential for copepods to support anaerobic methanogenesis in an 

oxygenated water column. Nitrogen-fixing purple sulfur bacteria were found in 

anaerobic incubations of copepods with full or empty guts, but not with fecal pellets; 

concurrent observations o f acetylene reduction confirmed the occurrence o f nitrogen 

fixation only in the incubations with copepods (Proctor 1997). This suggests that the N- 

fixing bacteria were resident gut bacteria and were not packaged into fecal pellets and 

egested (Proctor 1997). The presence of other anaerobes such as sulfate reducers and 

fermentative bacteria in association with copepods has also been mentioned (Proctor 

1997). In all previous studies it was assumed that the detected anaerobes resided within 

the presumably anoxic guts of zooplankton or fecal pellets. Microelectrodes have since 

been used to demonstrate that the gut o f the large Arctic/Subarctic copepod, Calanus sp. 

was, in fact suboxic and anoxic (Tang et al. 2011). We hypothesized that all zooplankton 

can support metabolically active epibiotic and gut bacterial communities and that all 

facultative anaerobic bacterial substrate usage will be due to activities o f gut bacteria.

We also hypothesized that zooplankton-associated bacteria will utilize more carbon 

substrates than free-living bacteria under anaerobic conditions.

Zooplankton-associated bacterial communities may be influenced by the type of 

food consumed as well as whether or not the food source carries a bacterial community 

(Tang et al. 2009). Yet, the relative importance of biochemical composition o f the food 

source and selective retention of food-associated bacteria by zooplankton has not been 

explored. Axenic and non-axenic cultures o f the same phytoplankton strain can be 

utilized to assess these impacts. Bacterial colonization of the gut microenvironment is
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highly variable among species. Scanning electron microscopy (SEM) showed that 

marine, wood-boring isopods had densely colonized exoskeletons, but their guts were 

completely devoid of bacteria (Boyle & Mitchell 1978). Similarly, SEM illustrated that 

both the guts and fecal pellets of the copepod Pseudocalanus newmani and the amphipod 

Themisto japonica were lacking bacteria (Nagasawa 1992). In contrast, the guts o f 

multiple other copepod species such as Calanus plumchrus (Nagasawa 1992), Acartia 

sp., Pleuromamma sp., Pontellis regalis, Labidocera aestiva and Centropages furcatus 

(Sochard et al. 1979) support dense bacterial communities. Given the large variability in 

bacterial colonization, it is likely that bacteria associated with different co-occurring 

zooplankton groups may serve different functional roles. Therefore, we hypothesized 

that the bacteria associated with each zooplankton group from the same environment will 

utilize a unique subset o f carbon substrates.

Biolog EcoPlates™ provide an efficient way to examine the functionality of 

bacterial communities by assessing the usage of 31 carbon substrates commonly used by 

environmental bacteria (e.g. Garland & Mills 1991, Choi & Dobbs 1999, Sala et al. 2005, 

Lyons & Dobbs 2012). Twenty-one of the 31 substrates present on the EcoPlate are 

known to be utilized by anaerobic bacteria, allowing for an adequate comparison of 

aerobic and anaerobic carbon substrate utilization by bacterial communities (Christian & 

Lind 2006).

To address our hypotheses we performed a laboratory experiment using EcoPlates 

to assess carbon substrate usage by the gut bacteria and total bacteria (epibiotic + gut) 

associated with the calanoid copepod Acartia tonsa under both aerobic and anaerobic 

conditions. Additionally, to investigate the variability among different host zooplankton
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species, we compared the substrate usage of aerobic and facultative anaerobic bacteria 

associated with six common zooplankton groups from the York River tributary of the 

Chesapeake Bay.
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MATERIALS AND METHODS

Laboratory experiments for total bacteria vs. gut bacteria

A full factorial design experiment was established to determine the impact of 

axenic and non-axenic food sources on the carbon substrate usage patterns o f food- 

associated bacteria as well the entire copepod-associated bacterial community and 

copepod gut bacterial communities under both aerobic and anaerobic conditions. In a 

biosafety hood, 200 ml of axenic or non-axenic Dunaliella tertiolecta, respectively, were 

added to sterile 1 L glass bottles. An additional 800 ml of 20 psu Artificial Sea Water 

(ASW) were filtered twice through 0.2 pm filters and then added into each bottle. Prior 

to addition, a subsample of the axenic phytoplankton culture was collected and checked 

for the presence/absence of bacterial contamination with DAPI staining (Porter & Feig 

1980). After the phytoplankton and water were added to each bottle, a 5 ml aliquot was 

taken to determine final phytoplankton density. The final concentrations of axenic and 

non-axenic D. tertiolecta were 2.5xl05 cells m l'1 and 2.1xl05 cells m l'1 respectively.

Acartia tonsa copepodites and adults from laboratory cultures were concentrated 

onto a 200 pm mesh sieve and transferred to each of the two incubations bottles 

containing phytoplankton. Incubation bottles were closed with sterile foam plugs, gently 

aerated and copepods were allowed to feed overnight at 25°C. After feeding, the 

copepods from each incubation bottle were gently collected onto 200 pm mesh sieves, 

transferred to 500 ml of sterile-filtered ASW and allowed to clear their guts for 4 hours to 

eliminate any food and food-associated bacteria. The copepods from each respective 

feeding were again concentrated onto a 200 pm mesh sieve, rinsed gently with sterile-

109



filtered ASW, back rinsed into a sterile petri dish and narcotized with sodium 

bicarbonate. Copepods fully recovered from narcotization after transfer to clean water, 

and preliminary experiments indicated that treatment with sodium bicarbonate did not 

influence copepod-associated bacterial abundance or function. The narcotized copepods 

were evenly divided for 2 treatments: one group received no treatment in order to capture 

the entire (epibiotic + gut) copepod-associated bacterial community. To capture only the 

gut bacteria, the second group o f copepods was placed in a 5% sodium hypochlorite 

solution for 5 minutes then gently rinsed with sterile-filtered ASW to remove any 

residual hypochlorite. Hypochlorite is commonly used to remove external and epibiotic 

bacteria without killing the host while also keeping the gut bacterial community intact 

(King et al. 1991, Greenstone et al. 2012).

From each of the axenic and non-axenic food treatments, 13-14 individual 

copepods were picked and transferred to a 15 ml centrifuge tube containing 5 ml of 

sterile-filtered ASW for aerobic and anaerobic incubations, respectively. Triplicates were 

established for each incubation type for a total of 24 tubes. Each sample was 

homogenized on ice with an ultrasonic homogenizer at 4W output power for 40 seconds 

(modified from Tang 2005), after which the homogenizer probe was rinsed with a small 

amount of filtered ASW. All samples were centrifuged at 102 RCF for 10 min at room 

temperature to remove any tissue remains of the copepods. 150 pi of the bacteria 

containing supernatant was added to each well of an EcoPlate. Each of the triplicate 

samples was loaded onto one of the 3 replicate wells within each EcoPlate in order to 

achieve true replication within one plate. The initial optical density (OD) of each well on 

the plate was measured at 590nm with a BioTek plate reader. Samples for anaerobic
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incubation were placed in a gas-tight chamber containing a Mitsubishi Anaeropak to 

remove all oxygen from the chamber. The anaerobic condition throughout the incubation 

was verified by a small vial of 0.0002% Rezasurin anaerobic indicator inside the chamber 

(Karakashev et al. 2003). Both aerobic and anaerobic incubations were performed in the 

dark at 25° C for 1 week, after which the final OD of each well was measured at 590nm. 

The procedure of the laboratory experiment is outlined in Fig. 1. Initial inoculum 

densities were only on the order o f 105 cells m l'1 for all samples, however, the importance 

of inoculum density diminishes after 72 hours (Christian & Lind 2006).

To assess food-associated bacteria, triplicate 15 ml aliquots o f both axenic and 

non-axenic phytoplankton cultures were added to sterile centrifuge tubes and placed at 25 

°C for the same duration that copepods were feeding. The samples were centrifuged for 

15 minutes at 200 RCF to concentrate the phytoplankton cells and allow removal of 

excess growth media. Microscopic inspection verified that centrifugation did not damage 

the phytoplankton cells. Concentrated phytoplankton samples (250 pi, 3.72 xlO6 cells for 

axenic culture; 190 pi, 3.20x106 cells for non-axenic culture) were divided into 2 

portions, one for aerobic incubation, one for anaerobic incubation. The concentrated 

samples were diluted to 5 ml with sterile-filtered ASW, and were then processed and 

incubated in the same manner as the copepod samples.

Aerobic and anaerobic bacteria associated with York River zooplankton

On two occasions, two weeks apart during July 2012, zooplankton were collected 

during high tide from the York River near Gloucester Point, VA with a 200pm mesh, Vi 

m mouth diameter net with a solid cod end. During the first sampling, only the
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ctenophore Mnemiopsis leidyi was present in large enough numbers for analysis. 

Individual Mnemiopsis sustained some bodily damage during collection in the net, 

however all individuals were still alive with cilia comb rows beating. Six individual 

Mnemiopsis, ranging in size from 2.8-3.7cm (average 3.4cm), were gently transferred to 

clean beakers with 300 ml of sterile-filtered ASW (20psu) and allowed to clear their guts 

for approximately 1 hour. Each individual was then gently removed from the beaker and 

transferred to a sterile 50 ml centrifuge tube, and the volume was brought to 7.5 ml with 

sterile-filtered ASW.

A more diverse zooplankton sample was collected during the second trial, which 

included crab zoea, polychaete larvae, harpacticoid copepods and the calanoid copepods 

Acartia tonsa and Paracalanus sp. After collection, the mixed zooplankton assemblage 

was transferred to a clean beaker with 2L of sterile-filtered ASW and allowed to clear 

their guts for 1 hour. Triplicate samples o f each zooplankton taxa were sorted for both 

aerobic and anaerobic incubations. Depending on their abundances in the sample, 2 to 15 

individuals per replicate of each taxon were used for incubation. On both sampling 

occasions, additional water samples were collected in triplicate to assess the carbon 

substrate usage of free-living bacteria. From each sample 15 ml o f whole water were 

placed in a 15 ml centrifuge tube. All zooplankton and water samples were 

homogenized, centrifuged and added to EcoPlates. The EcoPlates were incubated under 

both aerobic and anaerobic conditions and the initial and final OD were measured in the 

same manner as in the laboratory experiments.
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Statistical analyses

All final OD readings were corrected by subtracting initial and control OD from 

each well. For analysis purposes, a substrate with a corrected OD greater than zero was 

denoted as used (Christian & Lind 2006). For comparisons o f bacterial communities 

(free-living vs. zooplankton total vs. zooplankton gut) and incubation conditions (aerobic 

vs. anaerobic), the mean number o f substrates used among all replicates within each 

treatment was determined. The total number o f substrates used in each treatment was not 

normally distributed and could not be normalized via transformation. The non- 

parametric Kruskal-Wallace test was therefore used to test for differences in total 

substrate utilization among the different samples.

The mean OD of each substrate across all replicates within a treatment was 

calculated to determine if that substrate was used by the bacterial community. The Dice 

coefficient was used to calculate similarities among the different substrate usage profiles 

and generate a similarity matrix comparing all samples. Similarities o f substrate usage by 

bacteria in each treatment were compared via multidimensional scaling (MDS).

The N-use index was calculated for all sample types to determine the importance 

of the usage of nitrogen containing substrates in relation to the total number of substrates 

consumed (Sala et al. 2006). Ten of the 31 carbon substrates in an EcoPlate contained 

both carbon and nitrogen (6 amino acids, two amines, one carboxylic acid and 1 

carbohydrate). The N-use index was calculated as the percentage o f substrates used 

accounted for by N-containing compounds and can range from 0 to 100. If all substrates 

on the Ecoplate are utilized, N-use -  approximately 32%. If only Nitrogen containing 

substrates are utilized, N-use = 100%.
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RESULTS

Laboratory experiments

No bacteria were noted when axenic phytoplankton cultures were initially 

examined for contamination via DAPI staining. However, substrate usage was observed 

among all axenic food samples indicating bacterial contamination. The number of 

substrates by the two food types were not significantly different (t-test, p = 0.96) and 

visual inspection of the data indicated similar substrates were used by the two groups. 

Subsequently, data from copepods fed axenic and non-axenic phytoplankton were pooled 

together before analysis.

The number of substrates used by food-associated bacteria appeared higher than 

that used by bacteria associated with copepods not treated with hypochlorite (hereafter 

referred to as epibiotic + gut bacteria) and bacteria associated with hypochlorite-treated 

copepods (hereafter referred to as gut bacteria), under both aerobic and anaerobic 

conditions, although the difference was not significant (p=0.165, Fig. 2). The number of 

substrates used in aerobic and anaerobic conditions was not significantly different within 

any of the bacterial groups (p= 0.899). All substrates were categorized into the 

biochemical groups of carboxylic acids, polymers, carbohydrates, phenolic compounds, 

amino acids and amines (Choi & Dobbs 1999). Within the aerobic incubations, more 

carbohydrates were used by the food-associated bacteria than either copepod-associated 

bacteria group (p=0.048, Fig. 3C). There were no significant differences among the 

aerobic treatments for any other biochemical groups (Fig. 3 A,B,D-F). Under anaerobic 

conditions, food-associated bacteria used significantly more carboxylic acids (p=0.013,
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Fig. 3A), phenols (p=0.002, Fig. 3D) and amines (p=0.016, Fig. 3F) than both copepod- 

associated bacterial groups, while gut bacteria in the anaerobic treatment used fewer 

carbohydrates (p=0.032, Fig. 3C) than the other two groups.

Multidimensional scaling showed that the types of substrates used by food- 

associated bacteria under aerobic and anaerobic conditions were very similar to each 

other, and very dissimilar from those used by copepod-associated bacteria regardless of 

whether or not free oxygen was present (Fig. 4). Among the copepod-associated bacteria, 

grouping of their substrate usage patterns depended less on where the bacteria were 

located (epibiotic vs. gut), and more on the oxygen environment (aerobic vs. anaerobic) 

(Fig. 4).

Nitrogen containing compounds comprised a lower percentage of all substrates 

used by both the aerobic epibiotic + gut bacteria (N-use = 21%) and aerobic gut bacteria 

(N-use= 17%) associated with Acartia tonsa than the aerobic food-associated bacteria (N- 

use = 28%; Fig. 5). Differences in N-use were not significant however (ANOVA, 

p=0.359). The N-use index was very similar (ANOVA, p= 0.875) for all three bacterial 

groups under anaerobic conditions, with a value of 31, 29 and 27% for food-associated 

bacteria, epibiotic +gut bacteria and gut bacteria, respectively.

York River Zooplankton-Associated Bacteria

Among the zooplankton taxa, polychaete-associated bacteria utilized the most 

substrates aerobically (24±6; mean ±S.D.) and crab zoea-associated bacteria utilized the 

most anaerobically (17±15). There was no significant difference in the total number of 

substrates used by the different bacterial communities under aerobic (p=0.122, Table 1)
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or anaerobic conditions (p=0.117, Fig. 6), nor were any biochemical groups used 

preferentially under aerobic or anaerobic conditions across all samples.

Except for Mnemiopsis-associated and polychaete-associated bacteria, the total 

number of substrates used was not significantly different under aerobic and anaerobic 

conditions (p=0.05 for each taxon; Table 1). Mnemiopsis-associated bacteria had higher 

usage of carboxylic acids (p=0.05), carbohydrates (p=0.05), phenolic compounds 

(p=0.025) and amino acids (p=0.043) under aerobic conditions than anaerobic conditions 

(Table 1). Aerobic bacteria associated with polychaete larvae used more polymers than 

anaerobic bacteria. The only instances o f higher substrate usage under anaerobic 

conditions were for carboxylic acids by free-living bacteria and amines by crab zoea- 

associated bacteria (Table 1).

To compare substrate usage between zooplankton-associated bacteria and free- 

living bacteria, the ratio of the total number o f substrates utilized by each community was 

calculated for both aerobic and anaerobic incubations (Fig. 6). A ratio o f one indicates 

that the same number of substrates was used by free-living and zooplankton-associated 

bacteria. A ratio greater than 1 indicates more substrates used by zooplankton-associated 

bacteria while a ratio less than 1 indicates greater substrate utilization by free-living 

bacteria. Only aerobic Mnemiopsis-associated bacteria showed a ratio greater than 1, 

although the difference was not significant. The ratio for crab zoea-associated bacteria 

was significantly less than 1 in aerobic conditions, while the ratios for Mnemiopsis, 

Acartia, polychaete and harpacticoid-associated bacteria were all less than one in 

anaerobic conditions (Fig. 6). When all zooplankton groups were pooled, the ratio was 1 

for aerobic condition and 0.84 for anaerobic condition. In anaerobic incubations,
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zooplankton-associated bacteria used the substrates 2-hydroxybenzoic acid, L- 

phenylalanine and putrescine, while free-living bacteria did not.

Multidimensional scaling of substrate usage profiles for all York River samples 

indicated a higher degree of similarity among the aerobic carbon substrate usage profiles 

than the corresponding anaerobic ones, among which there were large dissimilarities 

(Fig. 7). Anaerobic substrate usage profiles o f free-living bacteria were similar to their 

aerobic counterparts. The anaerobic substrate usage profiles of zooplankton-associated 

bacteria were dissimilar from each other and from the aerobic substrate usage profiles 

(Fig. 7), suggesting a wide functional diversity o f anaerobic bacteria associated with 

different zooplankton groups.

Mnemiopsis-associated bacteria had a slightly higher N-use index in aerobic 

conditions (40%) than bacteria within the corresponding whole water samples (36%), 

although differences were not significant due to high variation among replicates (Fig. 8). 

Most aerobic bacterial communities collected during the second sampling had an N-use 

index in the range of 32-35%, with the exceptions o f crab zoea (16%), Paracalanus 

(24%) and Harpacticoid (14%) samples (Fig. 8). The anaerobic N-use indices among 

different zooplankton-associated communities ranged from 17% (Acartia) to 36% (Crab 

zoea).
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DISCUSSION

Food-associated vs. copepod-associated bacteria

Before ingestion, food particles could be colonized by the very diverse free-living 

bacterial community in the water column (Acinas et al. 1999). Ingestion o f bacteria- 

laden food particles can therefore introduce diverse bacterial communities to the 

copepods (Harris 1993). Upon ingestion, these particle-associated bacteria would pass 

through the digestive tract where they experience a drastic change in the physical- 

chemical conditions (Tang et al. 2011) and be subject to digestive enzymes (Mayzaud & 

Poulet 1978). It is therefore instructive to view copepods as a filter that selects and 

retains a subset of the food-associated bacteria that are able to establish permanent 

residence within the copepod bodies. Indeed, an earlier study which examined the impact 

of food source on copepod-associated bacterial composition noted that A. tonsa with full 

guts showed a larger number of DGGE bands than copepods that had been starved for 24 

hours (Tang et al. 2009), suggesting that the copepod-associated bacteria were genetically 

less diverse than food-associated bacteria.

Consistent with the earlier findings, the number of substrates utilized by Acartia- 

associated bacteria in this study was less than those used by food-associated bacteria 

under both aerobic and anaerobic conditions (Fig. 2). Thus, the copepod-associated 

bacteria had a lower functional diversity than the food-associated bacteria. This 

reduction in genetic diversity (Tang et al. 2009) and functional diversity (this study) 

during passage through the copepod bodies suggests that some of the food-associated 

bacteria are most likely digested by the copepods (Lawrence et al. 1993) or repackaged
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into fecal material (King et al. 1991, Lawrence et al. 1993) rather than being integrated 

into the existing copepod gut bacterial community.

Both phytoplankton and zooplankton serve as a source of dissolved organic 

material for attached bacteria. Within aerobic incubations, the food-associated bacteria 

used more carbohydrates than the epibiotic + gut bacteria or gut bacteria (Fig. 3C). 

Dunaliella tertiolecta can release up to 20% o f its fixed carbon as extracellular glycolate 

(Leboulanger et al. 1998) and bacteria can take up large amounts of the dissolved organic 

carbon released by phytoplankton (Malinsky-Rushansky & Legrand 1996).

Consequently, food-associated bacteria are likely adapted to exploit carbohydrate 

released by phytoplankton. In contrast, there is no information to indicate that copepods 

excrete carbon in the form of carbohydrates. Therefore, copepod-associated bacteria are 

likely not as well suited to utilize carbohydrate substrates.

Total bacteria vs. gut bacteria

It is difficult to separate epibiotic and gut communities when studying 

zooplankton-associated bacteria. King & colleagues (1991) found that treatment with a 

weak hypochlorite solution efficiently removed externally attached bacteria while leaving 

gut bacteria unharmed. Treatment with weak hypochlorite has also been used to remove 

external contaminating DNA from arthropod predators when extracting DNA for gut 

content analysis (Greenstone et al. 2012). Treatment of the copepods with hypochlorite 

allowed us to assess the functionality of the gut-specific community as well as the entire 

copepod-associated bacterial community.
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The average total number o f substrates used by the entire bacterial community 

and gut community were nearly identical in both aerobic and anaerobic incubations (Fig. 

2); multidimensional scaling showed that the types o f substrates used by each community 

were also very similar (Fig. 4). These results indicate that either the entire bacterial 

community and gut bacterial community were functionally very similar, or the gut 

bacterial community was responsible for most of the carbon substrate usage. In 

previous studies, bacteria associated with copepods exhibited higher leucine 

incorporation (Carman 1994) and higher bacterial production and growth rates (Moller et 

al. 2007) than free-living bacteria. Carman (1994) acknowledged the potential presence 

of gut bacteria but attributed all activity to epibiotic bacteria because autoradiography 

only detected radioactivity on the surface of the copepod. Meller and colleagues (2007) 

also noted the problematic mixture o f epibiotic and gut bacteria but hypothesized that 

their production measurements were underestimates due to the unequal distribution of 

labeled compounds inside and outside the copepod. Our results suggest that bacteria 

residing with zooplankton guts can be an important contributor to the overall bacterial 

function associated with the zooplankton and should be considered when estimating 

zooplankton-associated bacterial processes.

A few substrates, such as the carbohydrates i-erythritol and D-mannitol as well as 

the amino acid L-threonine were used in samples containing epibiotic + gut bacteria but 

not in samples with only gut bacteria, indicating that externally-attached bacteria were 

responsible for the consumption of these substrates. These three substrates were 

consumed by food-associated bacteria in the laboratory experiment and free-living 

bacteria collected for the field study as well as by estuarine aggregate-associated and the
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corresponding free-living bacteria (Lyons et al. 2010, Lyons & Dobbs 2012). The shared 

substrate usage by externally-attached, food-associated and free-living bacteria supports 

the idea of active exchange between free-living and attached bacterial communities 

(Moller et al. 2007, Grossart et al. 2010), and that bacteria capable of using these 

substrates may not be adapted to the gut environment inside a zooplankter.

Average N-use indices were lower among the whole Acartia-associated bacterial 

community and Acartia gut bacterial community than the food-associated community 

(Fig. 5). During the development of the N-use index for EcoPlates, Sala and colleagues 

(2006) noted a negative logarithmic relationship between N-use indices and ambient 

ammonium concentration in natural systems. Additionally, N-use indices decreased 

substantially when experimental incubations were supplemented with ammonia or amino 

acids (Sala et al. 2006). The authors concluded that the N-use index could be used as an 

indicator of the bacterial nitrogen consumption based on the nutritional status o f the 

bacteria (i.e. N-limited bacteria should have a higher N-use index). This interpretation 

would imply that food-associated bacteria are more nitrogen-limited than Acartia- 

associated bacteria, especially the gut bacteria. Direct observations o f externally attached 

bacteria have shown higher concentrations around mouthparts, intersegmental regions 

and the anus, where nutrient release would be the largest (Carman & Dobbs 1997). 

Additionally, ammonium addition had no impact on bacterial production rates when 

copepods were also present (Carman 1994) indicating that copepods relieved bacteria 

from nitrogen limitation. Zooplankton guts represent an environment o f elevated 

nutrients and gut bacteria are not expected to encounter nitrogen limitation in this 

microenvironment, which may explain their lower N-use index.
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Aerobic and anaerobic conditions

The majority o f bacteria collected from the York River utilized a similar number 

of substrates under aerobic and anaerobic incubation conditions (Table 1), indicating the 

presence of a functionally diverse, facultative anaerobic bacterial community both free- 

living in the water column and associated with zooplankton. With the exception of 

aerobic bacteria associated with Mnemiopsis, all zooplankton-associated bacterial groups 

used fewer substrates than the corresponding free-living bacteria (Fig. 6). When pooled, 

zooplankton-associated bacteria used the same number of substrates as the free-living 

bacteria under aerobic conditions, but still used fewer substrates than free-living bacteria 

under anaerobic conditions (Fig. 6). The lower anaerobic use of substrates by all 

zooplankton-associated bacteria was not surprising because not all ingested facultative 

anaerobic bacteria are expected to survive and adapt to the specific zooplankton gut 

microenvironments. It should be noted that our incubations were prepared aerobically but 

incubated anaerobically. Thus obligate anaerobes may not have been represented and 

any substrate usage would principally be due to facultative anaerobic bacteria. Bacteria 

sampled from bottom waters at the onset of a hypoxic event in Chesapeake Bay were 

very genetically similar to bacteria collected at the same time from fully oxygenated 

surface waters (Crump et al. 2007). It was suggested that many aerobic bacteria within 

Chesapeake Bay may be facultative anaerobes, persisting under anaerobic conditions for 

a period of time (Crump et al. 2007).

While EcoPlates have been used to assess bacteria collected from hypoxic or 

anoxic systems such as mine drainages (Kim et al. 2009) and an anaerobic sludge blanket
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reactor (Cardinali-Rezende et al. 2011), few have actually incubated the EcoPlates under 

anaerobic conditions (Christian & Lind 2006, 2007), thereby truly testing bacterial 

functional abilities in anaerobic conditions. Christian & Lind (2006) noted that all 31 

substrates were used when water collected from anoxic bottom waters o f a eutrophic 

freshwater reservoir were prepared and incubated anaerobically. To our knowledge, 

however, ours is the first study to anaerobically incubate samples collected from 

oxygenated systems, thereby measuring potential anaerobic activity within an aerobic 

system.

Bacteria associated with polychaete larvae used significantly more substrates 

aerobically than anaerobically. Adult polychaete worms reside in the benthos and play an 

important role in the bioturbation of sediments and consequently influence many 

sediment biogeochemical cycles such as the coupling of nitrification and denitrification 

(e.g. Kristensen et al. 1991). Sulfate reducing bacteria have been found within the tubes 

of the marine infaunal polychaete Diopatra cuprea (Matsui et al. 2004), and the relative 

abundance of anaerobic bacteria increased toward the posterior of the polychaete 

Neanthes glandicincta gut (Li et al. 2009). To our knowledge, no studies have examined 

the bacterial community composition associated with polychaete larvae. Further 

investigation is needed to determine if there are shifts in the associated bacterial 

community composition as polychaetes transition from their planktonic larval stage to 

benthic adult stage.
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Variability in functional diversity among zooplankton groups

The carbon substrate usage patterns were quite different among the individual 

zooplankton-associated and free-living bacterial communities sampled. The 

dissimilarities were especially pronounced in anaerobic incubations (Fig. 7), which are 

consistent with other studies indicating that each zooplankton group supports a unique 

bacterial community. Denaturing gradient gel electrophoresis and band sequencing 

revealed that Acartia sp. and Temora sp. co-existing in the North Sea supported different 

bacterial communities (Brandt et al. 2010). Likewise, within a freshwater lake the 

copepod Thermocyclops oithonoides and cladoceran Bosmina coregoni supported very 

different bacterial communities (Grossart et al. 2009). Although the species identities of 

the zooplankton-associated bacteria were not known in this study, a complementary 

genetic fingerprinting study found that co-occurring zooplankton groups within the York 

River Estuary supported distinct bacterial communities (Chapter 3), which in turn 

demonstrated unique carbon substrate usage profiles. Variability in rates o f zooplankton- 

associated anaerobic processes has also been observed among different zooplankters. 

DeAngelis & Lee (1994) noted that microbial methane production was not the same 

among all copepods collected from the Long Island sound; measurable production was 

found with Temora longicornis, while no methane production was noted with Acartia 

tonsa. Likewise, nitrous oxide emissions (presumably due to incomplete denitrification) 

were highly variable among aquatic macrofauna (Stief et al. 2009). The occurrence and 

overall importance of anaerobic processes associated with zooplankton is likely 

dependent on the makeup of the zooplankton community and their corresponding 

bacterial communities.
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Mnemiopsis-associated bacteria had the highest average N-use index of all 

samples (40%). This value was higher than the largest N-use value observed in the 

oligotrophic Arenes de Mar in Blanes Bay, Spain (Sala et al. 2006), but similar to N-use 

of bacteria associated with organic aggregates (Lyons & Dobbs 2012). Mnemiopsis 

exudates are high in carbon relative to nitrogen with a DOCrDON ratio o f 29:1 (Condon 

et al. 2010). As a consequence, bacteria directly associated with Mnemiopsis may 

encounter nitrogen limitation. In comparison, Acartia-associated bacteria had an average 

N-use index of 35% while other zooplankton-associated bacteria had much lower N-use 

indices (Fig. 8). This is consistent with the observation that Acartia excretia had a 

relatively low C:N ratio at approximately 2:1 (Saba et al. 2009), such that Acartia- 

associated bacteria are less likely to encounter nitrogen limitation.

Importance of the zooplankton microenvironment

The results of the laboratory experiment indicate that copepod gut bacteria were 

just as functionally diverse and active as the externally attached bacterial community, if 

not more so. The heterotrophic gut bacterial community was capable o f utilizing a 

variety of substrates under both aerobic and anaerobic conditions and may contribute 

significantly to zooplankton-associated bacterial production. Consequently, gut bacterial 

communities should be considered when estimating the contributions of zooplankton- 

associated bacteria to total bacterial activity.

The subsets of substrates used by the bacteria of an individual zooplankton group 

were distinct and diverse, especially under anaerobic conditions. These observations 

suggest that each zooplankton group functioned as a selective filter, retaining only a
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small portion of the bacteria they came into contact with in the water column or ingested 

with food particles. Bacteria selected by the zooplankter may be less common in the 

water column, but the zooplankton microenvironment may allow this select subset of 

bacteria to flourish on a localized scale. The presence of many different bacterial filters 

(i.e. zooplankton groups) may therefore increase the relative abundance of less common 

bacterial groups and their associated substrate usages within a system. The bacterial 

communities selected for by the zooplankton microenvironment could complement the 

functionality o f the free-living bacteria, potentially expanding the suite of substrates that 

can be utilized by the overall estuarine bacterial community. Consequently, the amount 

and types of biogeochemical processes within a system could be greatly underestimated if 

only free-living bacteria are considered.
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Table 1. Number of substrates (mean ±S.D, n=3) from each biochemical category used 

by free-living and zooplankton-associated bacteria in the York River. Total number of 

substrates available within each category is bolded in parentheses, below the category 

name. Brackets indicate significant differences in the numbers of substrates used between 

aerobic and anaerobic incubations o f the same source communities. Category 

abbreviations are the same as in Fig. 6. WYRW = whole York River water from sample 

occasions 1 and 2 respectively.
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Sample and 
Incubation

Carboxylic 
Acids 
(2)________

Polymers Carbohydrates

(4) (10)

Phenolic
Compounds
(2)

Amino
Acids
(6)

Amines Total

(2) (31)
WYRW1

Mnem

WYRW2

Acar

Crab

Para

Poly

Harp

Aerobic
Anaerobic
Aerobic
Anaerobic
Aerobic
Anaerobic
Aerobic
Anaerobic
Aerobic
Anaerobic
Aerobic
Anaerobic
Aerobic
Anaerobic
Aerobic
Anaerobic

2.7±1.2
5.3±0.6
4.0±0.0
1.7±1.5
5.3±1.2
6.7±0.6
4.3±1.2
4.0±1.0
2.7±0.6
3.0±3.6
3.3±1.5
4.0±1.7
4.7±1.5
2.3±0.6
3.3±1.5
3.7±1.5

1.7±2.1
4.0±0.0
1.0± 1.0
1.3±0.6
4.0±0.0
4.0±0.0
2.3±1.2
2.0± 1.0
1.0±0.0
2 .0± 1.0
0.7±0.6
1.7±1.2
3.3±0.6
0.7±0.6
1.3±1.5
2 .0± 1.0

5.7±2.1
8.3±1.5
6.7±1.5
2 .0± 2.0
8.3±0.6
8.7±1.5
7.3±2.9
5.7±2.5
5.7±1.5
5.7±4.2
5.7±3.8
4.0±3.6
8.7±1.2
4.3±3.2
5.3±4.5
6.7±0.6

0.3±0.6
1.0±0.0
1.0±0.0
0.0± 0.0
1.0± 1.0
0.0± 0.0
0.3±0.6
1.3±0.6
0.3±0.6
0.7±1.2
0.3±0.6
1.0±1.0
1.0±1.0
0.0±0.0
0.7±1.2
0 .0± 0.0

2.7±2.1
4.7±0.6
3.3±1.2
0.7±0.6
5.3±1.2
4.7±1.2
4.3±2.1
l.Oil.O
1.0±0.0
3.7±3.2
2.3±2.5
1.7±1.5
4.7±1.5
1.3±1.5
2 .0±2.6
2.7±1.5

0.7±1.2
1.7±0.6
1.7±0.6
l.Oil.O
1.3±0.6
1.0±1.0
1.3±1.2
0.3±0.6
0.0±0.0
1.7±0.6
0.7±0.6
0.7±1.2
1.7±0.6
0.3±0.6
0.7±1.2
1.0±1.0

14±9
25±2
18±3
7±6 ,
25±4
25±4
20±9
14±4
11±2
17±13
13±9
13±9
24±6
9±4
13±12
16±4
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Fig. 1. Schematic diagram of steps performed during the laboratory experiment with 

Acartia tonsa to determine the aerobic and anaerobic functionality o f the entire copepod- 

associated bacterial community and gut bacteria community
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Fig. 2. Total number of substrates used (mean ±S.D.) by bacteria associated with the 

food source, D. tertiolecta, and those associated with the whole Acartia tonsa body 

(Epibiotic + Gut) or A. tonsa gut.
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Fig. 3. Number (mean ± S.D.) o f substrates used by food-associated bacteria, and those 

associated with the whole Acartia tonsa body or only A. tonsa gut. The dashed line 

represents the maximum number o f each respective biochemical category available to 

bacteria. Hash marks (#) denote significant differences within aerobic samples.

Asterisks (*) denote significant differences within anaerobic samples. Figure legends are 

the same for all panels.
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Fig. 4. Multidimensional scaling plot o f substrate profiles used by food-associated 

bacteria (triangles), epibiotic + gut bacteria (squares) and gut bacteria (circles) associated 

with Acartia tonsa. Data points located closer together indicate higher similarity between 

the corresponding bacterial groups.
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Fig. 5. Mean (±S.D.; n=6) nitrogen use (N-use) index of bacteria associated with food, 

and those associated with the whole Acartia tonsa body (Epibiotic + Gut) or A. tonsa gut.
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Fig. 6. Ratio (mean ±S.D.) of the number of substrates used by zooplankton-associated 

bacteria to bacteria in whole water samples. Asterisk denotes samples significantly 

different from 1 (dotted line). Mnent = Mnemiopsis, Acar = Acartia tonsa, Zoea = Crab 

zoea, Para = Paracalanus sp., Poly = Polychaete larvae, Harp = Harpacticoid copepods, 

All Zoop = All zooplankton.
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Fig. 7. Multidimensional scaling plot o f substrate usage profiles for different bacterial 

communities from the York River incubated under aerobic (black symbols) and anaerobic 

(grey symbols) conditions. Data points located closer together indicate greater similarity 

between the corresponding bacterial communities
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Fig. 8. Mean value (±S.D.; n=3) of N-use index for free-living, and zooplankton- 

associated bacteria under aerobic and anaerobic conditions. Category abbreviations are 

the same as in Fig. 6.
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CHAPTER 5 

Conclusions and Future Research
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Zooplankton-associated bacteria in Estuarine Systems

Multiple studies have documented bacterial attachment to copepods and other 

mesozooplankton in freshwater, estuarine and marine systems (reviewed in Tang et al. 

2010). Zooplankton microhabitats are microbial hotspots where bacteria are highly 

concentrated relative to the surrounding water (Tang et al. 2010). Externally attached and 

gut bacteria benefit from a consistent supply of zooplankton-produced dissolved organic 

carbon and nutrients (e.g. Gaudy et al. 2000, Moller 2005), and exhibit elevated 

production (Carman 1994, Moller et al. 2007). The bacterial communities associated with 

zooplankton can be different than bacterial communities in the surrounding water 

(Grossart et al. 2009). Additionally, the zooplankton microenvironment may support 

anaerobic bacteria and their associated processes such as methanogenesis (Bianchi et al. 

1992, Marty 1993, de Angelis & Lee 1994), nitrogen fixation (Proctor 1997, Braun et al. 

1999) and denitrification (Stief et al. 2009). While the topic of zooplankton-associated 

bacteria is attracting more attention, factors controlling temporal changes in zooplankton- 

associated bacterial abundance and community composition are poorly understood. 

Additionally, little is known about how the bacterial communities of sympatric 

zooplankton species and free-living bacteria compare (Niswati et al. 2005, Grossart et al. 

2009, Brandt et al. 2010). In this dissertation I compared temporal changes in free-living 

bacterial community composition with bacterial communities associated with common 

mesozooplankton groups. Additionally I examined factors which potentially control 

zooplankton-associated bacterial abundance and community composition.
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My research illustrated that all sampled mesozooplankton groups supported 

bacterial concentrations which were orders o f magnitude higher than the surrounding 

water (Chapter 2), thus supporting the concept that living mesozooplankton act as 

microbial hotspots within the water column (Tang et al. 2010). Bacteria associated with 

the calanoid copepod Acartia tonsa and barnacle nauplius Balanus sp. were influenced by 

different combinations of environmental parameters, despite coming from the same 

aquatic environment. Both free-living and zooplankton-associated bacterial communities 

showed a strong positive relationship with ambient ammonium concentration. In 

laboratory experiments copepods supported more, loosely attached bacteria in high 

ammonium concentration (Chapter 2). This suggests that exchange between free-living 

and zooplankton-associated bacterial communities may be greater in nutrient rich 

systems.

Mesozooplankton also supported a bacterial community that was genetically 

distinct from the surrounding free-living bacterial community. While the zooplankters 

Acartia and Balanus did not support identical bacterial communities each month, there 

were many similarities between the two bacterial communities within each month. 

Temporal changes in environmental parameters were more important for the regulation of 

zooplankton-associated bacterial community composition than any difference between 

the zooplankters themselves (Chapter 3). Both Acartia and Balanus-associated bacteria 

demonstrated an unexpected secondary peak in abundance during the winter (Chapter 2). 

The genetic diversity of zooplankton-associated bacteria was very low during the winter 

and dominated by a single DGGE band. That particular DGGE band was linked to high 

ambient phosphate conditions and low temperatures. An analysis of carbon substrate
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utilization patterns of zooplankton-associated bacteria revealed that the use o f amino 

acids was also linked to high phosphate (Chapter 3). Thus, during winter months, one 

particular type of bacteria is able to efficiently exploit the zooplankton microenvironment 

and outcompete all other bacteria.

In laboratory experiments, copepod gut microbial communities utilized the same 

number of substrates as the total (epibiotic + gut) copepod microbial community under 

both aerobic and anaerobic conditions (Chapter 4). This indicates that gut bacteria may be 

responsible for most of the zooplankton-associated bacterial activities and functions. The 

bacterial communities associated with six different zooplankton groups collected from 

the York River, VA each utilized a unique subset of carbon substrates under aerobic and 

anaerobic conditions (Chapter 4).

My results indicate that zooplankton create a relatively stable environment which 

may allow for the persistence of certain bacteria within a system when ambient 

environmental conditions may not be conducive to their growth. Additionally, each 

zooplankter acts as a selective filter, retaining only a portion of bacteria it comes into 

contact with via the attachment of free-living bacteria or consumption o f prey-attached 

bacteria. It is likely that each zooplankton group selects for a specific subset o f bacteria 

and allows them to flourish. The presence o f many different filters (i.e. zooplankton 

groups) can therefore increase the relative abundance and frequencies o f less common 

bacterial groups (and their associated functions) within a system.

The environmental heterogeneity hypothesis predicts that biodiversity within a 

system would increase with habitat diversification and complexity. This pattern has been 

observed among freshwater phytoplankton (Richerson et al. 1970), and zooplankton
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(Whiteside & Harmsworth 1967). Utilizing advances in molecular methods, this 

hypothesis has now been extended to free-living aquatic microbial communities (Homer- 

Devine et al. 2004, Shade et al. 2008). Free-living bacteria congregate around microscale 

nutrient patches (Blackburn et al. 1998) and it has been suggested that the abundance and 

connectivity of microscale patches may influence bacterial diversity by increasing habitat 

heterogeneity (Shade et al. 2008). From a microbial perspective, high zooplankton 

diversity could also mean increased habitat heterogeneity. Therefore, systems with a 

diverse zooplankton community would be expected to support a more diverse 

zooplankton-associated bacterial community than a system dominated by one or two 

zooplankton groups.

Of the 36 DGGE bands detected in the year-long field study, 13 were only found 

in association with zooplankton. Likewise, 15 of the 27 carbon substrates utilized in this 

study were used only by zooplankton-associated bacteria. Thus, ignoring zooplankton- 

associated bacteria in Chesapeake Bay could lead to an underestimation of bacterial 

genetic diversity by -36%  and functional diversity by 56%. Due to the ubiquity of 

copepods and other zooplankton in marine and freshwater systems, neglecting the 

presence of zooplankton-associated bacteria could lead to a significant underestimation of 

the overall bacterial abundance, diversity and functionality within aquatic systems.

Future Research Directions

My dissertation research has highlighted the importance of live zooplankton as

microhabitats for bacteria within aquatic systems and determined some factors which

influence the zooplankton-associated bacterial abundance and community composition,

while also providing avenues for future research. My results indicate that the zooplankton
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microenvironment may be more stable than the surrounding water in terms of substrate 

supply (Chapter 3). Thus, the zooplankton microenvironment may act as a buffer to 

changes in ambient environmental conditions. Future research should investigate if free- 

living and zooplankton-associated bacterial communities respond in similar manners to 

long-term environmental changes such as eutrophication and climate change.

Zooplankton serve as dynamic microhabitats and microbial hotspots similar to 

organic aggregates within aquatic systems; however, there are major differences between 

the two. Organic aggregates are primarily composed of dead material with a limited 

supply of substrates for the bacteria and no protection from flagellate grazers, while live 

zooplankton continually supply bacteria with substrates and may offer protection from 

bacterivores (Tang et al. 2010). Organic aggregates also support a bacterial community 

different from the free-living bacteria (Bidle & Fletcher 1995, Crump et al. 1999, Rosel 

et al. 2012). Given the inherent differences between aggregates and living zooplankton, it 

is not known if the two microbial hotspots would support similar bacterial communities. 

Particles can be colonized by free-living bacteria (Simon et al. 2002), which in turn may 

be consumed by zooplankton. Future studies should incorporate assessments o f the free- 

living, particle-associated and zooplankton-associated bacteria to compare similarities 

among their compositions and determine if organic aggregates and other particles serve 

as transitional areas between free-living and zooplankton-associated bacterial 

communities.

The zooplankton gut microenvironment can be partly acidic and anoxic (Tang et 

al. 201 la), creating a completely different environment than the surrounding water 

column. My dissertation work has shown that mesozooplankton gut bacteria utilize a
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wide array of carbon substrates under aerobic and anaerobic conditions, and copepod gut 

bacteria may account for a significant portion of the activity by copepod-associated 

bacteria (Chapter 4). Recent studies have explored the bacterial community composition 

in guts of freshwater zooplankton (Peter & Sommaruga 2008, Freese & Schink 2011, 

Freese & Schink 2011, Homonnay et al. 2012), but the functions o f these bacteria are still 

unknown. Future studies could delve into functional roles o f zooplankton-associated 

bacteria (both epibiotic and gut), possibly using transcriptomics to investigate functional 

gene expression within the microbial communities and by measuring anaerobic process 

rates. This could provide an estimation of the importance of zooplankton as sites of 

microbial-mediated anaerobic biogeochemical processes such as methanogenesis and 

denitrification.

Previous studies have demonstrated that bacteria receive many benefits from their 

association with zooplankton: elevated production supported by zooplankton-produced 

dissolved organic carbon (Moller et al. 2007), ammonium (Carman 1994) and dissolved 

DNA (Titelman et al. 2008), protection from environmental stresses (Tang et al. 201 lb) 

and even transport across small scale physical boundaries like a pycnocline (Grossart et 

al. 2010). It is less clear, however, whether the bacteria provide any benefits to the 

zooplankter in the natural environments. It has been suggested that bacteria in the gut of 

crustaceans aid in digestion (Fong & Mann 1980, Wainwright & Mann 1982, Dempsey & 

Kitting 1987, Donachie & Zdanowski 1998). A diverse epibiotic and gut bacterial 

community may also prevent colonization and infection by pathogenic bacteria, similar to 

that observed in insects (Dillon & Dillon 2004) and aquaculture species (Rico-Mora & 

Voltolina 1995, Verschuere et al. 1999, Verschuere et al. 2000). A recent study even
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indicated that the natural microbial community may play a crucial role in copepod 

development: Newly hatched harpacticoid copepod nauplii treated with antibiotics 

showed lower survivorship and arrested development in the naupliar phase (Edlund et al. 

2012). With the increased addition of antibiotics to aquatic systems via municipal 

wastewater treatment plants and aquaculture and poultry processing effluent (e.g. 

Chambers & Leiker 2006), the bacterial communities associated with copepods may be 

altered, and copepod development compromised. Increased mortality in the naupliar 

stage could potentially impact zooplankton population dynamics and consequently 

trophic interactions.

It is evident that the relationships between bacteria and zooplankton extend far 

beyond the microbial loop and further research is needed to fully understand the 

importance of zooplankton-associated bacterial communities in both zooplankton ecology 

and biogeochemical cycling within aquatic systems.
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A P P E N D IX  I

Fluorescence in situ Hybridization with bacterial group specific probes
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MATERIALS & METHODS

Zooplankton Collection

Zooplankton were collected on a monthly basis, with a 0.5 m mouth diameter, 

200pm mesh net from a fixed station in the York River Estuary, VA, a tributary of 

Chesapeake Bay. All samples were collected at high or near high tide during daylight 

hours. Multiple net tows were performed, combined and transported immediately back to 

the laboratory. In the lab, the combined zooplankton sample was split into 4 equal 

fractions. Each fraction was gently concentrated onto a 200pm mesh sieve and 

transferred to 0.2pm filtered Artificial Seawater (ASW) and zooplankton were allowed to 

clear their guts overnight. After gut clearance, one of the four fractions was used to 

assess zooplankton-associated bacterial genetic diversity via denaturing gradient gel 

electrophoresis (DGGE) and relative composition of different bacterial groups via 

Fluorescence in situ Hybridization. DGGE procedure and results are discussed in 

Chapter 3.

Application of Fluorescence in situ Hybridization

After gut clearance, zooplankton were gently concentrated onto a sterile 200pm 

mesh sieve and rinsed three times with 0.2pm filtered ASW to remove any free-living or 

loosely attached bacteria. Zooplankton were back-rinsed into a sterile petri dish and 

narcotized with sodium bicarbonate. Preliminary experiments indicated that 

narcotization with sodium bicarbonate did not influence the abundance of zooplankton-
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associated bacteria. After narcotization, 5-10 individuals of each of the most prevalent 

zooplankton taxa were transferred to sterile microcentrifuge tubes and preserved with 

300pl 4% paraformaldehyde for 3 hours. 400pl of 95% ethanol was then added to each 

tube and samples were stored at -40°C until analysis (Peter and Sommaruga 2008).

Each sample was centrifuged at 10°C for 10 minutes at 13000 rpm to pellet out 

the zooplankton. All but approximately 50pi o f the supernatant was carefully pipetted 

off. Zooplankton were ground with a sterile pestle, and the homogenate was filtered onto 

a 25mm diameter, 0.2pm pore size, white polycarbonate membrane filter. Filters were 

stored between 2 pieces o f aluminum foil at -20°C until analysis. Each filter was cut into 

8 pieces to allow analysis with multiple ribosomal RNA gene probes. Seven different 

probes were used: the general bacterial probe EUB 338(1-111), the control probe 

NON338, and group specific probes for a-proteobacteria, 3-proteobacteria, y- 

proteobacteria, Bacteroidetes and Archaea (Table 1). The eighth filter piece was used to 

determine total bacterial abundance via direct counts with SYBR-gold nucleic acid stain.

The general protocol of Bouvier & del Giorgio (2002) was used with slight

modifications. Briefly, each filter section was placed on a 6 pi drop of hybridization

solution (percent formamide dependent upon probe; Table 1) containing 2 ng probe p f 1

on a parafilm covered slide. Filter pieces were incubated overnight at 46°C in an

equilibrated chamber. After incubation, filters were transferred to a sterile 1.5 ml

microcentrifuge tube with 750pl of the appropriate pre-warmed (48°C) wash solution

(Table 1) and incubated for 15 minutes at 48°C. Filter pieces were dried on Fisherbrand

P5 porosity filter paper then placed on a slide and covered with 6 pi citiflour solution and

a cover slip. The entire area of each filter piece was counted on an epifluorescent
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microscope with a green light filter. Binding efficiency of the probe was determined by 

comparing total EUB counts to direct counts made with SYBR-gold nucleic acid stain. 

Group specific probe counts were corrected for non-specific binding by subtracting 

NON338 counts and the percentage of each bacterial group was determined by dividing 

group specific probe counts by the general bacterial EUB counts.
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RESULTS & DISCUSSION

The data from all fluorescence in-situ hybridization probes could not be used for 

further analysis. Positive counts within the NON338 controls were very high, indicating 

that some type of non-specific binding occurred. To investigate the cause of these high 

false positives, a series of controlled experiments were performed. First, laboratory 

culture-raised copepods were autoclaved. Half of the copepods were also bleached after 

sterilization. All sterilized copepods still exhibited positive fluorescence when mixed 

with the control probe. Next, an in-situ probe with the same fluorescent tag (Alexa 488), 

designed for the eukaryotic oyster parasite, Bonamia, was used in place o f the bacterial 

probes to investigate the possibility o f the interaction between the fluorophore and the 

sample. Positive fluorescence was observed with this probe as well.

A negative control with no probe added also indicated a substantial amount of 

autofluorescence by the copepod tissue. Peter and Sommaruga (2008) also used an Alexa 

488 labeled probe to investigate gut bacteria in paraffin embedded cross-sections of 

cladocerans and noted high autofluorescence by the chitinous exoskeleton which could 

impair identification of probe-labeled cells. While sonication adequately broke up the 

copepods to release any attached or internal bacteria, the fluorescent exoskeleton was 

also broken into small pieces that interfered with the counting.

In order to use FISH in future experiments with copepod-associated bacteria, 

alternative protocols should be investigated. An alternative fluorophore with a maximum 

excitation outside the range of chitin autofluorescence may be considered. Additionally, 

sample counterstaining or microscope filter sets may help eliminate background 

fluorescence.
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Table 1. Targeted groups and sequences o f FISH probes. % Formamide = Percentage of 

formamide used in hybridization solution. IS = Ionic Strength (mM NaCl) o f wash

solution.

Probe Target Taxa Sequence (5’-3’) Fluorophore %
Form am ide

IS

EUB 338 (I- 
III)

Bacteria GCTGCCTCCCGTAGGAGT Alexa488 30 102

NON338 non­
prokaryotes

ACTCCT ACGGG AGGC AGC Alexa488 30 102

ALFlb a-
proteobacteria

GCTTCGYTCTGAGCCAG Alexa488 40 440

BET42a P-
proteobacteria

GCCTTCCCACTTCGTTT Alexa488 30 102

GAM42a y-
proteobacteria

GCCTTCCCACATCGTTT Alexa488 30 102

CF319a Bacteroidetes TGGTCCGTGTCTCAGTAC AIexa488 30 80
ARCH915a Archaea GTGCTCCCCCGCCAATTCCT Alexa488 25 102
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APPENDIX II 

Alternative Multiple Regression Models Assessed by AIC
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Table 1 Potential multivariate models for the prediction of free-living bacteria, assessed 

by AIC. Models within 2 of the minimum AICc are presented. Values are the 

coefficients for each of the predictor variables in the model. Temp = temperature, Sal = 

salinity, NH4 = Ammonium, PO4 = Phosphate, FLB = free-living bacteria, NA = not 

applicable. Asterisks denote significant values: * = p<0.05; ** = p<0.01; *** = p<0.001

Model Num ber

78 80 90

Intercept 1.221 -6.704* 6.766***
Temp 0.434*** 0.548*** -0.007
Sal 0.209** 0.520***
n h 4 -3.422*** 1.216** 0.055

P 0 4 18.250** -1.488

Chi a 1.771*** -0.288
FLB NA NA NA
tem p x sal -0.020*** -0.021***
temp x NH 4 -0.003 -0.0003 0.008*

tem p x P 0 4 0.036 -0.154***

tem p x chi a -0.032*** 0.013
tem p x FLB NA NA NA
Sal x NH 4 0.169*** -0.052**

Sal x P 0 4 -0.784** -----

Sal x Chi a -0.064*** -----

Sal x FLB NA NA
NH 4  x P 0 4 -0.869** 0.402***

NH 4  x Chi a 0.07** -0.101*

NH 4  x FLB NA NA NA

P 0 4  x Chi a 0.914***

P 0 4  x FLB NA NA NA

Chi a x FLB NA NA NA

AICc -50.108 -50.983 -49.396

R 2 0.911 0.913 0.909

p value <0.001 <0.001 <0.001
weighted probability 0.306 0.475 0.215
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Table 2 Potential multivariate models for the prediction of Acartia-associated bacteria, 

assessed by AIC. Models within 3 of the minimum AICc are presented. Values are the 

coefficients for each o f the predictor variables in the model. Temp = temperature, Sal = 

salinity, NH4 = Ammonium, PO4 = Phosphate, FLB = free-living bacteria, NA = not 

applicable. Asterisks denote significant values: * = p<0.05; ** = p<0.01; *** = pO.OOl

Model N um ber

78 80 108 1 1 2 114 116

Intercept 11.913*** 20.757*** 21.577*** 14.000* 25.08*** -0.815
Temp -0.683*** -0.381 -0.425 0.322 3.248 1.077**
Sal -0.191 -0.521* -0.591* -0.222 -0.904**

n h 4 2.564 -5.018*** -2.163 -4.197*** -2.813*

PO 4 19.047 -32.051 -58.93*** 15.06**

Chi a -2.565** -2.358** -2.023 -6.865** 1.433**
FLB -2.605e-6 -1.862e-5 1.919e-6
temp x sal 0.040*** 0.016* 0.020* -0.014 -0.014
temp x NH 4 -0.010* -0.034*** -0.040*** -0.045** -0.041

temp x PO 4 -0.729*** 0.079 0.017 -1.672**

temp x chi a -0.043*** 0.026* 0.016 -0.032 -0.141**
temp x FLB 3.298e-8 -5.741e-8* -2.08e-7*
Sal x NH 4 -0.153 0.255*** 0.131 0.233***

Sal x PO 4 -0.697 1.377 2.644***

Sal x Chi a 0.099** 0.101** 0.089 0.338**
Sal x FLB 7.578e-8 9.125e-7

NH 4 x P 0 4 4.318*** 3.669***

NH 4  x Chi a -0.041 0.344***

NH 4  x FLB 9.846e-7***

P 0 4  x Chi a

P 0 4  x FLB

Chi a x FLB

AICc 126.078 123.147 125.816 125.816 125.816 125.816

R 2 0.587 0.597 0.610 0.610 0.610 0.610

p value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
weighted
probability

0.083 0.359 0.095 0.095 0.095 0.095
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Table 3 Potential multivariate models for the prediction o f Balanus-associated bacteria, 

assessed by AIC. Models within 2 o f the minimum AICc are presented. Values are the 

coefficients for each of the predictor variables in the model. Temp = temperature, Sal = 

salinity, NH4 = Ammonium, PO4 = Phosphate, FLB -  free-living bacteria, NA = not 

applicable. Asterisks denote significant values: * = p<0.05; ** = p<0.01; *** = p<0.001

Model N um ber

26 58 70

Intercept 9.045*** 8.469*** 9.212***
Temp
Sal 0.023
n h 4 0.173*** 1.288 0.078

PO 4 2.544*** 9.907 2.406***

Chi a -0.053
FLB
tem p x sal
tem p x NH 4

tem p x P 0 4

tem p x chi a
tem p x FLB
Sal x NH 4 -0.059

Sal x P 0 4 -0.299

Sal x Chi a
Sal x FLB
NH 4  x P 0 4 -0.245 -0.118 -0.265

NH 4  x Chi a 0.031

NH 4  x FLB

P 0 4  x Chi a 0.234

P 0 4  x FLB

Chi a x FLB

AICc 73.454 75.264 74.743

R 2 0.7067 0.7216 0.7231

p value <0.0001 <0.001 <0.001
weighted probability 0.2478 0.100 0.120
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APPENDIX III

Zooplankton Community Composition
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Fig. 1. Relative composition of the zooplankton community within the York River from 

May 2010-A p ril 2011.

173



100%

90%

80%
O

£
£

J2 70% a
§  60% 
N

ro 50% *-*o
£  40% 
O
£  30% 
a>
2  20% 
a
^  10%

0%

255S535555W ArsSM g*!*

M O

ECentropages

B o th e r

□  Pseudodiaptomus

□  Parvocalanus

■  Harpactacoid

□  Podon

BPolychaete Larvae

■  Balanus nauplii

■  Acartia



VITA

SAMANTHA LYNN BICKEL

Bom January 24, 1983 in Watertown, WI. Graduated from Watertown High School, 
Watertown, WI in 2001. Earned Bachelor of Arts degrees in Biology and Mathematics 
from Carthage College in 2005. Received Master of Science in Marine Science from 
College of William & Mary, School o f Marine Science (VIMS) in 2009. Entered the 
Ph.D. program at the College of William & Mary, School of Marine Science (VIMS) in 
2009.

175


	Abundance, structure and function of zooplankton-associated bacterial communities within the York River, VA
	Recommended Citation

	00001.tif

