2009

Synthesis of 2,6-disubstituted dihydropyrans via an efficient BiBr3-initiated three component, one-pot cascade

Robert J. Hinkle
William & Mary

Yajing Lian
William & Mary

Lee C. Speight
William & Mary

Heather E. Stevenson
William & Mary

Melissa M. Sprachman
William & Mary

See next page for additional authors

Follow this and additional works at: https://scholarworks.wm.edu/aspubs

Recommended Citation

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
Synthesis of 2,6-disubstituted dihydropyrans via an efficient BiBr₃-initiated three component, one-pot cascade

Robert J. Hinkle *, Yajing Lian, Lee C. Speight, Heather E. Stevenson, Melissa M. Sprachman, Lauren A. Katkish, M. Christa Mattern

Department of Chemistry, The College of William & Mary, PO Box 8795, Williamsburg, VA 23187-8795, USA

A R T I C L E I N F O

Article history:
Received 1 May 2009
Received in revised form 18 June 2009
Accepted 19 June 2009
Available online 25 June 2009

A B S T R A C T

The rapid synthesis of cis-2,6-disubstituted dihydropyrans is achieved in a three-component, one-pot cascade reaction. BiBr₃-mediated addition of ketene silyl acetals or silyl enol ethers to β,γ-unsaturated cis-4-trimethylsilyl-3-butenal provides a Mukaiyama aldol adduct containing a vinylsilane moiety tethered to a silyl ether. Addition of a second aldehyde initiates a domino sequence involving intermolecular addition followed by an intramolecular silyl-modified Sakurai (ISMS) reaction. Isolated yields of this one-pot reaction vary from 44 to 80% and all compounds were isolated as the cis-diastereomers (10 examples).

1. Introduction

In efforts to reduce environmental impacts, increase atom economy as well as overall efficiency and convergence of experimental protocols, one-pot, multi-component reactions (MCRs) have become increasingly common in organic synthesis. Efforts toward a number of natural products have resulted in the development of several protocols in which formation of an initial adduct is required to provide the substrate for a subsequent reaction. The literature has alternatively referred to such processes as tandem, multi-component, cascade, or domino reactions, although the precise meaning of each adjective has not been entirely consistent.

As part of a program to further develop the uses of environmentally-benign Bi(III) compounds in organic synthesis, we recently described the BiBr₃-initiated intermolecular addition followed by intramolecular silyl-modified Sakurai reaction (ISMS) toward 2,6-disubstituted dihydropyrans (DHPs) with cis-diastereoselectivity (Eq. 1). Similar DHPs were either present in, or could be used as intermediates toward syntheses of a number of biologically active natural products such as ambruticin, the phorboxazoles, leucascandrolide, kendomycin, neopeltolide, the clavisolides, and the diospongins. The prevalence of DHPs, and derivatives thereof, has led to a large number of concise and selective methods for their synthesis.

More specifically, the utility of a DHP moiety attached to the α-position of a carbonyl compound prompted us to further investigate a three-component, one-pot cascade reaction involving an initial Mukaiyama aldol reaction followed by an addition/ISMS sequence as shown in the retrosynthetic analysis below (Scheme 1). Given how rapidly molecular complexity is increased in this short sequence, we examined the utility of several silane nucleophiles and aldehydes (RCHO). Herein, we report further examples of this multi-component, one pot reaction and details of our optimization studies.

2. Results and discussion

In order to evaluate the feasibility of the first step of the three-component process, we prepared aldehyde, (Z)-2, in two straightforward steps from commercially-available 4-trimethylsilyl-3-butyne-1-ol.

Scheme 1. Retrosynthetic analysis of 2,6-disubstituted DHPs.
Reduction under nickel catalyzed conditions (P-2)16k was most convenient as it led to the best (Z):(E) ratios (\(\approx 95:5\)) with little or no over-reduction to the alkane. As expected, the resulting \(\beta,\gamma\)-unsaturated aldehyde, \(2\), is particularly sensitive, and Dess–Martin periodinane21 was the only oxidant that afforded the desired substrate in sufficient purity to study the three-component sequence. We chose to focus on using the (Z)-vinylsilane due to recent work by Meilert and Brimble22 as well Dobbs et al.23 showing that the cis-vinylsilane isomers efficiently participated in intramolecular reactions.

The initial Mukaiyama aldol24–26 between \(2\) and the commercially-available methyl trimethylsilyldimethyl-ketene acetal (\(1; R =\text{OMe}, R^1=\text{H}\) readily occurred at room temperature (Scheme 2) in the presence of 10 mol % BiBr\(_3\) in CH\(_2\)Cl\(_2\) (\(\approx 0.1\) M). Crude \(^1\)H NMR spectroscopic analyses and TLC indicated that the initial Mukaiyama aldol reaction cleanly affords the sensitive silylated aldol adduct, \(A\), which is an effective nucleophile for the second addition/silyl-Prins step (ISMS).3 Although the free alcohol corresponding to \(A\) could be isolated by column chromatography, in practice, we carried \(A\) onto the next step without isolation or purification. Mukaiyama aldol reactions involving Bi(III) are also efficient in CH\(_3\)CN, but we chose CH\(_2\)Cl\(_2\) as the solvent since our previous studies indicated that the intermolecular addition and ISMS occurred more efficiently in this solvent versus CH\(_3\)CN.3 Addition of a second aldehyde (\(R^2\text{CHO}\)) and 10 mol \% more BiBr\(_3\) results in an intermolecular addition of \(A\) to the second aldehyde (\(R^2\text{CHO}\)) to afford the \(\epsilon\)-oxocarbenium ion, \(B\). An intramolecular silyl-Prins reaction then affords 3a–j via the intermediate stabilized cation, \(C\).

When using 1.1–1.4 equiv of ketene acetal (Table 1, entries 1–4 and 11), the initial aldol reaction occurs very rapidly at temperatures down to \(-20\) °C in CH\(_2\)Cl\(_2\) or CH\(_3\)CN. During optimization, we did find that the single most important variable for clean formation of the Mukaiyama adduct, \(A\), was the specific commercial samples of ketene silyl acetal. Although we examined individual samples by \(^1\)H and \(^13\)C NMR spectroscopy and found no significant impurities, some reactions required up to 1.4 equiv of the ketene silyl acetal nucleophile whereas another was effectively used with as little as 1.1 equivalents. This is most likely due to variations in trace water content and competing hydrolysis reactions during the Mukaiyama aldol step.

In all cases in which silyl enol ethers were used instead of the more nucleophilic ketene silyl acetal,27 at the same concentration (entry 3 vs 5), the reaction was much slower at room temperature and did not proceed to completion unless the BiBr\(_3\) was activated by sonication in the presence of NaI as reported by Le Roux et al.28 This presumably affords the more reactive BiI\(_3\) salt in situ. We later found, however, that activation and sonication could be avoided, albeit less efficiently, if the aldol was conducted at \(-0.2\) M instead of \(-0.1\) M without NaI activation (entries 6 vs 7 and 8 vs 9).

In all cases where the hydrogens adjacent to the oxygen in the ring system could be sufficiently separated in the \(^1\)H NMR spectrum, qualitative \(^1\)H NOE spectra indicated that the cis-isomers29 of DHPs 3a–j were the only diastereomers observed in agreement with other silyl-Prins type cyclizations (Fig. 1).22,23

Table 1

Three-component, one-pot reaction to 2,6-disubstituted dihydropyrans.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>R(^1)</th>
<th>R(^2)</th>
<th>Product</th>
<th>dr (cis/trans)(^a)</th>
<th>Yield(^d) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MeO–</td>
<td>–Me</td>
<td>PhCH(_2)–</td>
<td>3a</td>
<td>>99:1</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>MeO–</td>
<td>–Me</td>
<td>i-Pr–</td>
<td>3b</td>
<td>>99:1</td>
<td>53</td>
</tr>
<tr>
<td>3</td>
<td>MeO–</td>
<td>–Me</td>
<td>n-C(_6)H(_11)–</td>
<td>3c</td>
<td>>99:1</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>MeO–</td>
<td>–Me</td>
<td>ortho-CHO(_2)C(_6)H(_4)–</td>
<td>3d</td>
<td>>99:1</td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>Ph–</td>
<td>–H</td>
<td>n-C(_6)H(_11)–</td>
<td>3e</td>
<td>>99:1</td>
<td>76(^c)</td>
</tr>
<tr>
<td>6</td>
<td>Ph–</td>
<td>–H</td>
<td>1-ethyl-propyl–</td>
<td>3f</td>
<td>>19:1</td>
<td>66(^c)</td>
</tr>
<tr>
<td>7</td>
<td>Ph–</td>
<td>–H</td>
<td>1-ethyl-propyl–</td>
<td>3f</td>
<td>>19:1</td>
<td>56(^d)</td>
</tr>
<tr>
<td>8</td>
<td>tert-Bu–</td>
<td>–H</td>
<td>n-C(_6)H(_15)–</td>
<td>3g</td>
<td>>19:1</td>
<td>80(^d)</td>
</tr>
<tr>
<td>9</td>
<td>tert-Bu–</td>
<td>–H</td>
<td>n-C(_8)H(_17)–</td>
<td>3g</td>
<td>>19:1</td>
<td>55(^d)</td>
</tr>
<tr>
<td>10</td>
<td>tert-Bu–</td>
<td>–H</td>
<td>PhCH(_2)CH(_2)–</td>
<td>3h</td>
<td>>19:1</td>
<td>52(^d)</td>
</tr>
<tr>
<td>11</td>
<td>MeO–</td>
<td>–Me</td>
<td>PhCH(_2)CH(_2)–</td>
<td>3i</td>
<td>>19:1</td>
<td>63</td>
</tr>
<tr>
<td>12</td>
<td>Ph–</td>
<td>–H</td>
<td>Ph–</td>
<td>3j</td>
<td>>19:1</td>
<td>44(^d)</td>
</tr>
</tbody>
</table>

\(^a\) Diastereoselectivities were determined by \(^1\)H NMR or GC–MS analysis of crude reaction mixtures prior to chromatographic separation.

\(^b\) Yields are reported for pure, isolated cis-compounds characterized by \(^1\)H NMR and \(^13\)C NMR spectroscopy, IR spectrometry and HRMS or elemental analysis.

\(^c\) Initial Mukaiyama aldol carried out at \(-0.1\) M with added NaI and sonication.

\(^d\) Initial Mukaiyama aldol carried out at \(-0.2\) M with neither added NaI, nor sonication.

Scheme 2. Reaction sequence for the three-component, one-pot synthesis of dihydropyrans.

Figure 1. Observed qualitative NOE enhancement.
We were particularly interested in syntheses using \(\beta,\beta \)-unsubstituted enol ethers as nucleophiles since these resulting intermediates and products might be prone to aldol reactions or eliminations via putative enols or enolates. We were gratified to isolate several products with enolizable hydrogens \(\alpha \)- to the carbonyl moiety; these were obtained in yields ranging from 52\% to 80\% (entries 5–10). The lowest yield was observed for product 3j (entry 12) even though both the initial Mukaiyama aldol and the subsequent addition/silyl-Prins reactions appeared clean by TLC analysis and \(^1\)H NMR spectroscopic evaluation of the crude product. This particular product appeared less stable than the other nine and prolonged reaction times led to complex mixtures while storage at room temperature also caused decomposition. This instability is likely due to the fact that the phenyl substituent \((R^2) \) promotes ring opening under the reaction conditions via a benzylic cation.

Although we attempted cyclizations using \((E)\)-vinylsilanes due to reports that the \((E)\)-vinylsilanes provided trans-2,6-diasteromers,\(^3,6,8\) we found that in the two-component case analogous to that in Eq. 1, only trace quantities of cyclization products were afforded (GC–MS) using \((E)\)-vinylsilanols.\(^6\) This result is consistent with the stereoelectronic stabilization of the developing cation by the axial trimethylsilyl moiety in intermediates B and C (Scheme 2) as described by Speckamp\(^9,10\) and Roush\(^9,10\) for DHPs as well as Overman\(^30\) and Tanner\(^31\) for iminium ion cyclizations.

The exact role(s) of Bi(III) compounds as catalysts in organic synthesis is still debated in numerous papers. Whereas BiX\(_3\) compounds are often described as weak Lewis acids,\(^3,32,33\) and investigators have attributed their reactivity to this property, we\(^34\) and others\(^35,36\) believe that BiX\(_3\) species are progenitors of Brønsted acids and that these contribute to the activities of BiX\(_3\) salts. Even in cases where Brønsted acids have been shown to be involved, their specific role is not always clear,\(^36,37,38\) especially in the presence of Lewis acids.\(^39\)

Bismuth(III) halides are known to rapidly hydrolyze to H–X and bismuthoxy halides (X–Bi\(_3\)O) which are insoluble in CH\(_2\)Cl\(_2\).\(^4,0\) In this study, all starting materials and solvents were purchased from Acros Organics. Dess-Martin periodininane, hexanal, 3,4-bis(trimethylsilyl)but-3-enal, trimethylsilanol, methyl triphenylphosphonate, phenyltriazine, and triphenylphosphine were prepared according to standard procedures. \(^1\)H and \(^13\)C NMR spectra were recorded with the aid of an APT sequence in which methylene and quaternary carbons—\(e \) and methyl and methine carbons—\(o \), respectively, were determined by the method of Hoye.\(^41\) Thin layer chromatography was performed on Sorbent Technologies general-purpose silica gel on glass and flash chromatography was performed using Sorbent Technologies chromatographic silica gel (200–475 MESH). All compounds were judged to be homogeneous by \(^1\)H and \(^13\)C NMR spectroscopy.

3.2. General procedure

3.2.1. Preparation of methyl cis-2-(6-benzyl-3,6-dihydro-2H-pyran-2-yl)-2,2-dimethyl propanoate (3a)

BiBr\(_3\) (45 mg, 0.10 mmol, 0.10 equiv) was weighed into 25 mL round bottom flask and 10 mL CH\(_2\)Cl\(_2\) was added via syringe. (Z)-4-(trimethylsilyl)but-3-enal, 2\(^O\) (0.142 g, 1.00 mmol, 1.00 equiv) and methyl trimethylsilyl dimethylketene acetal (0.192 g, 1.10 mmol, 1.10 equiv) were added by syringe simultaneously. The mixture was stirred at room temperature until (Z)-4-(trimethylsilyl)but-3-enal, 2\(^O\) was consumed by TLC (3 h); Additional BiBr\(_3\) (45 mg, 0.010 mmol, 0.10 equiv) and phenylacetaldehyde (0.24 g, 2.00 mmol, 2.00 equiv) were added and the mixture was stirred for 12 h at rt. The solution was concentrated in vacuo, filtered through a small SiO\(_2\) pipette column with CH\(_2\)Cl\(_2\) as eluent and concentrated in vacuo again. The product was purified by column chromatography (9:1 petroleum ether:Et\(_2\)O, \(R_f = 0.34 \)) to provide 0.175 g (64\%) of cis-isomer as a colorless oil: IR (neat) 3031 (s), 2982 (s), 2940 (s), 2879 (m), 1735 (s), 1451 (m), 1267 (s), 1140 (s), 1086 (s), 751 (m); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.17–7.28 (m, 5H), 5.77–5.82 (m, 1H), 5.63 (dm, \(J = 10.3 \) Hz, 1H), 4.27 (br, 1H), 3.77 (dd, \(J = 11.0, 3.3 \) Hz, 1H), 3.55 (s, 3H), 2.83 (dd, \(J = 13.9, 8.1 \) Hz, 1H), 2.70 (dd, \(J = 13.9, 8.1 \) Hz, 1H), 2.06–2.15 (m, 1H), 1.77–1.85 (m, 1H), 1.21 (s, 3H), 1.20 (s, 3H); \(^13\)C NMR (APT) (100 MHz, CDCl\(_3\)) \(\delta \) 177.2 (e), 138.7 (e), 129.2 (o), 129.6 (o), 128.0 (o), 126.1 (o), 125.0 (o), 78.4 (o), 76.5 (o), 52.0 (o), 46.6 (e), 42.1 (e), 25.4 (e), 21.3 (o), 20.4 (o). Anal. Calcd for C\(_{17}\)H\(_{22}\)O\(_3\): C 74.42, H 8.08; found: C 74.53, H 8.30.

3.2.2. Preparation of methyl cis-2-(6-isopropyl-3,6-dihydro-2H-pyran-2-yl)-2,2-dimethyl propanoate (3b)

Using the general procedure, 3b was prepared from BiBr\(_3\) (45 mg, 0.10 mmol, 0.10 equiv), \((Z)\)-4-(trimethylsilyl)but-3-enal, 2\(^O\) (0.142 g, 1.00 mmol, 1.00 equiv), methyl trimethylsilyl dimethylketene acetal (0.192 g, 1.10 mmol, 1.10 equiv), isobutyreraldehyde (0.182 mL, 2.00 mmol, 2.00 equiv), and BiBr\(_3\) (45 mg, 0.10 mmol, 0.10 equiv). The product was purified by column chromatography (9:1 petroleum ether:Et\(_2\)O, \(R_f = 0.52 \)) to provide 0.120 g (53\%) of cis-isomer as a colorless oil: IR (neat) 2961 (s), 1737 (s), 1458 (w), 1368 (w), 1258 (m), 1136 (m), 1084 (m); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 5.80–5.85 (m, 5H), 5.63 (dm, \(J = 10.3 \) Hz, 1H), 3.86 (br, 1H), 3.75 (dd, \(J = 10.6, 2.9 \) Hz, 1H), 3.67 (s, 3H), 2.04–2.12 (m, 1H), 1.76–1.83 (m, 3H), 1.70 (dtt, \(J = 7.0, 5.1, 1.7 \) Hz, 1H), 1.22 (s, 3H), 1.14 (s, 3H), 0.90 (d, \(J = 7.0 \) Hz, 3H), 0.86 (d, \(J = 7.0 \) Hz, 3H); \(^13\)C NMR (APT) (100 MHz, CDCl\(_3\)) \(\delta \) 177.4 (e), 128.9 (o), 125.1 (o), 80.0 (o), 77.9 (o), 52.0 (o), 46.7 (e), 32.9 (o), 25.5 (e), 21.2 (o), 20.4 (o), 18.6 (o), 17.5 (o). Anal. Calcd for C\(_{17}\)H\(_{22}\)O\(_3\): C 74.42, H 8.08; found: C 74.53, H 8.30.

3.2.3. Preparation of methyl cis-2-(6-penty1-3,6-dihydro-2H-pyran-2-yl)-2,2-dimethyl propanoate (3c)

This compound was prepared according to the general procedure described for 3a using BiBr\(_3\) (45 mg, 0.10 mmol, 0.10 equiv), methyl trimethylsilyl dimethylketene acetal (0.192 g, 1.10 mmol, 1.10 equiv), hexanal (0.14 mL, 2.00 mmol, 2.00 equiv) and BiBr\(_3\)
(45 mg, 0.10 mmol, 0.10 equiv). The product was purified by column chromatography (9:1 petroleum ether:EtO\textsubscript{2}, R\textsubscript{f}=0.52) to provide 0.163 g (64%) of cis-isomer as a colorless oil: IR (neat) 3032 (m), 2953 (s), 2934 (s), 2861 (s), 1737 (s), 1469 (m), 1368 (w), 1265 (s), 1190 (m), 1134 (m), 1083 (m); 1H NMR (400 MHz, CDCl\textsubscript{3}) \delta 7.98–8.01 (m, 1H), 7.56 (ddd, J=7.3, 1.5, Hz, 1H), 5.90–5.95 (m, 1H), 1.85–1.88 (m, 1H), 1.58–1.78 (m, 2H), 0.62–0.68 (dm, J=10.3 Hz, 2H), 1.43 (d, J=3.3, Hz, 2H), 3.70 (s, 3H), 2.27–2.38 (m, 1H), 1.97–2.04 (dm, J=17.2 Hz, 1H), 1.29 (s, 3H), 1.22 (s, 3H); 13C NMR (APT) (100 MHz, CDCl\textsubscript{3}) \delta 192.7 (e), 177.4 (e), 143.6 (e), 133.4 (o), 133.6 (e), 129.4 (o), 128.0 (o), 127.8 (o), 124.7 (o), 78.8 (o), 75.5 (o), 73.4 (o), 70.2 (o), 62.4 (o), 56.4 (o), 45.7 (e), 42.1 (e), 31.6 (e), 31.5 (e), 22.6 (e), 14.4 (o). Anal. Calc'd for C\textsubscript{18}H\textsubscript{32}O\textsubscript{2} (280.45): C 77.09, H 11.50; found: C 76.81, H 11.31.

3.2.5. Preparation of cis-2-(6-(2-formylphenyl)-3,6-dihydro-2H-pyran-2-yl)-2,2-dimethyl-propanoate (3E)

BiBr\textsubscript{3} (22 mg, 0.05 mmol, 0.10 equiv) and Nal (23 mg, 0.15 mmol, 0.30 equiv) were weighed into 15 mL round bottom flask and 10 mL CH\textsubscript{2}Cl\textsubscript{2} was added via syringe. After sonication for 1 h at rt, (Z)-4-(trimethylsilyl)but-3-enal, 2 (0.071 g, 0.50 mmol, 1.00 equiv) and 1-phenyl-1-trimethylsiloxyethylene (0.212 g, 1.17 mmol, 1.09 equiv) were added by syringe simultaneously. The mixture was stirred until (Z)-4-(trimethylsilyl)but-3-enal, 2 was consumed by TLC analysis (2 h). Hexanal (0.134 g, 1.07 mmol, 1.00 equiv) and (2,2-dimethyl-1-methylenepropoxy)trimethylsilane (0.190 g, 1.10 mmol, 1.10 equiv) were added by syringe simultaneously. The mixture was stirred until (Z)-4-(trimethylsilyl)but-3-enal, 2 was consumed (2 h). Octanal (0.313 mL, 2.00 mmol, 2.00 equiv) and BiBr\textsubscript{3} (45 mg, 0.10 mmol, 0.10 equiv) and were added and the mixture was stirred for 24 h. The solution was concentrated in vacuo, filtered through a small SiO\textsubscript{2} pipette column with CH\textsubscript{2}Cl\textsubscript{2} as eluent and concentrated in vacuo again. The product was purified by column chromatography (9:1 petroleum ether:EtO\textsubscript{2}, R\textsubscript{f}=0.43) to provide 0.225 g (80%) of cis-isomer as a colorless oil: IR (neat) 3032 (m), 2957 (s), 2929 (s), 2858 (s), 1708 (s), 1465 (m), 1367 (m), 1185 (m), 1076 (s), 994 (m), 840 (w); 1H NMR (400 MHz, CDCl\textsubscript{3}) \delta 5.63–5.68 (m, 1H, 1H), 5.51 (dm, J=10.3 Hz, 1H), 3.93–4.05 (m, 2H, 2H), 2.81 (dd, J=16.8, 7.0 Hz, 1H), 2.36 (dd, J=16.8, 7.0 Hz, 1H), 1.79–1.97 (m, 2H, 1H), 1.10–1.40 (m, 12H), 1.04 (s, 9H), 0.77 (t, J=6.7 Hz, 3H); 13C NMR (APT) (100 MHz, CDCl\textsubscript{3}) \delta 213.8 (e), 130.6 (o), 124.2 (o), 75.2 (o), 70.7 (o), 44.6 (e), 43.3 (e), 35.9 (e), 32.1 (e), 31.3 (e), 29.9 (e), 29.6 (e), 26.4 (o), 25.5 (e), 23.0 (e), 14.5 (o). Anal. Calc'd for C\textsubscript{30}H\textsubscript{40}O\textsubscript{2} (420.45): C 77.09, H 11.50; found: C 76.81, H 11.31.

3.2.6. Preparation of cis-2-(6-(pentan-3-yl)-3,6-dihydro-2H-pyran-2-yl)-1-phenylethanone (3F)

BiBr\textsubscript{3} (45 mg, 0.10 mmol, 0.10 equiv) and Nal (50 mg, 0.15 mmol, 0.30 equiv) were weighed into 15 mL round bottom flask and 5 mL CH\textsubscript{2}Cl\textsubscript{2} was added via syringe. After sonication for 1 h at rt, (Z)-4-(trimethylsilyl)but-3-enal, 2 (0.142 g, 1.00 mmol, 1.00 equiv) and 1-phenyl-1-trimethylsiloxyethylene (0.212 g, 1.10 mmol, 1.10 equiv) were added by syringe simultaneously. The mixture was stirred until (Z)-4-(trimethylsilyl)but-3-enal, 2 was consumed (2 h). 2-Ethylbutyraldehyde (0.182 mL, 1.47 mmol, 1.47 equiv) and BiBr\textsubscript{3} (45 mg, 0.10 mmol, 0.10 equiv) were added and the mixture was stirred for 12 h. The solution was concentrated in vacuo, filtered through a small SiO\textsubscript{2} pipette column with CH\textsubscript{2}Cl\textsubscript{2} as eluent and concentrated in vacuo again. The product was purified by column chromatography (9:1 petroleum ether:EtO\textsubscript{2}, R\textsubscript{f}=0.40) to provide 0.179 g (66%) of cis-isomer as a light yellow oil: IR (neat) 3032 (m), 2956 (s), 2932 (s), 2874 (s), 1684 (s), 1449 (m), 1279 (m), 1214 (m), 1184 (m), 1072 (s), 992 (m), 752 (m); 1H NMR (400 MHz, CDCl\textsubscript{3}) \delta 7.89–7.92 (m, 1H), 7.56 (dm, J=10.3 Hz, 1H), 1.21–1.35 (m, 3H), 1.05–1.10 (m, 3H), 0.83–0.89 (m, 6H); 13C NMR (APT) (100 MHz, CDCl\textsubscript{3}) \delta 177.4 (e), 173.4 (e), 158.4 (o), 140.0 (o), 128.6 (e), 124.4 (o), 120.4 (o), 112.1 (o), 75.2 (o), 45.7 (e), 42.1 (e), 31.6 (e), 31.5 (e); found: C 76.81, H 11.31.
chromatography (95:5 to 9:1 petroleum ether:Et₂O, Rf = 0.50 in 9:1 hexanes:EtOAc) to provide 0.158 g (52%) of the cis-isomer as a colorless oil: IR (neat) 3028 vs (m), 2972 (m), 2873 (m), 2838 (vs), 1683 (vs), 1596 (s), 1580 (vs), 1454 (s), 1385 (s), 1351 (s), 1274 (s), 1144 (s), 1096 (m), 1070 (s), 996 (s), 973 (s), 939 (s), 868 (s), 852 (s), 776 (s), 727 (s), 688 (s), 670 (s), 629 (s), 615 (s), 574 (s), 556 (s), 514 (s), 460 (s), 434 (m), 398 (s), 345 (s), 306 (s), 295 (s), 283 (s), 204 (s). HRMS (ESI) calcd for C₂₂H₂₆O₂Na⁺ (M+Na⁺) 301.1199, found 301.1195.

Acknowledgements

We gratefully acknowledge the following agencies for their generous financial support: The Area Program of the National Institutes of Health (GM072525-01A2), the Tomas F. and Kate Miller Jefferson Memorial Trust, the Camille and Henry Dreyfus Foundation (Henry Dreyfus Teacher-Scholar Award for R.J.H), GlaxoSmithKline for an Undergraduate Fellowship Award (L.C.S.), the Pfizer Pharmaceuticals SURF program (H.E.S.), The Beckman Scholars Program (M.M.S.) and the Eli Lilly Undergraduate Fellowship Program (M.C.M.).

Supplementary data

Supplementary data associated with this article can be found in the online version, at doi:10.1080/jtetlet.2009.06.083.

References and notes

2. Multi-step reactions relying upon the formation and conversion of initial re-
action products to subsequent compounds have been called tandem reactions, cascade reactions, and, more recently, domino reactions. Domino Reactions in Organic Synthesis; Tietze, L. F.; Brascic, G., Gerick, K. M., Eds.; Wiley-VCH: Weinheim, 2006.
4. The LDA of BiCl₃ is listed as 3334 mg/kg (oral rat) and 2250 mg/kg (oral oral) in the MSDS provided by Sigma–Aldrich Chemical, St. Louis, MO.
7. Marko developed and has extensively examined the ISMS reaction. For rep-
14. Recent reviews of synthetic methods toward a number of natural products
15. For recent examples of dihydroxyanion preparations involving intramolecular reactions of alkenes, see: (a) Furnan, B.; Egdell, M.; Justnian, L. Tetrahedron
2008, 64, 3103–3110; (b) Miranda, P. O.; Ramirez, M. A.; Martín, V. S.; Padrón, J. I. Org. Lett. 2006, 8, 1633–1636.

20. GFS Chemical Corporation.

29. See the supporting information for qualitative NOE spectra.

38. Although TfOH and Bi(OTf)3 nH2O each catalyze Mannich reactions, diastereoselectivity results indicate that the Bi(OTf)3 is involved as more than just a progenitor of TfOH: Ollevier, T.; Nadeau, E.; Guay-Bégin, A.-A. Tetrahedron Lett. 2006, 47, 8351–8354.

39. In cases where Brønsted and Lewis acids are present, a number of interactions are possible, including Brønsted acid assisted Lewis acid catalysis [BLA], etc. See: Yamamoto, H.; Futatsugi, K. Angew. Chem., Int. Ed. 2005, 44, 1924–1942.
