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1. Introduction

For spatial biological systems, the positive feedback control between consumer (predator, plants)
and limited resources (prey, water, nutrients) suggests a reaction–diffusion system with consumer–
resource (predator–prey) type interaction:

ut = Du�u + f (u) − bφ(u)v, vt = D v�v + g(v) + cφ(u)v, (1.1)

where u(x, t) and v(x, t) are the densities of the prey and predator respectively, Du and D v are the
diffusion coefficients, f and g represent the self-growth of the two species, and φ(u) is the predator
functional response, see [2,26,27,29]. In consideration of the limited ability of a predator to consume
its prey, general forms of functional response of the predator φ(u) were introduced by Holling [11],
and φ(u) is a positive and nondecreasing function of prey density. Among many possible choices
of φ(u), the Holling type-II functional response is most commonly used in the ecological literature,
which is defined by

φ(u) = u

1 + K u
, (1.2)

where K is a positive constant measuring the ability of a generic predator to kill and consume a
generic prey. Predator–prey system with Holling type-II functional response is also called Rosenzweig–
MacArthur model, which is widely used in real-life ecological applications [35].

It has been shown that the diffusive predator–prey system is capable to generate complex spa-
tiotemporal patterns. Levin and Segel [20] pointed out that diffusive instabilities might explain
instances of spatial irregularity in natural communities in which the prey population survived in
a clumped pattern forced upon it by the predator’s more rapid dispersion that caused the initial
breakdown of the uniform state. An example is the observed patchy distribution of plankton in the
ocean, and other different dispersal ability of this sort has been documented in arthropod predator–
prey systems characterized by patchy distribution patterning both in laboratory (Huffaker [13]) and
field experiments (Kareiva, Odell [16,17]). Medvinsky et al. [24] used (1.1) with Holling type-II func-
tional response as a simplest possible mathematical model to investigate the pattern formation of a
phytoplankton–zooplankton system, and their numerical studies show a rich spectrum of spatiotem-
poral patterns.

In a recent analytic approach by Yi, Wei and Shi [41], the system (1.1) with Holling type-II func-
tional response is considered, that is,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut − d1�u = u

(
1 − u

k

)
− muv

u + 1
in Ω, t > 0,

vt − d2�v = −θ v + muv

u + 1
in Ω, t > 0,

∂νu = ∂ν v = 0 on ∂Ω, t > 0,

u(x,0) = u0(x) � 0, v(x,0) = v0(x) � 0 in Ω.

(1.3)

Here Ω is a bounded domain in RN (N � 1) with a smooth boundary ∂Ω . The two unknown functions
u(x, t) and v(x, t) represent the spatial distribution density of the prey and predator, respectively. The
constants d1,d2 are the diffusion coefficients of the corresponding species and are hence assumed to
be positive, k accounts for the carrying capacity of the prey, θ is the death rate of the predator, and
m can be regarded as the measure of the interaction strength between of the two species. Moreover,
ν is the outward unit normal vector on ∂Ω and ∂ν = ∂/∂ν , and we impose a homogeneous Neumann
type boundary condition, which implies that (1.3) is a closed system and there is no flux across the
boundary ∂Ω .

It was shown that system (1.3) possesses complex spatiotemporal dynamics via a sequence of
bifurcation of spatial nonhomogeneous periodic orbits and spatial nonhomogeneous steady state so-
lutions [41]. It is well known that when m is larger than a threshold value, the corresponding ODE
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system has a periodic orbit [12], and the results in [41] suggests a much richer oscillatory and sta-
tionary dynamics. The periodic patterns found here are “self-organized” in the sense that the system
parameters in (1.3) are all spatially and temporally constant. On the other hand, it is known that spa-
tial heterogeneity may induce complex spatiotemporal patterns [6,7]. We refer to Du and Shi [6] for
a comprehensive review on mathematical results for diffusive predator–prey systems.

In this article, we show that in contrast to the complex dynamics in the case of intermediate range
of parameter m, the system (1.3) has only the constant steady state solution when m is sufficiently
large. Biologically large m corresponds to strong interaction between the prey and predator species.
To be more precise, we consider the steady state equation of (1.3), which is a coupled elliptic system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−d1�u = u

(
1 − u

k

)
− muv

u + 1
in Ω,

−d2�v = −θ v + muv

u + 1
in Ω,

∂νu = ∂ν v = 0 on ∂Ω.

(1.4)

The system (1.4) has three non-negative constant solutions: (0,0), (k,0) and (λ, vλ), where

λ = θ

m − θ
and vλ = (k − λ)(1 + λ)

km
.

The positive constant solution (λ, vλ) exists if and only if

m >
(1 + k)θ

k
. (1.5)

It was proved in [18,41] that (k,0) is globally asymptotically stable when λ � k, and (λ, vλ) is globally
asymptotically stable when λ ∈ [k−1,k). Hence, (1.4) has no non-constant positive solution if λ � k−1
is satisfied. Thus, from now on, we always assume 0 < λ < k − 1 holds true. Our main result is

Theorem 1.1. Suppose that N � 3. For any given constants d1,d2, θ > 0, k > 1 and a fixed domain Ω , there
exists a positive constant M1 , which depends only on d1,d2,k, θ and Ω , such that (1.4) has no non-constant
positive solution provided that m � M1 .

It is known that when m is large, then (1.3) has an unstable constant coexistence steady state
solution (λ, vλ), and a unique spatial homogeneous limit cycle. Hence Theorem 1.1, together with
the instability of (λ, vλ), strongly suggests that temporal oscillatory patterns dominate the dynamics
in the strong predator–prey interaction. An important corollary of Theorem 1.1 is that the global
bifurcation branches of steady state solutions of (1.3) obtained in [41] are bounded in the space of
(m, u, v), hence they are “loops” instead of unbounded branches, see more details in Section 5. This
provides another crucial step towards a complete understanding of the dynamics of (1.3).

Our analysis can also be carried over to a similar system in which the predator has alternate food
source, and the corresponding steady state system is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−d1�u = u(a − u) − muv

u + 1
in Ω,

−d2�v = v(d − v) + muv

u + 1
in Ω,

∂νu = ∂ν v = 0 on ∂Ω,

(1.6)

where the constant d may be non-positive.

Theorem 1.2. Let N � 3. For any given d1,d2,a,d and Ω , there exists a positive constant M2 , which depends
only on d1,d2,a,d and Ω , such that if m � M2 , then (1.6) has no non-constant positive solution when d � 0
and has no positive solution when d > 0.
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We remark that, although it has been shown in this work that Theorems 1.1 and 1.2 hold only
for N � 3 due to mathematical difficulties, we suspect these results continue to be true for arbitrary
spatial dimensions. Of course, the above conclusions are sufficient as far as the possible application
in biology is concerned. Also we comment that although our analysis requires m → ∞, numerical
investigation and calculation of bifurcation points in [41] suggest that the threshold value m0 for the
non-existence of non-constant steady state solutions is still in the biologically realistic range.

In the remaining part of this paper, we shall carry out the detailed proof of Theorems 1.1 and 1.2.
Some preliminaries are prepared in Section 2; the cases of (1.4) and (1.6) are discussed in Section 3
and Section 4, respectively; and finally in Section 5, we give some remarks on the implications of our
results to the global bifurcations of steady state solutions to the related reaction–diffusion systems.

2. Some preliminaries

In this section, let us first recall some general results for elliptic equations; these results will be
frequently used later in obtaining a priori upper and lower bounds for non-negative solutions to (1.4)
and (1.6). Some of these results can be found in [30] or [32].

To begin with, we recall a local result for weak super-solution of linear elliptic equations from [21]
(also see, for example, [8, Theorem 8.18]).

Lemma 2.1. Let Ω be a bounded Lipschitz domain in RN , and let Λ be a non-negative constant. Suppose that
z ∈ W 1,2(Ω) is a non-negative weak solution of the inequalities

0 � −�z + Λz in Ω, ∂ν z � 0 on ∂Ω.

Then, for any q ∈ [1, N/(N − 2)), there exists a positive constant C0 , depending only on q,Λ and Ω , such that

‖z‖q � C0 inf
Ω

z.

Next is a Harnack inequality for weak solutions, whose strong form was obtained in [22].

Lemma 2.2. Let Ω be a bounded Lipschitz domain in RN , and let c(x) ∈ Lq(Ω) for some q > N/2. If
z ∈ W 1,2(Ω) is a non-negative weak solution of the boundary value problem

�z + c(x)z = 0 in Ω, ∂ν z = 0 on ∂Ω,

then there is a positive constant C1 , determined only by ‖c‖q,q and Ω such that

sup
Ω

z � C1 inf
Ω

z.

Finally, we cite a strong maximum principle (see, e.g., Proposition 2.2 in [23]), and the weak form
of the analogue can be found in [21,32].

Lemma 2.3. Suppose that Ω is smooth and g ∈ C(Ω × R1). Assume that z ∈ C2(Ω) ∩ C1(Ω) and satisfies

�z(x) + g
(
x, z(x)

)
� 0 in Ω, ∂ν z � 0 on ∂Ω.

If z(x0) = maxΩ z(x), then g(x0, z(x0)) � 0.

We also prove a non-existence result on a Lotka–Volterra type predator–prey model:
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Lemma 2.4. Assume that d1,d2, θ > 0 and Ω are fixed. Then the system

⎧⎨
⎩

−d1�w = w − wz in Ω,

−d2�z = −θ z + wz in Ω,

∂ν w = ∂ν z = 0 on ∂Ω,

(2.1)

has a unique positive solution (w, z) = (θ,1).

Proof. We adopt a technique of Lyapunov function to derive the desired result. To this end, we con-
sider the corresponding reaction–diffusion system of (2.1):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wt − d1�w = w − wz in Ω × (0,∞),

zt − d2�z = −θ z + wz in Ω × (0,∞),

∂ν w = ∂ν z = 0 on ∂Ω × (0,∞),

w(x,0) = w0(x) � 0, �≡ 0 in Ω,

z(x,0) = z0(x) � 0, �≡ 0 in Ω.

(2.2)

Here, the admissible initial data w0(x), z0(x) are continuous functions on Ω . The standard theory for
parabolic equations shows that the unique solution (w(x, t), z(x, t)) of (2.2) exists and is positive on
Ω × [0,∞).

Notice that (θ,1) is the unique constant positive steady state solution to (2.2), and we denote this
trivial solution by (w∗, z∗). We construct a well-known Lyapunov function as follows: for (w, z) ∈
[W 1,2(Ω)]2,

V (w, z) =
∫
Ω

E
(

w(x), z(x)
)

dx,

with

E(w, z) =
∫

w − w∗

w
dw +

∫
z − z∗

z
dz.

Using some straightforward calculation, for a solution (w(x, t), z(x, t)) of (2.2) we have

dV

dt
=

∫
Ω

{
w − w∗

w
wt + z − z∗

z
zt

}
dx

=
∫
Ω

{
w − w∗

w
(d1�w + w − wz) + z − z∗

z
(d2�z − θ z + wz)

}
dx

=
∫
Ω

{
−d1

w∗|∇w|2
w2

− d2
z∗|∇z|2

z2
+ (w − w∗)(1 − z) − (z − z∗)(θ − w)

}
dx

=
∫
Ω

{
−d1

w∗|∇w|2
w2

− d2
z∗|∇z|2

z2

}
dx.

Therefore, V is a Lyapunov functional for the system (2.2), namely, for any t > 0, V ′(t) � 0 along
trajectories. Let C = {(w, z) ∈ [W 1,2(Ω)]2: V ′(t) = 0}. Then from proofs in [3,19,36], the orbit
{(w(·, t), z(·, t)): t � 0} is compact, and consequently (w(·, t), z(·, t)) → C as t → ∞ from LaSalle’s
invariance principle (see Theorem 4.3.4 in [10]).
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Now, assume that (w(x), z(x)) is a positive solution of (2.1), then (w(x), z(x)) ∈ C . But C =
{(w, z) ∈ [W 1,2(Ω)]2: w(x) ≡ w0, z(x) ≡ z0} (the subspace of constant functions), and the only equi-
librium solution of (2.2) in C is (w(x), z(x)) = (w∗, z∗) = (θ,1). The proof is thus complete. �
Remark 2.1. The dynamics of the system (2.2) is of independent interest. The constant equilibrium
(w∗, z∗) is not globally asymptotically stable for the system (2.2). The set C is a 2-dimensional in-
variant subspace for (2.2), and there are infinitely many spatially homogeneous periodic orbits on C
with common center (w∗, z∗). Each spatially homogeneous periodic orbit can be the ω-limit set of a
solution to (2.2). In fact, for each spatially homogeneous periodic orbit, there exists a codimension-2
invariant manifold in [W 1,2(Ω)]2 which converges to the periodic orbit with exponential attracting
rate. The convergence to periodic solution of (2.2) has been shown in Rothe [36], and the constant
equilibrium is globally asymptotically stable if there is a damping term (crowding effect) in the sys-
tem, see Hastings [9] and Leung [19].

3. Proof of Theorem 1.1

First we recall the following a priori estimates from [41]:

Lemma 3.1. Suppose that d1,d2, θ > 0, k > 1, Ω is any bounded smooth domain, and (u(x), v(x)) is a non-
negative W 1,2(Ω) solution to (1.4). Then either (u, v) = (0,0), or (u, v) = (k,0) or for all x ∈ Ω ,

0 < u(x) < k and 0 < v(x) <
k(d2 + θd1)

θd2
.

It is easily noted that, by virtue of Lemma 3.1, we can apply the standard regularity theory of el-
liptic equations and the embedding theorems (see, e.g., [8]) to claim that any non-negative W 1,2(Ω)

solution to (1.4) must be a classical one, that is, u, v ∈ C2(Ω) ∩ C1(Ω) and (u, v) satisfies (1.4). Fur-
thermore, if u � 0, �≡ 0 and v � 0, �≡ 0 in Ω , then the well-known maximum principle and Hopf
boundary lemma guarantee that u, v > 0 on Ω .

On the other hand, one should observe that (λ, vλ) → (0,0) as m → ∞. As a consequence, to
derive a positive lower bound for any positive solution of (1.4), the restriction for the upper bound
of m is necessary. With this simple observation, for bounded m, the authors in [41] also obtained the
following lower estimates, which are similar to Theorem 3.4 in [18].

Lemma 3.2. Suppose that d1,d2, θ > 0, k > 1 and Ω is fixed, and θk/(k − 1) < m � M for some M > 0. Then,
there exists a positive constant C depending possibly on d1,d2, θ,k, M and Ω , such that any positive solution
(u(x), v(x)) of (1.4) satisfies

u(x), v(x) � C, for x ∈ Ω.

In order to establish more precise estimates of lower bounds for positive solutions (u, v) to (1.4),
we make use of the scaling

w = mu and z = mv, (3.1)

and thus the original system (1.4) becomes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−d1�w = w

(
1 − u

k

)
− wz

u + 1
in Ω,

−d2�z = −θ z + wz

u + 1
in Ω,

∂ν w = ∂ν z = 0 on ∂Ω.

(3.2)
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Based on the above preparation, we are ready to derive the a priori lower bounds for any positive
solutions to (1.4). More precisely, we have

Theorem 3.1. Suppose that N � 3, and let d1,d2, θ > 0, k > 1 and Ω be fixed. Denote (um, vm) to be a
positive solution of (1.4), then there exist two positive constants C and C , which depend only on d1,d2,k, θ

and Ω , such that

C � mum(x),mvm(x) � C, for x ∈ Ω.

Moreover, as m → ∞, we have

(mum,mvm) → (θ,1) in C2(Ω).

Proof. From Lemmas 3.1 and 3.2, it remains to verify our conclusion in the case of m → ∞. Further-
more, owing to the scaling (3.1), it is sufficient to consider the system (3.2). Firstly, from the second
equation of (3.2), it follows that

−d2�zm + θ zm > 0 in Ω, ∂ν zm = 0 on ∂Ω.

Hence we can use Lemma 2.1 to get that

‖zm‖q � C0 inf
Ω

zm, (3.3)

where q � 1 can be arbitrarily large if N = 1 or 2, q ∈ (N/2, N/(N − 2)) if N = 3, and C0 depends
only on q,d2, θ and Ω .

We now claim that ‖zm‖q must be bounded as m → ∞. We prove it by contradiction. Suppose
that it is not true, then there exists a sequence {mn}∞n=1 with mn → ∞ as n → ∞, and the corre-
sponding sequence of positive solutions (umn , vmn ) of (1.4) for m = mn , which is denoted by (un, vn)

for convenience, such that (wn, zn) = (mnun,mn vn) satisfies

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−d1�wn = wn

(
1 − un

k

)
− wnzn

un + 1
in Ω,

−d2�zn = −θ zn + wnzn

un + 1
in Ω,

∂ν wn = ∂ν zn = 0 on ∂Ω

(3.4)

and

‖zn‖q → ∞, as n → ∞.

It follows from (3.3) that

zn → ∞ uniformly on Ω, as n → ∞.

On the other hand, integrating the equation of wm in (3.4) over Ω and using the no-flux boundary
condition, we obtain that

∫
Ω

wn

(
1 − un

k
− zn

un + 1

)
dx = 0, (3.5)
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which leads to a contradiction since un � k. Consequently, for a given large M , we can find a positive
constant C2, determined only by q,d2, θ, M and Ω , such that for m � M ,

‖zm‖q � C2. (3.6)

Now, for the chosen q as above, combining with Lemma 3.1 we find that

∥∥∥∥1 − um

k
− zm

um + 1

∥∥∥∥
q
� C3, (3.7)

for m � M and some positive constant C3, which depends only on q,d2, θ, M and Ω . Therefore, if
m � M , by virtue of (3.7), we apply Lemma 2.2 to the equation of wm in (3.4) to see that

sup
Ω

wm � C4 inf
Ω

wm. (3.8)

Here, C4 depends only on d1,d2,k, θ,q, M and Ω . Using (3.8), we claim that there is a positive con-
stant C5 such that when m � M , the following holds:

sup
Ω

wm � C5. (3.9)

In fact, suppose that (3.9) does not hold, as before, we can find a sequence of {mn}∞n=1 with mn → ∞
as n → ∞, and an associated sequence of positive solutions (wn, zn) of (3.4), such that supΩ wn → ∞
as n → ∞. Hence, (3.8) implies that wn → ∞ uniformly on Ω as n → ∞. We then integrate the
second equation in (3.4) to obtain

∫
Ω

zn

(
θ − wn

un + 1

)
dx = 0, (3.10)

which again is a contradiction. This verifies (3.9).
Next, due to the Harnack inequality again (namely, Lemma 2.2), by the equation of zm , one imme-

diately sees that

sup
Ω

zm � C6 inf
Ω

zm (3.11)

if m � M . Here, C6 depends on d1,d2,k, θ,q, M and Ω . In a similar manner, together with (3.5), we
can derive the upper bound of zm: there is a positive constant C7 depending on d1,d2,k, θ,q, M and
Ω such that

sup
Ω

zm � C7, for m � M. (3.12)

In what follows, we are going to establish the positive lower bounds for (wm, zm). That is, there is
a positive constant C8, which depends only on d1,d2,k, θ,q, M and Ω , such that

inf
Ω

wm � C8 and inf
Ω

zm � C8, for m � M. (3.13)

Suppose that (3.13) is false, it is necessary that there is a sequence mn → ∞ as n → ∞ such that

inf
Ω

wn → 0 or inf
Ω

zn → 0, as n → ∞.
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Then, (3.8) and (3.11) imply that

wn → 0 or zn → 0 uniformly on Ω, as n → ∞.

In any case, we always have un = wn/mn → 0 uniformly on Ω . If wn → 0 uniformly on Ω , then (3.10)
causes a contradiction. If the latter case happens, a contradiction is arrived by using Eq. (3.5). Hence
(3.13) holds. Now we have deduced the positive upper and lower bounds of any positive solution
(wm, zm) to (3.2), which finishes the proof of the first part of our conclusion in Theorem 3.1.

Finally, we determine the asymptotic behavior of any positive solution (wm, zm) to (3.2) as
m → ∞. Since um → 0 uniformly on Ω and both wm and zm have positive upper and lower bounds
for any large m, by the standard regularity theory for elliptic equations and the embedding theorems,
it is clear to see that (wm, zm) → (w0, z0) in C2(Ω) as m → ∞, where (w0, z0) is a positive solution
of (2.1). By Lemma 2.4, we know (w0, z0) = (θ,1). This ends our proof of Theorem 3.1. �

We now present the proof of Theorem 1.1.

Proof of Theorem 1.1. We shall use the implicit function theorem to derive the result. For this pur-
pose, we set ρ = 1/m, and we rewrite (3.2) as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−d1�w = w

(
1 − ρw

k

)
− wz

ρw + 1
in Ω,

−d2�z = −θ z + wz

ρw + 1
in Ω,

∂ν w = ∂ν z = 0 on ∂Ω.

(3.14)

Theorem 3.1 shows that the system (3.14) is a regular perturbation of (2.1) with ρ → 0. Fur-
thermore, by the routine computation for the linearized problem at point (w∗, z∗) = (θ,1) for the
reaction–diffusion system (2.2) as in Lemma 3.1 of [32], it is noted that (w∗, z∗) is non-degenerate
in the sense that zero is not the eigenvalue of such linearized problem (but not locally linearly sta-
ble since ±i

√
θ is a pair of conjugate imaginary eigenvalues of this linearized problem). Then, by

the implicit function theorem and Theorem 3.1 again, we see that the constant positive solution is
the unique positive solution of (3.14) when ρ is small enough. Equivalently, the original system (1.4)
admits no non-constant positive solution if m is sufficiently large. This finishes the proof of Theo-
rem 1.1. �
4. Proof of Theorem 1.2

This section is devoted to the study of (1.6). First of all, we collect some existing results concerning
(1.6) obtained in [5] (see also [6]).

Firstly, we analyze the distribution of constant positive solutions of (1.6). As pointed out in [5], the
function

H(u) = (a − u)(1 + u)

m
− mu

1 + u

turns out to be very useful. Actually, it is easy to observe that (u, v) is a constant positive solution of
(1.6) if and only if u is a solution of H(u) = d in the interval (0,a). In what follows, we define d∗ by

d∗ = max
u∈[0,a] H(u).

Note also that

min
u∈[0,a] H(u) = H(a) = − am

1 + a
.
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By an elementary analysis of the curve d = H(u), which is essentially cubic, the following result
was given by Theorem 2.1 in [5].

Theorem 4.1. Let m2 = a−1(1 + m2) and

m1 =
{

m2 if m2 � 1,

a−1[3m2/3 − 1] < m2 if m2 > 1.

Then the following statements hold:

(i) The system (1.6) has no constant positive solution for d /∈ (−am/(1 + a),d∗], and at least one constant
positive solution for d ∈ (−am/(1 + a),d∗).

(ii) If 1 < m1 , then H(u) is strictly decreasing in (0,a), d∗ = a/m and (1.6) has a unique constant positive
solution if d ∈ (−am/(1 + a),d∗).

(iii) If m2 < 1, then H ′(u) changes sign exactly once, from positive to negative, in (0,a), d∗ > a/m and (1.6)
has no constant positive solution for d /∈ (−am/(1 + a),d∗], a unique constant positive solution for
d ∈ (−am/(1 + a),a/m] ∪ {d∗}, and exactly two constant positive solutions for d ∈ (a/m,d∗).

(iv) If m1 < 1 < m2 , H ′(u) changes sign exactly twice in (0,a), and there are ranges of d such that (1.6) has
three constant positive solutions.

It should be noted from (i) and (ii) of Theorem 4.1 that (1.6) has a unique constant positive solution
if and only d ∈ (−am/(1 + a),a/m) if m is properly large.

When a � 1, Theorem 1 in [3] (see also Theorem 2.3 of [5]) gives a complete understanding of the
solution of the associated dynamics of (1.6):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − d1�u = u(a − u) − muv

u + 1
in Ω × (0,∞),

vt − d2�v = v(d − v) + muv

u + 1
in Ω × (0,∞),

∂νu = ∂ν v = 0 on ∂Ω × (0,∞),

u(x,0) = u0(x) � 0, �≡ 0 in Ω,

v(x,0) = v0(x) � 0, �≡ 0 in Ω

(4.1)

as follows.

Theorem 4.2. Assume that a � 1. Then we have the following:

(i) If d ∈ (−am/(1 + a),a/m), the unique positive constant solution is globally attractive, i.e., any solution
of (4.1) converges to the constant positive solution as t → ∞.

(ii) If d � a/m, then (0,d) is globally attractive.
(iii) If d � −am/(1 + a), then (a,0) is globally attractive.

In fact the global stability result above can be extended to a > 1 as long as d > 0 is large or m > 0
is large by using the same technique of invariant rectangle as in [3]:

Theorem 4.3. Assume that a > 1 and d > (a + 1)2/(4m). Then (0,d) is globally attractive.

The proof of Theorem 4.3 is essentially the same as that of Theorem 1 in [3], thus we will not
provide details. We only point out that the condition a > 1 implies that the u-isocline mv = (a −
u)(1 + u) is not monotone as in [3]. However the condition d > (a + 1)2/(4m) makes the lowest
point of the v-isocline v = d + mu/(1 + u) is still higher than the highest point of the u-isocline
mv = (a − u)(1 + u). Hence comparison arguments and invariant rectangle technique can still be used
under these conditions.
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Since we are mainly interested in the case of large m in this paper, then for fixed d > 0, from
Theorems 4.2(ii) and 4.3, regardless of the value of a > 0, then (0,d) is globally asymptotically stable
provided that

m > max

{
(a + 1)2

4d
,

a

d

}
. (4.2)

In particular, when (4.2) is satisfied, (1.6) has no positive solutions, which proves the case of d > 0 in
Theorem 1.2. Hence in the remaining part of this section, we only consider the case of d � 0.

By the weak maximum principle (see, e.g., [30,32]), the simple analysis similar to that in
Lemma 3.5 of [41] shows any non-negative W 1,2(Ω) solution (u, v) of (1.6) satisfies u � a and
v � d + ma/(1 + a). Note that the argument there works for any number of dimension. Moreover, the
standard theory concludes that such non-negative solution (u, v) ∈ [C2(Ω)]2. Thus, by the well-known
strong maximum principle and the Hopf boundary lemma, one easily sees that any non-negative so-
lution (u, v) of (1.6) with u �≡ 0, v �≡ 0 satisfies

0 < u(x) < a and 0 < v(x) < d + ma

1 + a
. (4.3)

Therefore, we also know that (1.6) has no positive solution if d � −am/(1 + a) (see also Proposi-
tion 2.4 in [5]). From now on, unless otherwise specified, it is always assumed that

d > − ma

1 + a
. (4.4)

When m is bounded, by using the similar proof as that of Lemma 3.6 in [41], we have the following
estimates of lower bounds for positive solutions of (1.6).

Lemma 4.1. Suppose that d1,d2,a > 0, d � 0 and Ω are fixed, and 0 < m � M for some M > 0. Then,
there exists a positive constant C depending possibly on d1,d2,a,d, M and Ω , such that any positive solution
(u(x), v(x)) of (1.6) satisfies

u(x), v(x) � C, for x ∈ Ω.

In the following, we establish the estimates of any positive solution (u(x), v(x)) of (1.6) as m → ∞.
To achieve this goal, we use the same scaling (3.1) to (1.6) and then (1.6) becomes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−d1�w = w(a − u) − wz

u + 1
in Ω,

−d2�z = z(d − v) + wz

u + 1
in Ω,

∂ν w = ∂ν z = 0 on ∂Ω.

(4.5)

By using the system (4.5), we derive the following result:

Theorem 4.4. Suppose that N � 3, and d1,d2,a > 0, d � 0 and Ω are fixed. Let (um, vm) be a positive solution
of (1.6), then there exist two positive constants C and C, which depend only on d1,d2,a,d and Ω , such that

mum(x) � C, and C � mvm(x) � C, for x ∈ Ω. (4.6)

If in addition d < 0, then we have

C � mum(x),mvm(x) � C, for x ∈ Ω, (4.7)
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and

(mum,mvm) → (−d,a) in C2(Ω), as m → ∞.

Proof. In accordance with (4.3) and Lemma 4.1, it remains to prove the upper and lower bounds and
the asymptotic behavior of (mum,mvm) for m → ∞. In fact, the key point is to establish the upper
bound of vm . From now on, we denote (wm, zm) = (mum,mvm).

We first claim that maxΩ vm has upper bounds independent of m. Our strategy is that we first
derive the estimates for the norms of W 1,2 and W 2,2 of vm , then we use the Sobolev embedding
theorem to obtain the desired result.

To this end, we begin with establishing the bound of ‖vm‖L2(Ω) . Integrating the equations of um

and vm over Ω , respectively, we obtain

∫
Ω

um(a − um)dx =
∫
Ω

vm(vm − d)dx.

From (4.3) and the Hölder inequality, we see

∫
Ω

v2
m dx � a2|Ω| + |d|

∫
Ω

vm dx � a2|Ω| + |d||Ω|1/2
(∫

Ω

v2
m dx

)1/2

,

which implies that there exists a positive constant C∗ , such that

∫
Ω

vm dx � C∗ and
∫
Ω

v2
m dx � C∗. (4.8)

Here and in what follows, C∗ is determined only by d1,d2,a,d and Ω , and it can vary from line to
line.

Next we estimate the L2-norm of the gradient ∇vm . We assume that m � 2d1/d2 in the following
discussion. Multiplying zm and wm to the equations of wm and zm respectively, and then integrating,
we find

1

d1

∫
Ω

wmzm(a − um)dx − d

d2

∫
Ω

wmzm dx + 1

d2

∫
Ω

wmzm vm dx

= 1

d1

∫
Ω

wmz2
m

um + 1
dx + 1

d2

∫
Ω

w2
mzm

um + 1
dx.

Hence, it follows from (4.3) that

1

d1

∫
Ω

wmz2
m dx + 1

d2

∫
Ω

w2
mzm dx �

(
a

d1
− d

d2

)
(a + 1)

∫
Ω

wmzm dx + a + 1

d2

∫
Ω

wmzm vm dx. (4.9)

On the other hand, from the Cauchy–Schwarz inequality, we have

∫
Ω

wmzm dx =
∫
Ω

(wm)1/2zm · (wm)1/2 dx �
(∫

Ω

wmz2
m dx

)1/2(∫
Ω

wm dx

)1/2

. (4.10)
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Note that

−d2�vm = vm(d − vm) + wm vm

um + 1
in Ω, ∂ν vm = 0 on ∂Ω. (4.11)

Dividing (4.11) by vm and integrating over Ω , we have

−d2

∫
Ω

|∇vm|2
v2

m
dx =

∫
Ω

(d − vm)dx +
∫
Ω

wm

um + 1
dx,

from which, together with (4.8), it follows that

∫
Ω

wm dx � C∗.

As a consequence, (4.10) implies that

∫
Ω

wmzm dx � C∗
(∫

Ω

wmz2
m dx

)1/2

. (4.12)

Combining (4.12) and (4.9), we get

∫
Ω

wmz2
m dx � C∗

(∫
Ω

wmz2
m dx

)1/2

+ 1

2

∫
Ω

wmz2
m dx. (4.13)

Here, we used the restriction m � 2d1/d2 and the fact that

∫
Ω

wmzm vm dx = 1

m

∫
Ω

wmz2
m dx � d2

2d1

∫
Ω

wmz2
m dx. (4.14)

Therefore, we conclude from (4.9), (4.13) and (4.14) that

∫
Ω

wmz2
m dx � C∗ and

∫
Ω

w2
mzm dx � C∗. (4.15)

Next we derive an estimate for
∫
Ω

w2
m v2

m dx. Observe that

∫
Ω

w2
m v2

m dx =
∫
Ω

w2
mzm · vm

m
dx. (4.16)

(4.3) indicates that for any x ∈ Ω , if we assume m � 2d1/d2, then

vm(x)

m
� d

m
+ a

a + 1
� C∗.

Hence, combining the above inequality, (4.15) and (4.16), we can assert that

∫
Ω

w2
m v2

m dx � C∗. (4.17)
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Based on the above results, we are able to establish the estimates of the W 1,2-norm of vm . Indeed
we multiply Eq. (4.11) by vm and then integrate to derive

d2

∫
Ω

|∇vm|2 dx =
∫
Ω

[
vm(d − vm) + wmz2

m

m2(um + 1)

]
dx.

Thus, from (4.8) and (4.15), we can see that

∫
Ω

(|∇vm|2 + v2
m

)
dx � C∗.

For N = 1, the Sobolev embedding theorem shows that W 1,2(Ω) ↪→ C1/2(Ω). This implies that
maxΩ vm � C∗ . If N = 2, according to the embedding theorem W 1,2(Ω) ↪→ L p(Ω) for any 1 � p < ∞,
we have ∫

Ω

v p
m dx � C∗, for any fixed p � 1. (4.18)

As for N = 3, it follows from W 1,2(Ω) ↪→ L6(Ω) that

∫
Ω

v6
m dx � C∗. (4.19)

For the case of N = 2,3, applying (4.17), (4.18) and (4.19), we obtain that

∫
Ω

∣∣∣∣vm(d − vm) + wm vm

um + 1

∣∣∣∣
2

dx � 2
∫
Ω

∣∣vm(d − vm)
∣∣2

dx + 2
∫
Ω

∣∣∣∣ wm vm

um + 1

∣∣∣∣
2

dx

� d2C∗
(∫

Ω

v6
m dx

)1/3

+ C∗
(∫

Ω

v6
m dx

)2/3

+ C∗
∫
Ω

w2
m v2

m dx

� C∗. (4.20)

The standard L p theory for elliptic equations ensures that ‖vm‖W 2,2(Ω) � C∗ . So by the embedding
theorem: W 2,2(Ω) ↪→ Cα(Ω) for some α ∈ (0,1) if N = 2,3, we finally deduce that maxΩ vm � C∗
for N = 2,3. Up to this point, we have established the desired upper bound of vm when N � 3.

The remaining argument to the assertions (4.6) and (4.7) in Theorem 4.4 is quite similar to that in
the proof of Theorem 3.1. Actually, from the second equation of (4.5), we find that

−d2�zm + (|d| + C∗)zm > 0 in Ω, ∂ν zm = 0 on ∂Ω.

Then similar analysis shows that there exist two positive constants C and C , which depend only on
d1,d2,a,d and Ω , such that

mum(x) � C, and C � mvm(x) � C, for x ∈ Ω.

Furthermore, in the case of d < 0, we can also obtain the positive lower bound for mum , that is, for
the same chosen C and C as above, the following assertion holds:

C � mum(x),mvm(x) � C, for x ∈ Ω.
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When d < 0 holds, by use of (4.7), it is easy to determine the asymptotic behavior of positive
solution (wm, zm) to (4.5) as m → ∞. In fact, since um, vm → 0 uniformly on Ω as m → ∞, and both
wm and zm have positive upper and lower bounds for any large m, we can use the standard regularity
theory for elliptic equations and the embedding theorems to see that (wm, zm) → (w0, z0) in C2(Ω)

as m → ∞, where (w0, z0) is a positive solution of

⎧⎨
⎩

−d1�w = aw − wz in Ω,

−d2�z = dz + wz in Ω,

∂ν w = ∂ν z = 0 on ∂Ω.

(4.21)

If d � 0, it is obvious that (4.21) has no positive solution; while for d < 0, (4.21) has a unique positive
solution (w0, z0) = (−d,a) by Lemma 2.4. Thus, we finish the proof of Theorem 4.4. �
Proof of Theorem 1.2 for d < 0d < 0d < 0. Now, with the help of Theorem 4.4, we can proceed the proof of
Theorem 1.2 for the case d < 0 in the same way as that of Theorem 1.1. Indeed, we let ρ = 1/m, and
thus (4.5) is changed into the equivalent system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−d1�w = w(a − ρw) − wz

ρw + 1
in Ω,

−d2�z = z(d − ρz) + wz

ρw + 1
in Ω,

∂ν w = ∂ν z = 0 on ∂Ω.

We omit the details of the proof. �
It should be pointed out that when d = 0, the function mum(x), which was defined in Theorem 4.4,

has no positive lower bound as m goes to infinity. This fact can be directly observed by the use of
the distribution of the (unique) positive constant solution of (1.6). Indeed, in this special case, let us
denote by (u∗, v∗) the unique positive constant solution of (1.6). Then, it is obvious that

a = u∗ + mv∗

u∗ + 1
and

mu∗

u∗ + 1
= v∗,

from which we have

(
a − u∗)(u∗ + 1

)2 = m2u∗.

Hence u∗ → 0, and in turn, m2u∗ → a as m → ∞.
Motivated by the simple observation above, we may use a different scaling:

w̃ = m2u and z = mv (4.22)

to derive the possible positive lower bound for this w̃ .
According to the scaling (4.22), the original system (1.6) can be rewritten as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−d1�w̃ = w̃(a − u) − w̃z

u + 1
in Ω,

−d2�z = z

m

(
w̃

u + 1
− z

)
in Ω,

∂ν w̃ = ∂ν z = 0 on ∂Ω.

(4.23)

In the sequel, we are ready to establish the positive lower bound for w̃ defined in (4.22), where (u, v)

is a positive solution of (1.6). That is, we can claim that
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Theorem 4.5. Suppose that N � 3 and d = 0, and let d1,d2,a > 0 and Ω be fixed. Let (um, vm) be a positive
solution of (1.6), then there exist two positive constants C and C , which depend only on d1,d2,a and Ω , such
that

C � m2um,mvm � C, for x ∈ Ω. (4.24)

Moreover,

(
m2um,mvm

) → (a,a) in C2(Ω), as m → ∞. (4.25)

Proof. First we prove (4.24). From the statements of (4.3), Lemma 4.1 and Theorem 4.4, we only need
to verify the positive lower and upper bounds for m2um as m → ∞.

Since it has been shown that um < a and C � zm � C , where C and C are the same as those in
Theorem 4.4, one can use the first equation in (4.23) and Lemma 2.2 to assert that there is a positive
constant C0, depending only on d1,d2,a and Ω , such that w̃m = m2um satisfies

sup
Ω

w̃m � C0 inf
Ω

w̃m. (4.26)

Suppose that w̃ has no finite upper bound, then it follows from (4.26) that we can find a subsequence
of positive solutions (um, vm) of (1.6), denoted by itself, such that w̃m → ∞ uniformly over Ω when
m → ∞. On the other hand, we integrate the equation of zm to see that

∫
Ω

zm

(
w̃m

um + 1
− zm

)
dx = 0. (4.27)

As zm � C , (4.27) reaches a contradiction. Then, our analysis shows the existence of the desired posi-
tive upper bound for w̃m . In a similar manner, together with (4.26) and (4.27), it is easy to obtain the
positive lower bound for w̃m .

In what follows, we determine the asymptotic behavior of (w̃m, zm) as m → ∞. By the a priori
estimates (4.24), from the standard regularity theory for elliptic equations and embedding theorems,
passing up to a subsequence, we may assume that (w̃m, zm) → (w̃0, z0) in C2(Ω) as m → ∞. It is
easily seen that z0 must be a positive constant and w̃0 > 0 on Ω . Moreover, as um = m−2 w̃m → 0
uniformly on Ω when m → ∞, from (4.23), it follows that (w̃0, z0) satisfies

−d1�w̃0 = (a − z0)w̃0 in Ω, ∂ν w̃0 = 0 on ∂Ω, (4.28)

and ∫
Ω

(w̃0 − z0)dx = 0. (4.29)

Eq. (4.28) indicates z0 ≡ a and w̃0 is a positive constant. Thus, w̃0 ≡ z0 = a by (4.29). The proof of
Theorem 4.5 is now complete. �

Finally, we finish the proof of Theorem 1.2 in the case of d = 0 by applying a different argument,
which will also heavily rely on the implicit function theorem. Our main idea comes from [31,33].

Proof of Theorem 1.2 for d = 0d = 0d = 0. First we make a decomposition:

z = z1 + z2 with
∫
Ω

z1 dx = 0 and z2 ∈ R1+,
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where R1+ represents the set of all positive real numbers. As before, we denote ρ = 1/m. We also
introduce the Banach spaces:

W 2,2
ν (Ω) = {

g ∈ W 2,2(Ω)
∣∣ ∂ν g = 0 on ∂Ω

}
, L2

0(Ω) =
{

g ∈ L2(Ω)

∣∣∣ ∫
Ω

g dx = 0

}
.

Then we observe that finding positive solutions of (1.6) is equivalent to solving the following prob-
lem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1�w̃ + w̃
(
a − ρ2 w̃

) − w̃(z1 + z2)

ρ2 w̃ + 1
= 0 in Ω, ∂ν w̃ = 0 on ∂Ω,

d2�z1 + ρ(z1 + z2)

[
w̃

ρ2 w̃ + 1
− (z1 + z2)

]
= 0 in Ω, ∂ν z1 = 0 on ∂Ω,∫

Ω

(z1 + z2)

[
w̃

ρ2 w̃ + 1
− (z1 + z2)

]
dx = 0,

z2 > 0, w̃ > 0 in Ω.

(4.30)

It is also noted that (w̃, z1, z2) = (ρ−2u∗,0,ρ−1 v∗) is a solution of (4.30) for all small ρ > 0. Here,
(u∗, v∗) is the unique constant positive solution of (1.6) for large m. In addition, (ρ−2u∗,0,ρ−1 v∗) →
(a,0,a) as ρ → 0+ .

To prove the claimed result, we also need to introduce some more notations as follows. For any
g ∈ L2(Ω), we also define

P(g) = g − 1

|Ω|
∫
Ω

g dx,

i.e., P is the projective operator from L2(Ω) to L2
0(Ω). We define

F (ρ, w̃, z1, z2) = ( f1, f2, f3)(ρ, w̃, z1, z2),

with

f1(ρ, w̃, z1, z2) = d1�w̃ + w̃
(
a − ρ2 w̃

) − w̃(z1 + z2)

ρ2 w̃ + 1
,

f2(ρ, w̃, z1, z2) = d2�z1 + ρP
{
(z1 + z2)

[
w̃

ρ2 w̃ + 1
− (z1 + z2)

]}
,

f3(ρ, w̃, z1, z2) =
∫
Ω

(z1 + z2)

[
w̃

ρ2 w̃ + 1
− (z1 + z2)

]
dx.

Then

F : W 2,2
ν (Ω) × (

L2
0(Ω) ∩ W 2,2

ν (Ω)
) × R1+ → L2(Ω) × L2

0(Ω) × R1

is a well-defined mapping. It is clear that (w̃, z1, z2) is a solution of (4.30) if and only if
F (ρ, w̃, z1, z2) = (0,0,0). Moreover, (4.30) has a unique solution (w̃, z1, z2) = (a,0,a) when ρ = 0
from the proof of Theorem 4.5. Clearly F is a continuously differentiable mapping, and its partial
derivative at the point (0,a,0,a) with respect to the last three arguments is
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Ψ ≡ D(w̃,z1,z2) F (0,a,0,a),

Ψ : W 2,2
ν (Ω) × (

L2
0(Ω) ∩ W 2,2

ν (Ω)
) × R1 → L2(Ω) × L2

0(Ω) × R1,

with

Ψ (h,k, τ ) =
( d1�h − a(k + τ )

d2�k
a
∫
Ω

(h − k − τ )dx

)
.

We next claim that Ψ is an isomorphism. Assume that Ψ (h,k, τ ) = (0,0,0), then it is clear that
k ≡ 0 since the operator −� subject to homogeneous Neumann boundary condition over ∂Ω is in-
vertible from (L2

0(Ω) ∩ W 2,2
ν (Ω)) to L2

0(Ω). Thus, as

−d1�h = −aτ in Ω, ∂νh = 0 on ∂Ω

and τ is a constant, one can integrate this equation over Ω to find τ = 0, and so h must also be
a constant. Hence we get h ≡ 0 by the integral equation that h satisfies. This verifies the injectivity
of Ψ .

On the other hand, for a given (g1, g2, g3) ∈ L2(Ω) × L2
0(Ω) × R1, one can also easily check that

Ψ (h,k, τ ) = (g1, g2, g3) has a unique solution, which implies that Ψ is surjective. To see this, we
need a well-known and simple fact: for a fixed g ∈ L2

0(Ω) and a fixed constant c0, the following
elliptic equation:

−d1�h = g in Ω, ∂νh = 0 on ∂Ω, and
∫
Ω

h dx = c0

has a unique solution. Our analysis has confirmed that Ψ is an isomorphism.
Now, by the implicit function theorem, there exist positive constants ρ0 and δ0 such that, for

each ρ ∈ (0,ρ0], (ρ−2u∗,0,ρ−1 v∗) is the unique solution of F (ρ, w̃, z1, z2) = 0 in Bδ0(a,0,a), where
Bδ0(a,0,a) is the ball in W 2,2

ν (Ω)×(L2
0(Ω)∩W 2,2

ν (Ω))×R1 centered at (a,0,a) with radius δ0. Taking
smaller ρ0 and δ0 if necessary, by use of (4.25) of Theorem 4.5 we can conclude that (4.30) only has
the solution (ρ−2u∗,0,ρ−1 v∗) when ρ is small enough, which equivalently says that (u∗, v∗) is the
unique positive solution of the original system (1.6) provided that m is sufficiently large. The proof
for Theorem 1.2 is now complete. �
5. Global bifurcations in diffusive predator–prey systems

The reaction–diffusion systems with predator–prey (or consumer–resource, activator–inhibitor) in-
teractions possess rich spatiotemporal dynamics. The bifurcation of spatial nonhomogeneous steady
state solutions from homogeneous ones is one of known mechanisms of pattern formation, hence it
has been considered by many authors [1,4–7,14,15,25,28,37–41]. One famous example of bifurcations
is the Turing bifurcation in which a diffusion coefficient is used as bifurcation parameter (see for ex-
ample [14,28,37]), but recent studies show that other parameters can also generate bifurcations when
there is no restriction on the diffusion coefficients (see [15,41]). The global properties of the bifur-
cating branches have also been considered (see [1,4,6,38]), following the celebrated global bifurcation
theorem of Rabinowitz [34]. In particular, it was shown that in some cases, the branches of non-trivial
steady state solutions are unbounded (see [14,15,28]).

It is well known that a priori estimates are important for the global bifurcations as well as topo-
logical degree calculations. Here we apply our main result in this paper to the global bifurcation of
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solutions to (1.4), which recently has been considered in [41]. Following [41], we consider the one-
dimensional problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−d1uxx = u

(
1 − u

k

)
− muv

1 + u
, x ∈ (0, �π),

−d2 vxx = −θ v + muv

1 + u
, x ∈ (0, �π),(

ux(x), vx(x)
) = 0, x = 0, �π.

(5.1)

Here we assume that d1,d2, θ > 0 and k > 1. We remark that our results can be extended to higher
dimensional domain Ω as long as all eigenvalues of −� in W 1,2(Ω) are simple ones.

Recall that (5.1) has a constant positive steady state solution (λ, vλ) which is defined by

λ = θ

m − θ
and vλ = (k − λ)(1 + λ)

km
, (5.2)

if m � θ(1 + k)/k. We consider the bifurcation of non-constant solutions of (5.1) from the branch of
the constant solutions {(m, u, v) = (m, λ, vλ): m > θk/(k − 1)}. It is known that no bifurcation occurs
for m ∈ (θ(1 + k)/k, θk/(k − 1)] (see [41] Theorem 2.3). Notice that m = θk/(k − 1) is equivalent to
λ = λH

0 = (k−1)/2 which is the primary Hopf bifurcation point where a spatial homogeneous periodic
orbit bifurcates from constant steady states. Define

A(λ) = λ(k − 1 − 2λ)

k(1 + λ)
, C(λ) = k − λ

k(1 + λ)
, h(λ) = λ2(k − 1 − 2λ)2

k(1 + λ)(k − λ)
, (5.3)

and

p = p±(λ) :=
d2 A(λ) ±

√
C(λ)(d2

2h(λ) − 4d1d2θ)

2d1d2
.

Then the following bifurcation result was proved in [41]:

Theorem 5.1. Suppose that the constants d1,d2,m, θ > 0 and k > 1 satisfy

d1

d2
<

h(λ#)

4θ
, (5.4)

where h(λ) is defined in (5.3) and λ# is the unique maximum point of h(λ) for λ ∈ (0, (k − 1)/2). Define

�̃n,+ = n√
max p+(λ)

, �̃n,− = n√
min p−(λ)

.

If for some n ∈ N, � ∈ (�̃n,+, �̃n,−) but except a finitely many values of �, there exist exactly two points λS
n,±

with λS
n,− < λS

n,+ such that p±(λS
n,±) = n2/�2 . Then there is a smooth curve Γn,± of positive solutions of

(5.1) bifurcating from (λ, u, v) = (λS
n,±, λS

n,±, vλS
n,± ), with Γn,± contained in a global branch Cn,± of the non-

constant positive solutions of (5.1). Moreover:

1. Near (λ, u, v) = (λS
n,±, λS

n,±, vλS
n,± ), Γn,± = {(λ(s), u(s), v(s)): s ∈ (−ε, ε)}, where u(s) = λS

n,± +
san cos(nx/�)+ sψ1(s), v(s) = vλS

n,± + sbn cos(nx/�)+ sψ2(s) for s ∈ (−ε, ε) for some C∞ smooth func-

tions λ,ψ1,ψ2 such that λ(0) = λS
n,± and ψ1(0) = ψ2(0) = 0, and (an,bn) is an associated eigenvector

of the linearized equation.
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2. Either Cn,± contains another (λS
j,±, λS

j,±, vλS
j,±

), or the projection of Cn,± onto λ-axis contains the interval

(0, λS
j,±).

An application of Theorem 1.1 eliminates one of the two alternatives in the last statement of
Theorem 5.1:

Theorem 5.2. Suppose that all conditions in Theorem 5.1 are satisfied, then the closure of each component Cn,±
of the set of non-constant solutions of (5.1) is bounded in the space [0, (k − 1)/2] × [W 1,2((0, �π))]2 , and it
contains another (λS

j,±, λS
j,±, vλS

j,±
). Hence each Cn,± is a bounded “loop” containing at least two bifurcation

points.

Notice that λ = θ/(m − θ) hence m → ∞ is equivalent to λ → 0+ , then the proof is clear from the
a priori estimates in Lemma 3.1 and the non-existence result in Theorem 1.1. Note that our result does
not imply Cn,+ = Cn,− .

For the dynamics of the reaction–diffusion system corresponding to (5.1) or (1.4), our main result
in this paper shows that the constant one is the unique steady state which is unstable when m is
large. It is known that the system possesses a spatial homogeneous periodic orbit for large m, and
the periodic orbit also has some asymptotic profile (see [12]). In [41], it was shown that many Hopf
bifurcations can generate spatial nonhomogeneous periodic orbits. We conjecture that when m is
large, the spatial homogeneous one is the unique periodic orbit for the system.

We also remark that for the system (1.6), in the case of d � 0, a similar bifurcation analysis can be
carried out, so our non-existence result again implies the boundedness of the global branches.
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