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Let C p(X) be the space of all continuous real-valued functions on a space X , with the
topology of pointwise convergence. In this paper we show that C p(X) is not domain
representable unless X is discrete for a class of spaces that includes all pseudo-radial
spaces and all generalized ordered spaces. This is a first step toward our conjecture that
if X is completely regular, then C p(X) is domain representable if and only if X is discrete.
In addition, we show that if X is completely regular and pseudonormal, then in the
function space C p(X), Oxtoby’s pseudocompleteness, strong Choquet completeness, and
weak Choquet completeness are all equivalent to the statement “every countable subset
of X is closed”.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A topological space is domain representable if it is homeomorphic to the subspace of maximal elements of a do-
main, topologized with the Scott topology. (See Section 2 for definitions.) A wide range of topological spaces are domain
representable—for example, any completely metrizable space, the Sorgenfrey line, the Michael line, and any space of ordi-
nals. A central problem in domain representation theory is to determine which spaces are domain representable.

Domain representability is a kind of Baire-category completeness property that lies toward the top of the hierarchy
of strengthenings of the Baire space property (that any countable intersection of dense open sets must be dense). For
example, every subcompact regular T3-space [4] is domain-representable [2], every domain-representable space is strongly
Choquet complete [7], and every strongly Choquet complete space is a Baire space. (See Section 4 for definitions related to
completeness.)

For any space X , let C p(X) be the set of all continuous, real-valued functions on X , equipped with the pointwise con-
vergence topology. In this paper, we investigate domain representability and strong completeness properties of C p(X).

For completely regular T1-spaces, C p(X) is a dense subspace of the full topological product R
X . The literature shows that

while the full product space R
X has Baire-category completeness properties like subcompactness [4] and strong Choquet

completeness, it is difficult for the subspace C p(X) to have such properties [5,6,9,11]. Starting with work by Lutzer and
McCoy [5], Pytkeev and van Douwen gave restrictive necessary and sufficient conditions on X for C p(X) to be a Baire
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space [9,11]. Lutzer and McCoy characterized spaces X for which C p(X) is weakly Choquet complete [5] as being the spaces
in which each countable set is closed. More recently, starting with ideas of van Mill and Lutzer, Tkachuk [6] proved that if
X is completely regular then C p(X) is never subcompact, unless X is discrete (in which case C p(X) = R

X ).
A natural question asks for a characterization of those spaces X whose function space C p(X) is domain representable. In

the light of Tkachuk’s result on subcompact C p(X) we make the following conjecture, which would be a strengthening of
Tkachuk’s theorem:

Conjecture. If X is a completely regular T1-space, then C p(X) is domain representable if and only if X is discrete.

In this paper, we prove a special case of our conjecture, namely

Main Theorem. Suppose that, for the completely regular space X, there is a cardinal κ such that every subset S ⊆ X with |S| < κ is
closed and such that X contains a transfinite sequence {y(α): α < κ} that converges to some point of X −{y(α): α < κ}. Then C p(X)

is not domain representable. Consequently, for a completely regular pseudo-radial T1-space X (and hence for any generalized ordered
space X ), the following are equivalent:

(a) C p(X) is domain representable;
(b) X is discrete (so that C p(X) = R

X );
(c) C p(X) is Scott-domain representable.

An easy consequence of our result (taking κ = ω) is that C p(X) is not domain representable if X is first-countable and
not discrete. A slightly more complicated consequence is that if X = [0,ω1] is the generalized ordered space in which each
countable ordinal is isolated and ω1 has its usual neighborhoods, then C p(X) is not domain representable. This second
example puts limits on how far Tkachuk’s result about subcompact C p(X) can be generalized, because it shows that the
function space C p(X) can be strongly Choquet complete when X is not discrete. See Example 4.2.

Our paper is organized as follows. Section 2 presents definitions and preliminary results. Section 3 gives the proof of the
Main Theorem and Section 4 discusses the equivalence of Oxtoby’s pseudocompleteness, weak Choquet completeness, and
strong Choquet completeness for function spaces C p(X) where X is pseudonormal and completely regular. See Section 4 for
definitions.

Throughout the paper, all spaces will be at least T3 and R will denote the usual set of real numbers.

2. Definitions and preliminary results

We will think of cardinal numbers as initial ordinals, and for any set S , we let |S| denote the cardinality of S . If α is an
ordinal, then |α| � α.

Basic neighborhoods of a function f ∈ C p(X) have the form O ( f , S, ε) := {g ∈ C p(X): for all x ∈ S, g(x) ∈ ( f (x) − ε,

f (x) + ε)} where S ⊆ X is finite and ε > 0.
Given a partially ordered set (P ,�), a nonempty set D ⊆ P is bounded if there is some p ∈ P with d � p for each d ∈ D .

For a nonempty bounded subset D ⊆ P , sup(D) is an upper bound for D in P that is less than or equal to every upper
bound for D . Note that sup(D) may, or may not, exist in P . Throughout this paper, if a poset (P ,�) is given and D is a
nonempty subset of P , we will write sup(D) ∈ P to mean that the supremum of D exists in P . A nonempty set D ⊆ P
is directed if, for each pair d1,d2 ∈ D , some d3 ∈ D has d1,d2 � d3. A directed complete partial order (dcpo) is a partially
ordered set with the property that if D ⊂ P is nonempty and directed then sup(D) exists in P . If p,q are elements of a
partially ordered set, we write p � q to mean that if a directed set D has q � sup(D) then some d ∈ D has p � d. We
define ⇑(p) = {q ∈ P : p � q} and ⇓(q) = {p ∈ P : p � q}. A partially ordered set is continuous if for each q ∈ P , the set
⇓(q) is directed and has q = sup(⇓(q)). A domain is a continuous dcpo, and a Scott domain is a continuous dcpo P with the
additional property that if p,q, r ∈ P and p,q � r, then sup{p,q} ∈ P .

We will need three lemmas about domains. The first is called the Interpolation Lemma and appears in [8].

Lemma 2.1. Suppose (P ,�) is a domain and p, r ∈ P have p � r. Then for some q ∈ P , p � q � r.

Lemma 2.2. If p,q, r are points in a domain P with p ∈ ⇑(q) ∩ ⇑(r) then there is some s ∈ P with p ∈ ⇑(s) ⊆ ⇑(q) ∩ ⇑(r) and
q, r � s � p.

Proof. We have q, r ∈ ⇓(p) so that because ⇓(p) is directed, some s1 ∈ ⇓(p) has q, r � s1 � p. Now use the Interpolation
Lemma to find s ∈ P with s1 � s � p. �
Lemma 2.3. Suppose P is a domain and E ⊆ P has the property that

⋂{⇑(e): e ∈ E} �= ∅. Then there is a set E∗ ⊆ P with:

(a) E ⊆ E∗;
(b) E∗ is directed;
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(c) for each e ∈ E∗ some ê ∈ E∗ has e � ê;
(d) |E∗| = |E| · ω.

Proof. Fix g ∈ ⋂{⇑(e): e ∈ E}. In this proof, we will apply the following statement recursively. Start with some F ⊆ E and
the fixed g ∈ ⋂{⇑(p): p ∈ F }. Then for each f1, f2 ∈ F we have g ∈ ⇑( f1) ∩ ⇑( f2) and we apply Lemma 2.2 to obtain
r1( f1, f2) ∈ P with

g ∈ ⇑(
r1( f1, f2)

) ⊆ ⇑( f1) ∩ ⇑( f2)

and with f1, f2 � r1( f1, f2) � g . Recursively apply Lemma 2.1 to find rk( f1, f2) ∈ P with

f1, f2 � r1( f1, f2) � r2( f1, f2) � · · · � g

and let R g(F ) = F ∪ {rk( f1, f2): 1 � k < ω and f1, f2 ∈ F }.
Now let E1 be the set E given in the statement of Lemma 2.3. Let E2 = R g(E1). Note that g ∈ ⇑(e) for each e ∈ E2 and

that |E2| = |E1| · ω. Recursively define Ek+1 = R g(Ek) and then let E∗ = ⋃{Ek: 1 � k < ω}. Clearly E∗ is directed and has
the other properties required by the lemma. �

In a domain P , the collection {⇑(p): p ∈ P } is a base for the Scott topology on the set P . The subspace max(P ) consisting
of all maximal elements of P has a special role to play. We say that a topological space Y is domain representable if and only
if there is some domain P such that Y is homeomorphic to the subspace max(P ), endowed with the relative Scott topology.
In such a case, we often abuse notation and write Y = max(P ). In particular, in Section 3 we will consider situations where
C p(X) is a domain-representable function space and we will write C p(X) = max(P ) where P is some domain.

The following result must be well-known but we could not find it in the literature, nor could several domain theorists
whom we consulted.

Proposition 2.4. For any set X , the topological product R
X is Scott-domain representable.

Proof. Because the proof is the natural one, we only sketch it. We will say that a function φ is useful if the domain of φ is
the set X and for each x ∈ X, φ(x) is either the entire set R or is a closed, bounded interval [ax,bx] ⊆ R, with ax = bx being
allowed. Let B(φ) = Π{φ(x): x ∈ X} and let P := {B(φ): φ is useful}. Let � be reverse-inclusion in the set P . Then (P ,�)

is a poset and a set D ⊆ P is directed if and only if for each B(φ1), B(φ2) ∈ D, B(φ1) ∩ B(φ2) contains some B(φ3) ∈ D ,
and for any directed set D, sup(D) = B(ψ) where ψ(x) := ⋂{φ(x): φ ∈ D} for each x ∈ X . One proves that B(φ) � B(ψ) if
and only if ψ(x) ⊆ IntR(φ(x)) for each x ∈ X and the set Restrict(φ) := {x ∈ X: φ(x) �= R} is finite. Maximal elements of P
have the form B(φ) where for all x ∈ X, φ(x) is a singleton. Consequently there is a natural 1–1, onto function from R

X to
max(P ) that sends f ∈ R

X to B(φ f ) given by φ f (x) = { f (x)} for all x ∈ X . Because φ � φ f means that Restrict(φ) is finite,
this mapping is a homeomorphism. �

Let κ be a limit ordinal. A transfinite sequence in a set Y is a function σ : [0, κ) → Y . We often identify the transfinite
sequence with a listing of its points, writing σ = {y(α): α < κ}. To say that the transfinite sequence {y(α): α < κ} converges
to the point z ∈ X means that for each neighborhood U of z, there is some β < κ with the property that y(α) ∈ U for each
α ∈ [β,κ). It is easy to show that if {y(α): α < κ} converges to z ∈ X and if L ⊆ [0, κ) is cofinal in κ , then {y(α): α ∈ L}
also converges to z. Consequently, we may replace any transfinite sequence by a sub-sequence indexed by a regular cardinal.
It is also easy to see that if {y(α): α < κ} is a transfinite sequence converging to z ∈ X −{y(α): α < κ}, where κ is a regular
infinite cardinal, then some subsequence of distinct points converges to z.

A space X is pseudo-radial provided a set Y ⊆ X fails to be closed if and only if there is a transfinite sequence σ in Y
and a point z ∈ X − Y to which σ converges (see [1]). First-countable spaces and generalized ordered spaces are well-known
examples of pseudo-radial spaces. Recall that a generalized ordered space is a triple (X,<, τ ) where < is a linear ordering
of X and τ is a Hausdorff topology on X such that each point of X has a τ -neighborhood base consisting of order-convex
(possibly degenerate) sets. If τ is the usual open interval topology of the linear order, then (X,<, τ ) is a linearly ordered
topological space (LOTS). Čech proved that topological space is a GO-space if and only if it can be embedded topologically
into some LOTS.

3. Proof of the Main Theorem

In this section, we prove the Main Theorem announced in the Introduction. To that end, consider a completely regular
space X and a cardinal κ such that subsets of X of size smaller than κ are closed and discrete, and we suppose that X also
contains a non-trivial transfinite sequence {y(α): α < κ} that converges to some point z ∈ X − Y , where Y = {y(α): α < κ}.
We want to show that C p(X) is not domain representable. For contradiction, suppose that C p(X) is domain representable,
say C p(X) = max(P ) where (P ,�) is some domain. Our proof will produce a function h : X → X that must be continuous,
and yet cannot be continuous.
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Claim 1. We claim that κ > ω. If κ = ω then our transfinite sequence is a simple infinite sequence {y(n): n < ω} that
converges to z ∈ X − Y . For each n � 1, let

Gn := {
g ∈ C p(X): for some i, j > n,

∣∣g(i) − g( j)
∣∣ > 1

}
.

Then Gn is a dense open set in C p(X) and
⋂{Gn: 1 � n < ω} = ∅. That is impossible because C p(X), being domain repre-

sentable, is a Baire space [7]. Therefore κ > ω and Claim 1 is established.
We will say that a pair (λ, C) is acceptable if

(1) λ is a limit ordinal with ω � λ < κ ;
(2) C ⊆ P is a directed set;
(3) |C | � |λ|;
(4) if p ∈ C then some p′ ∈ C has p � p′;
(5) if f ∈ max(P ) has f ∈ ⋂{⇑(p): p ∈ C} then f (z) = 0 and for some α � λ, f (y(α)) = 1.

Let Ψ be the collection of all acceptable pairs, and partially order Ψ by the rule that (λ1, C1) � (λ2, C2) if and only if
either (λ1, C1) = (λ2, C2) or else λ1 < λ2 and C1 ⊆ C2.

Claim 2. Ψ �= ∅.
To prove Claim 2 we will exhibit an acceptable pair (ω, C). First note that, in the light of Claim 1, the point y(ω) belongs

to the transfinite sequence. Because X is completely regular, there is some f0 ∈ C p(X) with f0(y(ω)) = 1 and f0(z) = 0.
Let S0 = {y(ω), z} and let ε0 = 1. The basic neighborhood O ( f0, S0, ε0) in C p(X) is a relatively open subset of max(P )

so there is some p0 ∈ P with f0 ∈ ⇑(p0) ∩ max(P ) ⊆ O ( f0, S0, ε0). Then there is a finite set S1 and some ε1 ∈ (0, 1
2 )

with f0 ∈ O ( f0, S1, ε1) ⊆ ⇑(p0) ∩ max(P ). Necessarily S0 ⊆ S1. Because f0 ∈ O ( f0, S1, ε1) we may find p1 ∈ P with f0 ∈
⇑(p1) ∩ max(P ) ⊆ O ( f0, S1, ε1) ⊆ ⇑(p0). It follows from Lemma 2.2 that we may assume p0 � p1. Continue this process
recursively to obtain finite sets S0 ⊆ S1 ⊆ · · · ⊆ Sk and positive numbers εk < 2−k and elements p0 � p1 � · · · � pk ∈ P
with

f0 ∈ ⇑(pk+1) ∩ max(P ) ⊆ O ( f0, Sk+1, εk+1) ⊆ ⇑(pk) for each k < ω.

Let C = {pk: k < ω}. It is clear that (ω, C) satisfies the first four parts of the definition of an acceptable pair. To verify
the fifth, suppose f ∈ max(P ) = C p(X) has f ∈ ⋂{⇑(pk): k < ω}. Then f ∈ ⇑(pk) ∩ max(P ) ⊆ O ( f0, Sk, εk) for each k so
that z ∈ S0 ⊆ Sk yields | f (z) − f0(z)| < εk < 2−k showing that f (z) = f0(z) = 0. Similarly, f (y(ω)) = f0(y(ω)) = 1. Hence
(ω, C) ∈ Ψ and Claim 2 holds.

Because (Ψ,�) is a nonempty poset, Zorn’s lemma provides a maximal chain Φ ⊆ Ψ . Let πi be projection onto the
ith coordinate for i = 1,2. Then π1[Φ] = {λ: some element of Φ has first coordinate λ} which is a subset of [0, κ). Let
μ = sup(π1[Φ]). Then μ � κ . Because Φ is a chain, each λ ∈ π1[Φ] is the first coordinate of exactly one member of Φ , and
we denote that member by (λ, Cλ). Consequently, |Φ| � |μ| � μ � κ . Also, let D = ⋃{Cλ: (λ, Cλ) ∈ Φ}. Then D is a directed
subset of P , so sup(D) ∈ P . Choose any maximal element g0 ∈ max(P ) = C p(X) with sup(D) � g0. Note that for each d ∈ D ,

some d̂ ∈ D has d � d̂ � sup(D) � g0, so that g0 ∈ ⋂{⇑(d): d ∈ D}.
Claim 3. We claim that μ = κ . If not, then μ < κ so that |μ| � μ < κ = |κ |. From above g0 ∈ ⇑(d) ∩ max(P ) for each

d ∈ D . That yields a finite set Td ⊆ X and a positive δd with g0 ∈ O (g0, Td, δd) ⊆ ⇑(d) ∩ max(P ) for each d ∈ D . We may
assume that z ∈ Td for all d ∈ D . Let T = ⋃{Td: d ∈ D}. Being a union of at most |μ| many finite sets, |T | � |μ| < κ so that
T is closed and discrete.

Because κ is a regular uncountable cardinal and μ < κ , we know that μ + ω < κ . We know that |T | < κ so we
may choose some γ ∈ [μ + ω,κ) with y(γ ) /∈ T . Because y(γ ) /∈ T , complete regularity of X gives a continuous func-
tion g1 ∈ C p(X) with g1(x) = g0(x) for each x ∈ T and g1(y(γ )) = 1. Because g1(x) = g0(x) for all x ∈ T , we know that
g1 ∈ O (g0, Td, δd) ⊆ ⇑(d) for each d ∈ D .

Let R0 = {y(γ ), z} and η0 = 1. Consider the relatively open set O (g1, R0, η0). We may find q0 ∈ P with g1 ∈ ⇑(q0) ∩
max(P ) ⊆ O (g1, R0, η0). Following the pattern in Claim 1, we recursively find finite sets Rk , positive numbers ηk < 2−k , and
points qk ∈ P with q0 � q1 � · · · � qk , R0 ⊆ R1 ⊆ · · · ⊆ Rk and g1 ∈ ⇑(qk) ∩ max(P ) ⊆ O (g1, Rk, ηk) ⊆ ⇑(qk−1) whenever
k � 1. We note that any g ∈ max(P ) ∩ ⋂{⇑(qk): k < ω} has g(z) = g0(z) = 0 and g(y(γ )) = g0(y(γ )) = 1. Let E = D ∪
{qk: k < ω} and note that g1 ∈ ⋂{⇑(e): e ∈ E}. Now apply Lemma 2.3 to find a directed set E∗ ⊆ P containing E , with
|E∗| = |E| = |D| = |μ| = |μ+ω|. Therefore (μ+ω, E∗) ∈ Ψ and (μ+ω, E∗) is strictly above every (λ, Cλ) ∈ Φ , contradicting
the fact that Φ is a maximal chain in (Ψ,�). Therefore, Claim 3 is established.

At this stage of the proof, we have constructed the directed set D = ⋃{Cλ: (λ, Cλ) ∈ Φ} and we know that {λ < κ:
for some C, (λ, C) ∈ Φ} is cofinal in [0, κ). Then sup(D) ∈ P because P is a domain. Choose any h ∈ max(P ) = C p(X) that
has sup(D) � h. Then h ∈ ⋂{⇑(d): d ∈ D} ⊆ ⋂{⇑(d): d ∈ Cλ} for each λ ∈ π1[Φ]. Because h ∈ ⋂{⇑(d): d ∈ D} we know that
h(z) = 0. Because h is continuous and the transfinite sequence {y(α): α < κ} converges to z, there is some β < κ such that
h(y(α)) ∈ (− 1

2 , 1
2 ) for all α ∈ [β,κ). Because {λ: (λ, Cλ) ∈ Φ} is a cofinal subset of [0, κ), for some (λ, Cλ) ∈ Φ we have

β < λ < κ . Using the fifth property of the acceptable pair (λ, Cλ), because h ∈ ⋂{⇑(d): d ∈ D} ⊆ ⋂{⇑(d): d ∈ Cλ} we know
that for some δ � λ we have h(y(δ)) = 1. That contradiction completes the proof that, for the types of spaces considered in
the Main Theorem, C p(X) cannot be domain representable unless X is discrete.
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Now consider any pseudo-radial space X . If X is not discrete, then there is a minimal cardinal κ such that some set of
cardinality κ is not closed. Let M be such a non-closed set. Then there is some z ∈ X − M and some transfinite sequence
{y(α): α < λ} in M that converges to z. As noted above, we may assume that λ is a regular cardinal. Consequently we may
assume that y(α) �= y(β) whenever α < β < λ. Because |M| = κ we conclude that λ � κ . Because sets of cardinality < κ
are closed, we know that κ � λ, so κ = λ. Now we have exactly the situation described in the first part of the proof so we
know that C p(X) cannot be domain representable. Hence (a) implies (b) in the Main Theorem. That (b) implies (c) follows
from Proposition 2.4, and trivially (c) implies (a). �
4. Other strong completeness conditions in C p(X)

Starting in the 1950s, several strong completeness conditions were studied in an attempt to understand products of
Baire spaces. Oxtoby [10] called a space X pseudocomplete if there is a sequence 〈Pn〉 of pseudobases (= π -bases) such
that

⋂{Pn: n � 1} �= ∅ whenever Pn ∈ Pn with cl(Pn+1) ⊆ Pn . (Remember that all spaces in this paper are at least regular.)
Choquet [3] introduced two topological games. In the first, now called the weak Choquet game, Players 1 and 2 alternate
specifying nonempty open sets U1, U2, U3, . . . having Un+1 ⊆ Un for each n. The second game, called the strong Choquet
game, is a non-symmetric version of the first: Player 1 specifies a pair (x1, U1) where U1 is open and x1 ∈ U1. Then
Player 2 chooses an open set U2 with x1 ∈ U2 ⊆ U1. In general, Player 1 specifies a pair (x2n+1, U2n+1) with U2n+1 open
and x2n+1 ∈ U2n+1 ⊆ U2n . Then Player 2 responds by choosing an open set U2n+2 with x2n+1 ∈ U2n+2 ⊆ U2n+1. In both
Choquet games, Player 2 wins the game if

⋂{Un: n � 1} �= ∅, and the question is whether Player 2 has a winning strategy,
i.e., a strategy for choosing responses that leads to a win for Player 2, no matter what Player 1 does. If Player 2 has a winning
strategy for the weak Choquet game (resp. the strong Choquet game), then the space X is said to be weakly Choquet complete
(resp. strongly Choquet complete). The winning strategy in either of the Choquet games is allowed to depend upon the entire
history of the game up to the point where Player 2 must choose the next open set. In some references, Player 2 is said to
have “perfect information”. But it might happen in the strong Choquet game (resp., weak Choquet game) that Player 2 can
determine U2n+2 knowing only the pair (x2n+1, U2n+1) (resp., knowing only the set U2n+1) and in that case the strategy
used by Player 2 is called a stationary strategy.

In general, weak and strong Choquet completeness are distinct concepts. For example, a metric space that is not com-
plete and has a dense set of isolated points will be weakly Choquet complete, but not strongly Choquet complete. However,
in function spaces C p(X) the situation is quite different, as our next result shows. The hypothesis of the next proposition
includes a property called pseudonormality. To say that a space X is pseudonormal means that two disjoint closed sets, one
of which is countable, can be separated by open sets and, as pointed out in Lemma 8.3 of [5], in a completely regular
pseudonormal space, any continuous function defined on a countable, closed, discrete subspace can be extended continu-
ously over the entire space.

Proposition 4.1. Suppose X is a completely regular pseudonormal space. Then the following are equivalent:

(a) C p(X) is strongly Choquet complete and Player 2 has a stationary strategy in the strong Choquet game;
(b) C p(X) is strongly Choquet complete;
(c) C p(X) is weakly Choquet complete;
(d) C p(X) is pseudocomplete;
(e) C p(X) has nonempty intersection with every nonvoid Gδ-subset of the product space R X ;
(f) every countable subset of X is closed.

Proof. The equivalence of statements (c)–(f) was established in Theorem 8.4 of [5]. Obviously (a) implies (b).
To see that (b) always implies (c), let σ be a winning strategy for Player 2 in the strong Choquet game, and suppose that

Player 1 opens the weak Choquet game by specifying a nonempty open set U1. Player 2 picks any point x1 ∈ U1 and then
uses σ to determine the response to U2 = σ(x1, U1). If Player 1 responds to U2 by specifying the nonempty open set U3,
then Player 2 chooses any point x3 ∈ U3 and uses strategy σ to choose U4 = σ((x1, U1), U2, (x3, U3)). Continuing in this
fashion guarantees a win for Player 2 in the weak Choquet game.

To prove that (f) implies (a) we define a stationary winning strategy for Player 2 in the strong Choquet game in C p(X).
In response to any pair (g, U ) proposed by Player 1 at any stage of the game, Player 2 should find a finite set S and a
positive ε so that the basic open set O (g, S,2ε) ⊆ U and then Player 2 should respond with σ(g, U ) = O (g, S, ε). To see
the role of the number 2 in this strategy, consider three consecutive moves in the game, say U2k = O ( f , S, δ) followed by
Player 1’s response (g, U ), followed by Player 2’s response U2k+2 = O (g, T , ε). Because O ( f , S, δ) ⊇ U ⊇ O (g, T ,2ε) we
know that S ⊆ T and for any x ∈ S we have ( f (x) − δ, f (x) + δ) ⊇ (g(x)− 2ε, g(x)+ 2ε) ⊇ [g(x)− ε, g(x)+ ε]. Now suppose
that Player 2 uses the strategy σ to choose the even-numbered terms in the sequence ( f1, U1), U2, ( f3, U3), U4, . . . . Then
U2k+2 = O (g2k+1, S2k+2, ε2k+2) for some finite set S2k+2 with S2k ⊆ S2k+2 for each k. Let T = ⋃{S2k: k � 1}. Then T is
countable and for each x ∈ S2k ⊆ T there is some real number h(x) ∈ ⋂{(g2 j−1(x) − ε2 j, g2 j−1(x) + ε2 j): k � j < ω}. This
defines a function h : T → R. Because T is countable, T is closed and discrete in X so that h : T → R is continuous. Because
X is completely regular and pseudonormal, the function h has a continuous extension ĥ ∈ C p(X). Then ĥ ∈ ⋂{Uk: k � 1} as
required to show that the second player’s strategy σ is a winning strategy in the strong Choquet game on C p(X). �



1942 H. Bennett, D. Lutzer / Topology and its Applications 156 (2009) 1937–1942

Combining our results in Sections 3 and 4 gives a simple example showing that our conjecture in Section 1 cannot be
extended to include the situation where C p(X) is strongly Choquet complete but not domain representable.

Example 4.2. There is a GO-space X such that C p(X) is strongly Choquet complete and yet C p(X) is not domain repre-
sentable.

Proof. Let X = [0,ω1] where each countable ordinal is isolated and ω1 has its usual neighborhoods. Then X is a GO-space
so that by our Main Theorem, C p(X) is not domain representable. However by Proposition 4.1, C p(X) is strongly Choquet
complete (and Player 2 has a stationary winning strategy). �
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