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An n-by-n realmatrix is called aNewtonmatrix (and its eigenvalues

a Newton spectrum) if the normalized coefficients of its character-

istic polynomial satisfy the Newton inequalities.

A number of basic observations are made about Newton matrices,

including closure under inversion, and then it is shown that a New-

ton matrix with nonnegative coefficients remains Newton under

right translations. Those matrices that become (and stay) Newton

under translation are characterized. In particular, Newton spectra

in low dimensions are characterized.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

For A ∈ Mn, we use the standard principal submatrix notation throughtout: A[α] means the

principal submatrixofA lying in therowsandcolumns α ⊆ N = {1, . . . ,n}. IfAhaseigenvalues λ1, . . .,λn,

it is known that for k = 1, . . .,n,

Sk(A) ≡
∑

1�i1 < ···< ik�n

λi1
· · ·λik

=
∑

|α|=k

detA[α],
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with the convention that S0(A) ≡ 1 and that the characteristic polynomial of A (the polynomial whose

roots are λ1, . . .,λn) is

PA(x) =
n∑

k=0

(−1)n−kSk(A)xn−k.

Of interest here are the derived quantities

ck = ck(A) = ck(λ1, . . .,λn) = 1(
n

k

)Sk(A),

which we call the Newton coefficients. Since Newton [4,3] observed that the Newton inequalities

ck−1ck+1 � c2k , k = 1, . . .,n − 1,

(i.e. the Newton coefficients form a log-concave sequence) hold when the eigenvalues λ1, . . .,λn are

real, we call a matrix a Newtonmatrix (resp. the λk ’s a Newton spectrum) when the ck ’s are real and

the Newton inequalities hold. Henceforth, we assume that any spectrum λ1, . . .,λn mentioned are

the roots of a real polynomial (i.e. any complex λk ’s occur in conjugate pairs, counting multiplicities)

and, without loss of generality, that any matrices are real. In general, we will say that a real sequence

c0, c1, . . ., cn is a Newton sequence if it satisfies the Newton inequalities.

Much of our analysiswill be under the natural assumption that the ck ’s are positive, but the Newton

inequalities may hold when some of the ck ’s are negative or zero.

Of course,

PA(x) =
n∑

k=0

(−1)n−k

(
n

k

)
ck(A)xn−k.

There is, of course, a 1-1 correspondence between vectors of real Newton coefficients, real polynomials

and, respectively, spectrawith real elementary symmetric functions.On theother hand, there aremany

matrices that give the same ck ’s (e.g. all similarity classes for a given spectrum). The companionmatrix

of the polynomial associated with the ck ’s is one explicit example.

There is a long history of interest in the Newton inequalities and other modern reasons for interest,

see [5]. If they hold, we know the determinantal inequalities that state that the average values of the

k-by-k principal minors form a log-concave sequence. The same is true for the average k-fold product

of eigenvalues. We were motivated, in part, by connections with the nonnegative inverse eigenvalue

problem.

We are specially interested here in kinds of matrices that are Newton, and, correspondingly, ma-

tricial properties that Newton matrices have. Clearly, real symmetric matrices are Newton and the

transpose matrix of a Newton matrix is also Newton. Because of Newton’s observation, the positive

semi-definite and totally nonnegative matrices are Newton (with nonnegative ck ’s) and, recently, it

was noted [2] that (possibly singular) M-matrices are, as well, using the immanantal inequalities

in [1]. It is possible that a matrix or spectrum be not Newton, but that a translate of it (A + tI or

λ1 + t, . . .,λn + t) be Newton. We focus upon when this happens and when all right (left) translations

of a Newton matrix/spectrum remain Newton. This seems to produce a number of insights.

In the next section, we give a number of special instances of Newton spectra/matrices for future

reference and then follow that with Section 3 about basic properties of Newton spectra/matrices.

We then discuss which Newton sequences are preserved under translation in Section 4 and which

sequences become"eventually" Newton in Section 5. One of our main results, given in that section,

classifies every sequence c as either eventually Newton or never Newton.

For convenience in discussion, we will use the Newton differences

�k = c2k − ck−1ck+1, k = 1, . . .,n − 1,

so that the Newton inequalities hold if and only if �k � 0, k = 1, . . .,n − 1. Note that for a sequence of

ck ’s with c0 = 1 we have
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�1 = · · · = �r = 0 ⇐⇒ ck =
⎧⎨
⎩
ck
1

k = 1, . . ., r + 1 if c1 /= 0

0 k = 2, . . ., r if c1 = 0.

2. Special Newton spectra and matrices

As mentioned in the introduction,

(i) any vector of real numbers is a Newton spectrum and, thus, any matrix with real eigenvalues is

a Newton matrix.

For this reason, we are particularly interested in spectra/matrices with some complex (conjugate pairs

of) eigenvalues. When n = 2, we note that

(ii) a spectrum is Newton if and only if it is real.

Proof. For the spectrum a ± ibwe have c0 = 1, c1 = a and c2 = a2 + b2. So the result is clear because

�1 = −b2 � 0 if and only if b = 0. �

Also, as noted,

(iii) any M-matrix is Newton.

In fact, as we shall see, more is true. Any M-matrix may be translated, at least some, to the left,

retaining the Newton property.

When n = 3, we may also characterize the Newton spectra. If all the three eigenvalues are real the

spectrum is Newton, so, we consider only the case in which there is (precisely) one conjugate pair of

nonreal numbers. Suppose the three eigenvalues are:

a, b ± ic

in which we assume, without loss of generality, c>0. Then,

(iv) a, b ± ic is Newton if and only if

{
|a − b| �

√
3 c and

|c2 + b(b − a)| �
√
3 c|a|.

Proof. For this spectrum we have

c0 = 1, c1 = a + 2b

3
, c2 = 2ab + b2 + c2

3
and c3 = a(b2 + c2).

Then

�1 = (a + 2b)2

9
− 2ab + b2 + c2

3
= (a − b)2 − 3c2

9
,

�2 = (2ab + b2 + c2)2

9
− a + 2b

3
a(b2 + c2) = (c2 + b(b − a))2 − 3a2c2

9
.

and the result is clear because

�1 � 0 ⇔ |a − b| �
√
3 c and

�2 � 0 ⇔ |c2 + b(b − a)| �
√
3 c|a|. �

It is clear from the results for n = 2 and n = 3 that if a nonzero, pure imaginary conjugate pair is

present, a spectrumcannot beNewton (then = 2 resultwill be a special case of something later). That is

not generally so, but for n = 4 it happens only in a very special situation. Let a, b, d ∈ IRwith d>0, then

(v) the spectrum a, b,±id is Newton if and only if {a, b} = {−d, d}.
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Proof. It is enough to prove the result for d = 1. For this spectrum we have

c0 = 1, c1 = a + b

4
, c2 = ab + 1

6
, c3 = a + b

4
and c4 = ab.

Then

�1 =
(
a + b

4

)2

− ab + 1

6
� 0 ⇔ (a + b)2 � 8

3
(ab + 1),

�2 =
(
ab + 1

6

)2

−
(
a + b

4

)2

� 0 ⇔ (a + b)2 � 4

9
(ab + 1)2,

�3 =
(
a + b

4

)2

− ab + 1

6
ab � 0 ⇔ (a + b)2 � 8

3
(ab + 1)ab

and the spectrum a, b,±i is Newton if and only if

max

(
8

3
(ab + 1),

8

3
(ab + 1)ab

)
� (a + b)2 � 4

9
(ab + 1)2. (1)

Let us study first the case

max

(
8

3
(ab + 1),

8

3
(ab + 1)ab

)
= 8

3
(ab + 1)ab.

This happens in one of the following situations:

• ab + 1 = 0. In this case,

(1) ⇔ 0 � (a + b)2 � 0 ⇔ b = −a,

but we are assuming ab + 1 = 0, so {a, b} = {−1, 1}.
• ab + 1>0, so ab � 1. If (1) is satisfied, then

8

3
(ab + 1)ab � 4

9
(ab + 1)2,

and dividing by 8
3
(ab + 1) we have

ab � 1

6
(ab + 1) ⇒ ab � 1

5

which is a contradiction with ab � 1.

• ab + 1<0, so ab � 1. Then ab< − 1 and a similar argument to the previous one gives a contra-

diction.

Let us assume now

8

3
(ab + 1)>

8

3
(ab + 1)ab.

This happens in one of the following situations:

• ab + 1>0, so ab<1. Then −1< ab<1 and a similar argument to the one already used gives a

contradiction.

• ab + 1<0, so ab>1. Then ab< − 1 and ab>1 gives a contradiction and there are no a, b in this

case. �

(vi) the spectrum a ± ib, c ± id, with b>0 and d>0, is not Newton if a = c or if ac = 0.

Proof. For this spectrum we have

c0 = 1, c1 = a + c

2
, c2 = a2 + 4ac + b2 + c2 + d2

6
,
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c3 = a2c + a(c2 + d2) + b2c

2
and c4 = (a2 + b2)(c2 + d2).

Then

�1 =
(
a + c

2

)2

− a2 + 4ac + b2 + c2 + d2

6
� 0 ⇐⇒ 2(b2 + d2) � (a − c)2,

�2 =
(
a2 + 4ac + b2 + c2 + d2

6

)2

−
(
a + c

2

)(
a2c + a(c2 + d2) + b2c

2

)
,

�3 =
(
a2c + a(c2 + d2) + b2c

2

)2

− a2 + 4ac + b2 + c2 + d2

6
(a2 + b2)(c2 + d2).

If a = c then �1 <0 because b and d are positive. If c = 0 then �1 � 0 and �3 � 0 are contradictory

because now must be

a2 � 2(b2 + d2) and − �3 = d2

12

[
2a4 + a2(4b2 − d2) + 2b2(b2 + d2)

]
� 0

but substituting we have

−�3 � d2

12

[
2
(
2(b2 + d2)

)2 + 2(b2 + d2)(4b2 − d2) + 2b2(b2 + d2)

]

= d2(b2 + d2)

6
(9b2 + 3d2)>0.

The case a = 0 is similar. �
For a spectrum a ± ib, c ± id, with b, d>0, a /= c and ac /= 0 we have

�1 =
(
a + c

2

)2

− a2 + 4ac + b2 + c2 + d2

6
� 0 ⇐⇒ 2(b2 + d2) � (a − c)2.

This inequality can be seen as the points (b, d) in the disc with center (0, 0) and radius |a − c|/√2. The

other two Newton inequalities, �2,�3 � 0, are compatible in part of this circle but their characteriza-

tion requires expressions quite complicate.

It follows from (i) that if a spectrum is real, not only is it Newton, but any translate of it is as well.

This characterizes real spectra for n<4 as seen from (ii) and (iv), but we will see that this is not so for

n = 4, though there is only a very special exception coming from (v).

We close this section by considering the case inwhich A = tI + Cn with Cn the basic circulantmatrix⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0
. . .

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . . 0

0 · · · 0 0 1

1 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

whose eigenvalues are the nth roots of unity. This builds upon (v) with d = 1. Matricially, we have

c0 = 1,

c1 = t,

c2 = t2,

.

.

.

cn−1 = tn−1,

cn = tn + (−1)n+1.

Thus, the first n − 2 Newton differences are �1 = · · · = �n−2 = 0 and the last is (−1)ntn−2. Thus,

(vii) the Newton inequalities hold for tI + Cn for any t when n is even and for all t � 0 when n is odd.
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3. Basic general ideas

We record here a number of basic facts about the Newton inequalities and sequence for which they

hold. Perhaps the most basic (follows from the quadratic homogeneity of the inequalities) is

Lemma 1. If the Newton inequalities hold for the Newton coefficients c0, c1, . . ., cn and h is a real constant,

the Newton inequalities also hold for hc0,hc1, . . .,hcn.

Lemma 2. The following two sequences satisfy the Newton inequalities:

(a) Any sequence satisfying: |c0| = |c1| = · · · = |cn|.
(b) c0 = 1, c1 = b, c2 = b2, . . ., cn = bn for any b ∈ IR.

Example. Sequences with the sign patterns + + − − + + − − · · ·,+ − − + + − −· · ·, etc. are Newton.

If c0, . . ., cn is Newton so is c0, . . ., cn, 0.

Lemma 3. Let c0, . . ., cn and d0, . . ., dn be sequences satisfying the Newton inequalities. Suppose that

dk � 0, k = 0, . . .,n and the sequence e0, . . ., en is defined by ck = ek|ck|, k = 0, . . .,n, with ek = ±1 if

ck = 0. Then, for any positive p and q, the sequence

e0 |c0|p dq0, e1 |c1|p dq1, . . ., en |cn|p dqn
is Newton.

It follows from Lemmas 2(a) and 3 that

Corollary 4. If e0, e1, . . ., en is a sequence of ±1’s and c0, c1, . . ., cn � 0 is any sequence satisfying the

Newton inequalities, then

e0 c0, e1 c1, . . ., en cn

satisfies the Newton inequalities.

Wenote that in another case, that inwhich the ck ’s alternate,+ − + − · · ·, the ck ’smaybe replacedby

their absolute values to preserve Newton. In general, the nonnegative assumption above is necessary.

Corollary 5. If λ1, . . .,λn is a Newton spectrum (resp. A is a Newton matrix) and h is a real constant, then

hλ1, . . .,hλn is a Newton spectrum (resp. hA is a Newton matrix).

Proof. Lemma 2(b) and Lemma 3. �

Lemma 6. If the sequence c0, c1, . . ., cn satisfies the Newton inequalities, then so does the sequence

cn, cn−1, . . ., c1, c0. If A is a Newton matrix, so is any similarity of A. If λ1, . . .,λn is a Newton spectrum, so

is any permutation of λ1, . . .,λn.

Theorem 7. If A is an invertible Newton matrix (resp. λ1, . . .,λn is a totally nonzero Newton spectrum),

then A−1 is Newton (resp. λ−1
1 , . . .,λ−1

n is a Newton spectrum).

Proof. Note that

Sk(λ
−1
1 , . . .,λ−1

n ) = 1

detA
Sn−k(λ1, . . .,λn), for k = 0, . . .,n.

Then

ck(A
−1) = 1

detA
cn−k(A), for k = 0, . . .,n

and the result follows from Lemmas 1 and 6. �
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In [2] it was shown that both M-matrices and invM-matrices are Newton. We note that either of

these statements actually follows inmediatelly from the other, by Theorem 7.

Lemma 8. If λ1, . . .,λn is a Newton spectrum, then so is λ1, . . .,λn, 0.

Proof. Note that

Sk(λ1, . . .,λn, 0) =
{
Sk(λ1, . . .,λn) if k � n,

0 if k = n + 1.

Let σ be the spectrum λ1, . . .,λn, 0 and σ∗ the spectrum λ1, . . .,λn. Therefore

ck(σ) = 1(
n + 1

k

)Sk(σ) =

⎧⎪⎨
⎪⎩

n+1−k

(n+1)

(
n

k

)Sk(σ∗) = n+1−k
n+1

ck(σ
∗) if k � n,

0 if k = n + 1.

For k � n − 1 we have

ck(σ)2 − ck−1(σ)ck+1(σ) =
(
n + 1 − k

n + 1

)2

ck(σ
∗)2

−n + 1 − k + 1

n + 1
ck−1(σ

∗)n + 1 − k − 1

n + 1
ck+1(σ

∗)

=
(
n + 1 − k

n + 1

)2

ck(σ
∗)2 − (n + 1 − k)2 − 1

(n + 1)2
ck−1(σ

∗)ck+1(σ
∗)

= (n + 1 − k)2 − 1

(n + 1)2

(
ck(σ

∗)2 − ck−1(σ
∗)ck+1(σ

∗)
)

+ 1

(n + 1)2
ck(σ

∗)2 � 0.

Finally, for k = n, we have cn(σ)2 − cn−1(σ)cn+1(σ) = cn(σ)2 � 0 and the result is proved. �

Example. There is no converse to Lemma 8. The spectrum b ± ic, 0 with c>0 is Newton, see condition

(iv), if and only if |b| � c
√
3 and the spectrum b ± ic is never Newton, see condition (ii).

If λ1, . . .,λr , 0, . . ., 0 is a Newton spectrum with λ1, . . .,λr nonzero, what about the spectrum

λ−1
1 , . . .,λ−1

r , 0, . . ., 0? Is there a reversal principal to prove this? No.

Example. The spectrum −5,
√
2 + i

√
2,

√
2 − i

√
2, 0 is Newton:

c : 1,
2
√
2 − 5

4
,
2 − 5

√
2

3
, −5, 0 ⇒

�1 = 67 + 20
√
2

48
, �2 = 10

√
2 − 9

36
, �3 = 25,

while the spectrum − 1
5 ,

√
2
4

− i
√
2
4
,

√
2
4

+ i
√
2
4
, 0 is not Newton:

c : 1,
5
√
2 − 2

40
,
5 − 2

√
2

120
, − 1

80
, 0 ⇒ �1 = 10

√
2 − 19

2400
<0.

If c0, c1, . . ., cn are nonnegativeNewton coefficients satisfying theNewton inequalities, then certain

extended Newton inequalities also hold.

Lemma 9. Let c0, c1, . . ., cn >0 satisfy the Newton inequalities. Then, we have

cr cs � cp cq

whenever 0 � r � p � q � s � n and r + s = p + q.
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Proof. If p = 0 or q = n, we have the equality cr cs = cp cq. In other cases, we consider the sequence of

Newton inequalities

ck−1ck+1 � c2k , for 1 � p � k � q � n − 1.

Because the ck ’s are nonnegative, multiplying these inequalities we have

q∏
k=p

ck−1ck+1 = cp−1cp

⎛
⎝ q−1∏

k=p+1

c2k

⎞
⎠ cqcq+1 �

q∏
k=p

c2k ,

and simplifying we obtain

cp−1cq+1 � cpcq, for 1 � p � q � n − 1.

Using recursively this inequality we get the result:

crcs = cp−(p−r)cq+(p−r) � cpcq. �

We note that the Newton inequalities are a special case.

Example. If λ1, . . .,λn−1 is Newton, can λ1, . . .,λn not be? Yes, both −1, 1 ± i and 2,−1 ± i
√
3 are

Newton and neither of −1, 1 ± i,−2 or 2,−1 ± i
√
3, 1 are Newton.

Givenany λ1, . . .,λn−1, the spectrumof a realmatrix, is there a real number λn such that λ1, . . .,λn

is a Newton spectrum? Not always, as is shown by ±i. Note that ±i,λ is never Newton for λ real

because of condition (iv) in Section 2.

Example. It can happen that all (n − 1)-by-(n − 1) principal submatrices are Newton but A is not. This

is the situation for

A =
⎛
⎝1 1 0

0 1 1

1 0 0

⎞
⎠.

It can also happen that no n − 1 principal submatrices are Newton, but A is. This is the case for the

matrix

A =

⎛
⎜⎜⎝

−1 1 1 0

−1 −1 1 0

−1 −1 −1 0

0 0 0 3

⎞
⎟⎟⎠.

4. Translatability of Newton sequences

Given the Newton coefficients c : c0, . . ., cn determined by λ1, . . .,λn, let c(t) : c0(t), . . ., cn(t) be the

Newton coefficients determined by λ1 + t, . . .,λn + t. We refer to c(t) as a left (right) translation if

t<0 (if t>0). If c is a Newton sequence c(t) may, or may not, also be a Newton sequence. The Newton

differences for c(t) will be denotated by �k(t), i.e.

�k(t) = ck(t)
2 − ck−1(t)ck+1(t), k = 1, . . .,n − 1.

Example. Consider

A(t) =
⎛
⎝t 1 0

0 t 1

1 0 t

⎞
⎠ ,

c0(t) = 1,

c1(t) = t,

c2(t) = t2,

c3(t) = t3 + 1,

�1(t) = 0,

�2(t) = −t.

In particular, the 3rd roots of the unity are Newton but a right translation is not Newton and a left

translation is Newton.
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We call a Newton sequence c right (resp. left) translatable if c(t) is a Newton sequence for all t>0

(all t<0). We further call a Newton sequence c forever Newton (f-Newton) if c(t) is Newton for all t.

Of course a sequence coming from real λ’s is f-Newton.

Theorem 10. If n<4, then a sequence c is f-Newton if and only if c is a Newton sequence resulting from

real λ’s.

Proof. The result is clear for n = 1. For n = 2 is a consequence of condition (ii) in Section 2. For n = 3,

the only Newton spectra are the real ones or the ones satisfying condition (iv) in Section 2, i.e. for c>0

a, b ± ic is Newton ⇐⇒
{

|a − b| �
√
3 c and

|c2 + b(b − a)| �
√
3 c|a|.

Note that the first condition is the same for the spectrum a, b ± ic as for the spectrum a + t, b + t ± ic,

with t real. Let us see that the second condition is not true for t = −b

|c2 + (b + t)(b + t − (a + t))| = c2 <3c2 =
√
3 c

√
3 c �

√
3 c|a − b| =

√
3 c|a + t|,

where the last inequality is due to the first condition. So the theorem is proved for n = 3. �

Example. Note that for n = 4, the basic circulant matrix shows that non-real spectrum may be f-

Newton.

Theorem 11. For n = 4 a sequence c is f-Newton if and only if the λ’s are real or a translation of the λ’s is
of the form h(−1,−i, i, 1) with real h.

Proof. ⇒) Let us assume that the f-Newton sequence is not resulting from real λ’s. Then, the spectrum
can have two real numbers or none.

If the spectrum a ± ib, c ± id with b, d>0 is Newton, then a /= 0 by condition (vi) in Section 2.

This spectrum can not be f-Newton because the translated spectrum ±ib, c − a ± id is not Newton by

condition (vi) in Section 2.

If the spectrum a, b, c ± id is f-Newton then the translated spectrum a − c, b − c,±id is Newton and

by condition (v) in Section 2 has to be of the form h(−1,−i, i, 1).

(⇐) If theλ’s are real the result is clear by condition (ii) in Section 2. Let us see that any translation of

a spectrum of the form h(−1,−i, i, 1) is Newton. In this case we have c(t) : 1, t, t2, t3, t4 − h4, therefore

�1(t) = �2(t) = 0 and �3(t) = h4t2 � 0. �

We note that ck(t) is a polynomial in t (of degree k)

ck(t) =
k∑

j=0

(
k

j

)
ck−jt

j , k = 0, . . .n,

whichmeans that�k(t) is also a polynomial in t, of degree atmost 2k. The degreemay be less than 2k if

there is cancellation in the leading term of the two polynomials ck(t)
2 and −ck−1(t)ck+1(t). It is easy to

see that the lead term of each polynomial is the same, so that there will always be some cancellation.

There may be more, but generically this is all.

In what follows, we understand that the combinatorial number(
m

j

)
= 0

ifm and j are integers withm � 0 and j<0 or j>m.

Lemma 12. The polynomial �k(t), for k = 1, . . .,n − 1, is

2k−2∑
q=0

⎛
⎝ k∑

j=q−k

[(
k

j

)(
k

q − j

)
−
(
k − 1

j − 1

)(
k + 1

q + 1 − j

)]
ck−jck−(q−j)

⎞
⎠ tq.

In particular, it has degree at most 2k − 2 and the coefficient of t2k−2 is c2
1

− c0c2.
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Proof. We have

�k(t) =
⎡
⎣ k∑

j=0

(
k

j

)
ck−jt

j

⎤
⎦
2

−
⎡
⎣k−1∑

j=0

(
k − 1

j

)
ck−1−jt

j

⎤
⎦
⎡
⎣k+1∑

j=0

(
k + 1

j

)
ck+1−jt

j

⎤
⎦

=
2k∑
q=0

⎡
⎣ q∑

j=0

(
k

j

)(
k

q − j

)
ck−jck−(q−j) −

q∑
j=0

(
k − 1

j

)(
k + 1

q − j

)
ck−1−jck+1−(q−j)

⎤
⎦ tq

=
2k∑
q=0

⎡
⎣ k∑
j=q−k

(
k

j

)(
k

q − j

)
ck−jck−(q−j) −

k−1∑
j=q−k−1

(
k − 1

j

)(
k + 1

q − j

)
ck−1−jck+1−(q−j)

⎤
⎦ tq

=
2k∑
q=0

⎛
⎝ k∑

j=q−k

[(
k

j

)(
k

q − j

)
−
(
k − 1

j − 1

)(
k + 1

q + 1 − j

)]
ck−jck−(q−j)

⎞
⎠ tq.

Then the coefficient of t2k is[(
k

k

)(
k

k

)
−
(
k − 1

k − 1

)(
k + 1

k + 1

)]
c0c0 = 0

and the coefficient of t2k−1 is[(
k

k − 1

)(
k

k

)
−
(
k − 1

k − 2

)(
k + 1

k + 1

)]
c1c0 +

[(
k

k

)(
k

k − 1

)
−
(
k − 1

k − 1

)(
k + 1

k

)]
c0c1 = 0.

The coefficient of t2k−2 is

k∑
j=k−2

[(
k

j

)(
k

2k − 2 − j

)
−
(
k − 1

j − 1

)(
k + 1

2k − 1 − j

)]
ck−jcj−k+2.

Grouping together the terms c0c2 and c2c0 and using the identity

(
m

m − j

)
=
(
m

j

)
we have

[(
k

1

)2

−
(
k − 1

1

)(
k + 1

1

)]
c21 +

[
2

(
k

0

)(
k

2

)
−
(
k − 1

2

)(
k + 1

0

)
−
(
k − 1

0

)(
k + 1

2

)]
c0c2.

Finally, we obtain that the coefficient of t2k−2 is c2
1

− c0c2. �

Note that the central term of �k(t) is the one of degree k − 1 and there is a certain symmetry

between the coefficients of tk−1+p and tk−1−p for p = 1, . . ., k − 1. The polynomial �k(t) has the form

(c21 − c0c2)t
2k−2 + (k − 1)(c1c2 − c0c3)t

2k−3 + (k − 1)

[
k

2
c22 − c1c3 − k − 2

2
c0c4

]
t2k−4 + · · · +

+
⎛
⎝ k∑

j=1

[(
k

j

)(
k

k − 1 − j

)
−
(
k − 1

j − 1

)(
k + 1

k − j

)]
ck−jcj+1

⎞
⎠ tk−1 + · · · +

+(k − 1)

[
k

2
c2k−1 − ck−2ck− k − 2

2
ck−3ck+1

]
t2 + (k − 1)(ck−1ck − ck−2ck+1)t+(c2k − ck−1ck+1).

We will use the above lemma here, but also again in the next section. We first note that if c is

a Newton sequence, it may happen that some right translations are not Newton (the basic circulant

matrix 3-by-3 Newton sequence) or that some left translations are not Newton (the spectrum 1, 2 ±
i
√
3
3

is Newton but no left translation, with t< − 5
3
, is because �2(t) = 8

27
t + 40

81
). We know of no

example in which both some (but not all) left and some (but not all) right translations fail to be
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Newton. More precisely, what partitions of the real line into points t, for which c(t) is Newton and

points t for which c(t) is not Newton, are possible? We may prove the following, one of our main

results.

Theorem 13. If c is a positive Newton sequence, then c(t) is a Newton sequence for all t � 0.

Proof. Letusprove, in threeparts, thatall thecoefficientsof thepolynomial�k(t) = ck(t)
2 − ck−1(t)ck+1(t)

are nonnegative.

Part one. The coefficient of tk+p, for 0 � p � k − 2, is nonnegative.

We can rewrite the coefficient of tq given in Lemma 12, for k � q � 2k − 2, replacing q by k + p

k−p∑
i=0

[(
k

p + i

)(
k

k − i

)
−
(

k − 1

p + i − 1

)(
k + 1

k − i + 1

)]
ck−p−ici, for 0 � p � k − 2.

The proof depends on the parity of k + p.

(a) If k + p is even, we now rewrite the coefficient of tk+p grouping together the terms ck−p−ici and

cick−p−i in the following way:

[(
k

k+p
2

)(
k

k+p
2

)
−
(

k − 1
k+p
2

− 1

)(
k + 1

k+p
2

+ 1

)]
c k−p

2

c k−p
2

+
k−p
2∑

m=1

rmc k−p
2

−m
c k−p

2
+m

,

where

rm =2

(
k

k+p
2

− m

)(
k

k+p
2

+ m

)
−
(

k − 1
k+p
2

− m − 1

)(
k + 1

k+p
2

+ m + 1

)

−
(

k − 1
k+p
2

+ m − 1

)(
k + 1

k+p
2

− m + 1

)
. (2)

We now denote by Rm, for m = 0, 1, . . ., k−p
2

, the partial sums of the combinatorial coefficients rm of

c k−p
2

c k−p
2

, c k−p
2

−1
c k−p

2
+1

, . . ., c0ck , i.e.

R0 = r0 =
(

k
k+p
2

)(
k

k+p
2

)
−
(

k − 1
k+p
2

− 1

)(
k + 1

k+p
2

+ 1

)
,

Rm =
m∑
i=1

ri = Rm−1 + rm, 1 � m � k − p

2
,

R k−p
2

being the sum of all combinatorial coefficients of tk+p. With this notation, we can write the

coefficient of tk+p as

R0c k−p
2

c k−p
2

+
k−p
2∑

m=1

(Rm − Rm−1)c k−p
2

−m
c k−p

2
+m

.

The value of rm = Rm − Rm−1 can be negative, but we know by Lemma 9 that

c k−p
2

−r
c k−p

2
+r

� c k−p
2

−s
c k−p

2
+s
, for all 0 � r< s,

and so, for the coefficient of tk+p to be nonnegative, it is sufficient that the partial sums below are

nonnegative:

R0,

m∑
i=0

(Ri − Ri−1) = Rm, for 1 � m � k − p

2
.
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Then, let us see that the sequence Rm, for 0 � m � k−p
2

, is nonnegative. More exactly, we will see

that the sequence Rm is positive for 0 � m � k−p
2

− 1 and zero for m = k−p
2

.

The additive law of recurrence for the sequence Rm given above can also be written as a multiplica-

tive law of recurrence in the following way (see part three)

R0 = r0 =
(

k
k+p
2

)(
k

k+p
2

)
−
(

k − 1
k+p
2

− 1

)(
k + 1

k+p
2

+ 1

)
=
(

k
k+p
2

)2
k − p

k(k + p + 2)
, (3)

Rm = Rm−1· (2m + 1)(k + p − 2m + 2)(k − p − 2m)

(2m − 1)(k + p + 2m + 2)(k − p + 2m)
, for 1 � m � k − p

2
. (4)

and using this multiplicative law of recurrence, we can write the general term of the sequence Rm in

the form

Rm =
(

k
k+p
2

)2
(2m + 1)(k − p)

k(k + p + 2)

m∏
j=1

(k + p + 2 − 2j)(k − p − 2j)

(k + p + 2 + 2j)(k − p + 2j)
. (5)

It is obvious that both R0 and Rm, for 1 � m � k−p
2

− 1, are positive and that R k−p
2

is zero. Now the result

follows from Lemma 9.

(b) If k + p is odd, we write the coefficient of tk+p grouping together the terms ck−p−ici and cick−p−i as

follows:

k−p−1
2∑

m=0

rmc k−p−1
2

−m
c k−p+1

2
+m

where

rm = 2

(
k

k+p−1
2

− m

)(
k

k+p+1
2

+ m

)
−
(

k − 1
k+p−1

2
− m − 1

)(
k + 1

k+p+1
2

+ m + 1

)

−
(

k − 1
k+p+1

2
+ m − 1

)(
k + 1

k+p−1
2

− m + 1

)
.

The construction of the sequenceRm, form = 0, 1, . . ., k−p−1
2

, of thepartial sumsof the combinatorial

coefficients of c k−p−1
2

c k−p+1
2

, c k−p−1
2

−1
c k−p+1

2
+1

, . . ., c0ck and the process to obtain the general term of this

sequence are similar to the even case. In the odd case, the multiplicative law of recurrence for the

sequence Rm is

R0 = 2

(
k

k+p−1
2

)(
k

k+p+1
2

)
−
(

k − 1
k+p−1

2
− 1

)(
k + 1

k+p+1
2

+ 1

)
−
(

k − 1
k+p+1

2
− 1

)(
k + 1

k+p−1
2

+ 1

)

=
(

k
k+p−1

2

)2
2(k − p + 1)(k − p − 1)

k(k + p + 1)k + p + 3)
, (6)

Rm = Rm−1.
(m + 1)(k + p − 2m + 1)(k − p − 2m − 1)

m(k − p + 2m + 1)(k + p + 2m + 3)
, for 1 � m � k − p − 1

2
. (7)

The general term of the sequence, for 1 � m � k−p−1
2

, is

Rm =
(

k
k+p−1

2

)2
2(m + 1)(k − p + 1)(k − p − 1)

k(k + p + 1)(k + p + 3)

m∏
j=1

(k + p + 1 − 2j)(k − p − 1 − 2j)

(k + p + 3 + 2j)(k − p + 1 + 2j)
. (8)

Both R0 and Rm, for 1 � m � k−p−1
2

− 1, are positive and R k−p−1
2

is zero. So the result follows from

Lemma 9.
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Part two. The coefficient of tk−p, for 1 � p � k, is nonnegative.

We can rewrite the coefficient of tq given in Lemma 12, for 0 � q � k − 1, replacing q by k − p, for

1 � p � k

k−p+1∑
i=0

[(
k

i

)(
k

k − p − i

)
−
(
k − 1

i − 1

)(
k + 1

k − p − i + 1

)]
ck−icp+i.

The proof depends on the parity of k − p.

(a) If k − p is even,wenowwrite the coefficient of tk−p grouping together the terms ck−icp+i and cp+ick−i

as follows:[(
k

k−p
2

)(
k

k−p
2

)
−
(

k − 1
k−p
2

− 1

)(
k + 1

k−p
2

+ 1

)]
c k+p

2

c k+p
2

+
k−p
2

+1∑
m=1

rmc k+p
2

−m
c k+p

2
+m

,

where

rm =2

(
k

k−p
2

− m

)(
k

k−p
2

+ m

)
−
(

k − 1
k−p
2

− m − 1

)(
k + 1

k−p
2

+ m + 1

)

−
(

k − 1
k−p
2

+ m − 1

)(
k + 1

k−p
2

− m + 1

)
.

We now follow the same procedure as in part one. We build the sequence Rm of the partial sums of

the combinatorial coefficients and obtain the multiplicative law of recurrence

R0 =
(

k
k−p
2

)(
k

k−p
2

)
−
(

k − 1
k−p
2

− 1

)(
k + 1

k−p
2

+ 1

)
=
(

k
k−p
2

)2
k + p

k(k − p + 2)
, (9)

Rm = Rm−1.
(2m + 1)(k − p − 2m + 2)(k + p − 2m)

(2m − 1)(k − p + 2m + 2)(k + p + 2m)
, for 1 � m � k − p

2
. (10)

The general term of the sequence, for 1 � m � k−p
2

, is

Rm =
(

k
k−p
2

)2
(2m + 1)(k + p)

k(k − p + 2)

m∏
j=1

(k − p + 2 − 2j)(k + p − 2j)

(k − p + 2 + 2j)(k + p + 2j)
. (11)

All terms of this sequence, for 1 � m � k−p
2

, are positive. Now

R k−p
2

+1
= R k−p

2

−
(
k − 1

k − p

)(
k + 1

0

)

is the sum of all combinatorial coefficients of tq, for 0 � q � k − 1, of �k(t), i.e.

q+1∑
i=0

[(
k

i

)(
k

q − i

)
−
(
k − 1

i − 1

)(
k + 1

q − i + 1

)]
−
(
k − 1

q

)(
k + 1

0

)

=
q∑

i=0

(
k

i

)(
k

q − i

)
−

q∑
j=0

(
k − 1

j

)(
k + 1

q − j

)

and this expression is zero by the formula

q∑
r=0

(
m

r

)(
n

q − r

)
=
(
m + n

q

)
. (12)

Then, the result follows from Lemma 9.
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(b) If k − p is odd,we nowwrite the coefficient of tk−p grouping together the terms ck−icp+i and cp+ick−i

as follows:

k−p−1
2

+1∑
m=0

rmc k+p−1
2

−m
c k+p+1

2
+m

where

rm =2

(
k

k−p−1
2

− m

)(
k

k−p+1
2

+ m

)
−
(

k − 1
k−p−1

2
− m − 1

)(
k + 1

k−p+1
2

+ m + 1

)

−
(

k − 1
k−p+1

2
+ m − 1

)(
k + 1

k−p−1
2

− m + 1

)
.

We now follow the same procedure as above. We build the sequence Rm of the partial sums of the

combinatorial coefficients and we obtain the multiplicative law of recurrence

R0 = 2

(
k

k−p−1
2

)(
k

k−p+1
2

)
−
(

k − 1
k−p−1

2
− 1

)(
k + 1

k−p+1
2

+ 1

)
−
(

k − 1
k−p+1

2
− 1

)(
k + 1

k−p−1
2

+ 1

)

=
(

k
k−p−1

2

)2
2(k + p + 1)(k + p − 1)

k(k − p + 1)(k − p + 3)
, (13)

Rm = Rm−1.
(m + 1)(k − p − 2m + 1)(k + p − 2m − 1)

m(k − p + 2m + 3)(k + p + 2m + 1)
, for 1 � m � k − p − 1

2
. (14)

The general term of the sequence, for 1 � m � k−p−1
2

, is

Rm =
(

k
k−p−1

2

)2
2(m + 1)(k + p + 1)(k + p − 1)

k(k − p + 1)(k − p + 3)

m∏
j=1

(k − p + 1 − 2j)(k + p − 1 − 2j)

(k − p + 3 + 2j)(k + p + 1 + 2j)
. (15)

With arguments similar to the even case, we conclude that all terms of this sequence are positive

except that the last is zero. So the result follows from Lemma 9.

Part three. Proof of the multiplicative law of recurrence.

We will prove the law of recurrence in the case k + p even for 0 � p � k − 2.

We use extensively the relations(
k

s

)
= k

k − s

(
k − 1

s

)
,

(
k

s

)
= s + 1

k − s

(
k

s + 1

)
and

(
k

s

)
= k

s

(
k − 1

s − 1

)
. (16)

If k + p is even

R0 =
(

k
k+p
2

)2

−
(

k − 1
k+p
2

− 1

)(
k + 1

k+p
2

+ 1

)
=
(

k
k+p
2

)2

−
k+p
2

k

(
k

k+p
2

)
k + 1

k+p
2

+ 1

(
k

k+p
2

)

=
(

k
k+p
2

)2 [
1 − (k + p)(k + 1)

k(k + p + 2)

]
=
(

k
k+p
2

)2
k − p

k(k + p + 2)
.

We denote k+p
2

= s and then we will prove, by induction, the recurrence given in the expression (4).

Rewrite it as

Rm = Rm−1.
(2m + 1)(k − s − m)(s − m + 1)

(2m − 1)(k − s + m)(s + m + 1)
, for

k

2
� s � k − 1. (17)
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Ifm = 1, we use the expression (2) and the formulas (16) to obtain the first term of the recurrence

R1 = R0 + r1 = R0 + 2

(
k

s − 1

)(
k

s + 1

)
−
(
k − 1

s − 2

)(
k + 1

s + 2

)
−
(
k − 1

s

)(
k + 1

s

)

= R0 + 2s

k − s + 1

(
k

s

)
k − s

s + 1

(
k

s

)
− (s − 1)s

k(k − s + 1)

(
k

s

)
(k + 1)(k − s)

(s + 2)(s + 1)

(
k

s

)
− k − s

k

(
k

s

)
k + 1

k − s + 1

(
k

s

)

=
(
k

s

)2
k − s

k(s + 1)
+
(
k

s

)2 [
2s(k − s)

(k − s + 1)(s + 1)
− (s − 1)s(k + 1)(k − s)

k(k − s + 1)(s + 2)(s + 1)
− (k − s)(k + 1)

k(k − s + 1)

]

=
(
k

s

)2
k − s

k(s + 1)

[
1 + 2(sk − k − s2 − s − 1)

(k − s + 1)(s + 2)

]
= R0

3s(k − s − 1)

(k − s + 1)(s + 2)
.

We consider the hypothesis of induction Rj = Rj−1Fj , for 1 � j � m − 1, where Fj is the factor of

recurrence

Fj = (2j + 1)(s − j + 1)(k − s − j)

(2j − 1)(k − s + j)(s + j + 1)

and so we have

Rm−1 = R0F1F2. . .Fm−1.

With this notation, to prove that Rm = Rm−1 + rm = Rm−1Fm, we will see that Rm−1(Fm − 1) = rm or

that is equivalent

rm = R0F1F2. . .Fm−1(Fm − 1).

On the one hand

R0F1F2. . .Fm−1(Fm − 1)

=
(
k

s

)2
k − s

k(s + 1)

⎡
⎣m−1∏

j=1

(2j + 1)(s − j + 1)(k − s − j)

(2j − 1)(k − s + j)(s + j + 1)

⎤
⎦[ (2m + 1)(s − m + 1)(k − s − m)

(2m − 1)(k − s + m)(s + m + 1)
− 1

]
.

In order to simplify the following expressions, we denote

B =
(
k

s

)m−1∏
j=1

(s − j + 1)

(k − s + j)
and D =

(
k

s

)m−1∏
j=1

(k − s − j)

(s + j + 1)

and then we have

R0F1F2. . .Fm−1(Fm − 1) = k − s

k(s + 1)

[
−2(s2 + s(1 − k) + k(2m2 − 1) + m2

(k − s + m)(s + m + 1)

]
BD.

On the other hand, sustituting (k+p)

2
= s in (2), we have

rm = 2

(
k

s − m

)(
k

s + m

)
−
(

k − 1

s − m − 1

)(
k + 1

s + m + 1

)
−
(

k − 1

s + m − 1

)(
k + 1

s − m + 1

)
.

We now use the formulas (16) and the above notations to obtain

rm = 2
(s − m + 1)

(k − s + m)
B

(k − s)

(s + 1)
D − (s − m + 1)(s − m)

k(k − s + m)
B

(k + 1)(k − s)

(s + 1)(s + m + 1)
D

− (k − s)(s + m)

k(s + 1)
D

(k + 1)

(k − s + m)
B.

Finally, it is a routine exercise to verify that the last expressions of R0F1F2. . .Fm−1(Fm − 1) and rm
coincide.
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The proofs of the laws of recurrence in the cases k + p odd, for 0 � p � k − 2, and the cases k − p

even and odd, for 1 � p � k, are similar to the above. �

Corollary 14. If c is a Newton sequence satisfying ck >0 for even k and ck <0 for odd k, then c(t) is a

Newton sequence for all t � 0.

5. Eventually Newton sequences

Wecall a sequence c right (resp. left)eventuallyNewton if there is aT ∈ IR such that c(t) is aNewton

sequence for all t> T (resp. for all t< T). If at least one of the two occurs, the sequence is simply called

eventually Newton (e-Newton). If for a sequence c no translation c(t) is a Newton sequence, then c is

called never Newton (n-Newton). Our purpose in this section is to show that every sequence is either

eventually or never Newton (justifying the language). We do this by determining which sequences

are eventually Newton. Because of Lemma 12, a key is the first Newton difference �1. In the matrix

context, this has an interesting interpretation. If A = (aij), then

n(n − 1)�1 = 1

n

∑
i< j

(aii − ajj)
2 + 2

∑
i< j

aijaji. (18)

Theorem 15. Let c : c0 = 1, c1, . . ., cn be a sequence.

(a) If �1 >0, then c is right eventually Newton.

(b) If�1 = 0 and�2 /= 0, then c is right eventually Newtonwhen�2/c1 >0 and left eventually Newton

when �2/c1 <0.

(c) If �1 = �2 = · · · = �r = 0 and �r+1 /= 0, with r � 2, then c is:

(c1) e-Newton if r is even and c1 = 0.

(c2) right eventually Newton if r is even and c1 /= 0.

(c3) right eventually Newton if r is odd and c1 = 0.

(c4) e-Newton if r is odd and c1 /= 0.

Proof. In Lemma 12 we obtained the polynomial �k(t), for k = 1, . . .,n − 1:

2k−2∑
q=0

⎛
⎝ k∑

j=q−k

[(
k

j

)(
k

q − j

)
−
(
k − 1

j − 1

)(
k + 1

q + 1 − j

)]
ck−jck−(q−j)

⎞
⎠ tq

= (c21 − c0c2)t
2k−2 + (k − 1)(c1c2 − c0c3)t

2k−3 + (k − 1)(
k

2
c2c2 − c1c3 − k − 2

2
c0c4)t

2k−4 + · · ·

Note that

k∑
j=q−k

[(
k

j

)(
k

q − j

)
−
(
k − 1

j − 1

)(
k + 1

q + 1 − j

)]
=

q∑
j=0

[(
k

j

)(
k

q − j

)
−
(
k − 1

j − 1

)(
k + 1

q + 1 − j

)]

because(
k

j

)
=
(
k − 1

j − 1

)
= 0 if q � k − 1 and j<0 or q> k and j> k

and (
k

q − j

)
=
(

k + 1

q + 1 − j

)
= 0 if q � k − 1 and j> q or q> k and j< q − k.
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On the one hand, we can use the formula

q∑
r=0

(
m

r

)(
n

q − r

)
=
(
m + n

q

)

to prove that the sum of the combinatorial coefficients of each term in tq of the polynomial �k(t) is

zero. On the other hand, we have observed in Section 1 that

�1 = · · · = �r = 0 ⇐⇒ ck =
⎧⎨
⎩
ck
1

k = 1, . . ., r + 1 if c1 /= 0

0 k = 2, . . ., r if c1 = 0.

To prove the theorem it is sufficient to consider the dominant term of the polynomial �k(t):

(a) If�1 = c2
1

− c0c2 >0then�k(t) = (c2
1

− c0c2)t
2k−2 + · · ·and it isobvious that c is righteventually

Newton.

(b) If�1 = c2
1

− c0c2 = 0then c2 = c2
1
and�2 = c1(c

3
1

− c3) /= 0.Now�k(t) = (k − 1)(c3
1

− c3)t
2k−3 +

· · · and so c is right eventually Newton if c3
1

− c3 = �2
c1

>0 and c is left eventually Newton if

c3
1

− c3 = �2
c1

<0.

(c) If c1 = 0 the polynomial has the form

�k(t) = (k − 1)(k − 2)· · ·(k − (r − 1))

(r − 1)! (−cr+1)t
2k−(r+1) + · · ·

so (c1) and (c3) are clear and depend of the sign of cr+1.

If c1 /= 0 the polynomial is

�k(t) = (k − 1)(k − 2)· · ·(k − r)

r! (cr+2
1

− cr+2)t
2k−(r+2) + · · ·

so (c2) and (c4) are clear and depend of the sign of cr+2
1

− cr+2 = �r+1

cr
1

>0. �

It now follows from Theorem 15 that all sequences are either e-Newton or n-Newton and that all

sequences have been classified as one or the other. It follows from (18), as well as Lemma 12, that

�1(t), equal to �1, is constant; so if, for a sequence c, �1 <0, then for the sequence c(t), �1(t)<0 for

all real t, and such a sequence is n-Newton. If 0 = �1 = �2 = · · · = �n−1, then the sequence c is not

only Newton, but f-Newton:

If c : 1, 0, . . ., 0, cn ⇒ c(t) = c ⇒ �k(t) = �k = 0, 1 � k � n − 1.

If c : 1, c1, c21, . . ., cn1 ⇒ c(t) = 1, c1 + t, (c1 + t)2, . . ., (c1 + t)n

⇒ �k(t) = �k = 0, 1 � k � n − 1.

All other sequences are classified within Theorem 15.

References

[1] G. James, C.R. Johnson, S. Pierce, Generalizedmatrix function inequalities onM-matrices, J. LondonMath. Soc., 57 (2) (1998)
562–582.

[2] O. Holtz, M-matrices satisfy Newton’s inequalities, Proc. Amer. Math. Soc. 133 (3) (2005) 711–717.
[3] C.Maclaurin, A second letter toMartin Folkes, Esq.; concerning the roots of equations, with the demonstration of other rules

in algebra, Philos. Trans. 36 (1729) 59–96.
[4] I. Newton, Arithmetica universalis: sive de compositione et resolutione arithmetica liber, 1707.
[5] C.P. Niculescu, A new look at Newton’s inequalities, J. Inequal. Pure Appl. Math. 1 (2) (2000) (Article 17, 14 pp. (electronic)).


	Matrices and spectra satisfying the Newton inequalities
	Recommended Citation

	Introduction
	Special Newton spectra and matrices
	Basic general ideas
	Translatability of Newton sequences
	Eventually Newton sequences
	References

