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Abstract. We present an approach for ab initio many-body calculations of
excited states in solids. Using auxiliary-field quantum Monte Carlo, we introduce
an orthogonalization constraint with virtual orbitals to prevent collapse of the
stochastic Slater determinants in the imaginary-time propagation. Trial wave
functions from density-functional calculations are used for the constraints.
Detailed band structures can be calculated. Results for standard semiconductors
are in good agreement with experiments; comparisons are also made with
GW calculations and the connections and differences are discussed. For the
challenging ZnO wurtzite structure, we obtain a fundamental band gap of
3.26(16) eV, consistent with experiments.
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1. Introduction

The accurate calculation of excited states in extended systems is a leading challenge in modern
electronic structure theory. Density functional theory (DFT), which usually gives good results
for ground state properties of materials without strong electron correlation, suffers from the
well-known band-gap problem even for simple semiconductors [1–3]. The use of hybrid
functionals, which incorporate a portion of exact exchange from Hartree–Fock (HF) theory,
has resulted in significant improvements for semiconductors with small to medium gaps, but
less so for large gap systems [4]. Time-dependent DFT and many-body perturbative approaches
have shown considerable promise [5]. The GW method is perhaps the simplest and most widely
used of the latter and has led to dramatically improved results, largely for simple sp bonded
materials [6]. It is less successful in materials that are more strongly correlated. In wurtzite
structure ZnO, for example, the accuracy of GW quasi-particle excitation energies is still a
matter of some controversy [7–11]. A general approach which allows accurate calculations of
electronic excitations across a wide variety of solids is thus very much in need.

Quantum Monte Carlo (QMC) [12, 13] is a non-perturbative, many-body computational
method which is uniquely capable of scaling up to large system sizes and which in principle
does not involve empirical parameters. Ground-state calculations with several flavors of QMC
have seen significant recent development [12–14]. Although some excited states calculations
have also been performed, for example, calculations in molecules [15, 16] and diffusion Monte
Carlo (DMC) calculations of excitation energies of silicon and diamond at some high symmetry
k-points [17, 18], the capability of QMC to treat excited states in general is much less developed.
A major reason for this is the intrinsic difficulty of maintaining orthogonality with the lower-
lying states when the targeted many-body excited state is being represented stochastically in an
imaginary-time projection method.

The auxiliary-field quantum Monte Carlo (AFQMC) method ([13] and references therein)
naturally offers a new framework for addressing this difficulty and for doing excited state
calculations in solids. The random walks in AFQMC take place in a space of Slater
determinants. The single-particle orbitals in each Slater determinant are expressed explicitly
in terms of a chosen one-particle basis. Thus, in addition to orthogonalizing the single-particle
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orbitals with each other (as is done in ground-state calculations), one can orthogonalize them
with empty (hole) orbitals to remove contamination in the projection. For example, as an
approximate constraint, the occupied orbitals can be orthogonalized with unoccupied ones
defined by a trial wave function. Recent developments in ground state calculations have
demonstrated that the AFQMC framework, with properly formulated sign or phase constraints
using trial wave functions, allows sign-problem-free simulations with high accuracy across a
wide range of both strongly correlated model Hamiltonians [19] and real material systems
[13, 20–25].

In this paper, we show how the AFQMC approach can be formulated to accurately
calculate excited states in extended systems. The ground-state method is augmented by an
orthogonalization constraint with virtual orbitals to prevent collapse to lower-lying states in
the imaginary-time projection. Simple trial wave functions from HF or DFT are used for
the phaseless and orthogonalization constraints. We illustrate the method by calculating the
detailed band structures in silicon and carbon, which are, respectively, small and large band gap
semiconductors. We then apply the method to determine the optical band gap in ZnO, which
has drawn much recent attention and which presents a significant challenge, with high-lying
strongly correlated 3d-bands interacting with 3s and 3p semicore states.

2. Methodology

2.1. Formalism

We focus on optical gaps, from the creation of a bounded electron–hole (eh) pair (exciton)
with infinite lifetime. In AFQMC, we target an excited state of the many-body Hamiltonian
Ĥ with imaginary-time projection |9∗(β)〉 ∝ e−β Ĥ

|ψ∗

T〉, where |ψ∗

T〉 is a trial wave function
of the excited state, and β ≡ N1τ with N the simulation time step and 1τ the Trotter step
size. The wave function at any imaginary-time can be thought of as |9∗(β)〉 =

∑
φ cφ |φ↑〉 ⊗

|φ↓〉. Each Slater determinant in the sum, |φ↑〉 ⊗ |φ↓〉, is a random walker whose orbitals
(mutually orthogonal initially) evolve with imaginary-time β. The distribution of the random
walkers gives a statistical representation of the coefficients cφ. Explicitly, |φ↑〉 has the form
(φ1, . . . , φi , . . . , φm), where each φi is an orbital that evolves with β, and m denotes the number
of spin-↑ electrons. (Below we will suppress the spin index where possible; the ↓ component
has a similar form.) Thus the AFQMC process resembles the propagation of a population of
mean-field solutions in time-dependent external fields. As the orbitals evolve during the random
walk, some non-orthogonality will develop. As long as the orbitals remain linearly independent,
the walker determinant is independent of this. Eventually, however, the tendency to collapse to
an unphysical bosonic ground state would create numerical instabilities due to finite arithmetic
precision. To prevent this, periodically in the propagation the orbitals within each random walker
are orthogonalized with each other to ensure that the signal for fermionic antisymmetry is not
lost in numerical noise. This step is also needed in ground-state calculations [26], and indeed
even in mean-field calculations. Note that, although the orbitals in each random walker at any
given time β can be thought of as being orthogonal, different random walkers, or the same
walker at different times, are in general not orthogonal to each other in AFQMC.

The excited state energy can be calculated by the mixed estimator [16]

E∗(β)=
〈ψ∗

T|Ĥ |9∗(β)〉

〈ψ∗

T|9∗(β)〉
, (1)
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which converges to the exact result at β → ∞. If |ψ∗

T〉 belongs to an irreducible representation
of the symmetry group of Ĥ different from that of the ground state, equation (1) is exact for
the lowest excited state of that symmetry. Otherwise, imaginary-time projection is considerably
more challenging, since the propagation will tend to collapse to the ground state (or other lower-
lying states) [16].

The AFQMC formalism, however, provides a natural way to prevent the collapse. The
orbital structure of the random walker in AFQMC allows one to impose additional orthogonality
constraints, using virtual orbitals. For a concrete illustration, consider a targeted many-body
state corresponding to the ‘single’ excitation of replacing the i th valence orbital by conduction
orbital labeled by j (thus j > m). Each random walker is still an m-electron Slater determinant.
For the purpose of orthogonalization, however, we will regard it as the extended ordered
list (φ1, . . . , φi−1, φ̄i , φi+1, . . . , φm, φ̄m+1, . . . , φ̄ j−1, φ j). Any orbital denoted by ‘-’ is a virtual
orbital whose only role is in the orthogonalization of the m occupied orbitals. A Gram–Schmidt
orthogonalization on this extended set ensures the following orthogonality conditions:

(i) 〈φ̄i |φ j〉 = 0;

(ii) 〈φ̄i |φk〉 = 0 for k ∈ [i + 1,m];

(iii) 〈φ̄k|φ j〉 = 0 for k ∈ [m + 1, j − 1].

After the orthogonalization step, only the m occupied orbitals are retained and included in
the propagation and measurement, until the next time for orthogonalization when the φ̄ are re-
inserted and the procedure repeated. This extended Gram–Schmidt procedure adds minimally
to the total CPU time, which is dominated by the projection and local-energy evaluations.
(Timing information on the plane-wave AFQMC formalism, which is used in this work, has
been discussed in [20–22].) The procedure generalizes straightforwardly if the targeted excited
state corresponds to ‘double’ excitations or beyond.

In the present study, we use the corresponding orbitals from mean-field theory as the virtual
orbitals in the orthogonalization, as discussed below. The orthogonality constraint is exact
within independent-particle theory, and a natural generalization in the spirit of the phaseless
approximation [13] when the auxiliary-fields are activated. It stabilizes calculations of an
excited state, even if the latter is not the lowest energy state of that symmetry.

We take simple trial wave functions directly from DFT calculations for the phaseless
constraint [13] and for the orthogonalization. The starting point for constructing |ψ∗

T(k)〉 at
the selected k point in the Brillouin zone (BZ) is the single Slater determinant DFT wave
function for the ground state, |ψT(k)〉. The orbitals φT

σ,i are given by the eigenfunctions at k
based on a well-converged density integrated over k-points. For a given excitation of spin-
σ from an occupied orbital i to an unoccupied orbital j , we replace φT

i,σ by φT
j,σ . In the

orthogonality constraint, we use the corresponding DFT orbitals, i.e. φ̄i = φT
i . Virtual orbitals

derived from different DFT calculations (local density approximation (LDA), generalized
gradient approximation (GGA) and hybrids) give essentially the same results. The insensitivity
of AFQMC to the choice of trial wave function has been previously noted [20, 23].

For insulators, the ground states are closed shell configurations, so this type of excited
state Slater determinant will be spin-contaminated in general. To avoid this, we form a two-
determinant singlet wave function

|ψ∗

T〉 = (a†
j↑ai↑ + a†

j↓ai↓)|ψT〉, (2)
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Figure 1. Illustration of AFQMC projections of the ground- and excited-state
(i = 2 → j = 5) energies (equation (1)) in silicon at k = (0.3, 0, 0). Phaseless
AFQMC result for the ground state (red diamonds) is compared to exact
free-projection (black circles). For the excited state, free-projection (blue
squares) collapses. Result from the new method with phaseless and virtual
orthogonalization constraint is shown in red triangles. GW excitation is shown
for reference and is indicated by violet dashed lines [27].

where a†
j and ai are creation and destruction operators for unoccupied (conduction) and

occupied (valence) states, respectively, and we assume that the spatial part of the valence
and conduction orbitals are spin independent. In degenerate cases, the trial wave function is
constructed by considering all possible promotions among these orbitals, and the coefficients
of each determinant are set equal. In the orthogonality constraint, if the valence state φT

i is
degenerate, its partners are not included in the constraint, which is consistent with ground state
AFQMC for an open-shell system. Similarly, any degenerate partners of the conduction state
φT

j are not included. All our calculations are performed at arbitrary k-points in the primitive
cell that holds the most complete symmetry for different excitations. In supercells, the folding
of bands creates additional mixing of crystal momentum eigenstates, whose decoupling at the
many-body level will need further study.

2.2. Illustration

Figure 1 illustrates our method in fcc silicon. The excited state corresponds to the excitation
from band i = 2 to the lowest lying conduction band j = 5 at k = (0.3, 0, 0). The trial wave
function |ψT〉 was obtained from DFT with the LDA, while |ψ∗

T〉 for excited state is the singlet
trial wave function of equation (2). For comparison, AFQMC results are also shown from free-
projection, which does not impose the phaseless constraint [13] and is exact for the ground state,
but is eventually overwhelmed by the fermion sign problem. (Large runs with ∼ 2 × 106 walkers
were used in the free-projection calculations.) The ground state phaseless AFQMC results are in
excellent agreement with the exact calculation, indicating very small systematic error from the
phaseless approximation, consistent with earlier results [21]. In contrast with the ground state,
exactness is not ensured in free projection for the excited state; a more severe sign problem and
onset of collapse is seen. The phaseless and the orthogonality constraints stabilize the excited

New Journal of Physics 15 (2013) 093017 (http://www.njp.org/)
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state calculation and yield an accurate excitation energy, which is within ∼ 0.3 eV of the GW
result [27] after correction of finite-size (FS) effects, as we discuss next.

2.3. Calculation of the band structure and discussion

Excitation energies from valence state i to conduction state j at any selected BZ k point are
calculated as the difference between the AFQMC total energy and the corresponding ground-
state energy

1EQMC
i j (k)= E∗

i j(k)− E0(k). (3)

Because the many-body calculations are performed in FS simulation cells, the energies have FS
errors which must be removed [24, 28–31]. FS corrections to the thermodynamic limit can be
obtained as post-processing corrections [24, 30] from lower-levels of theory for both one-body
(1b) and two-body (2b) effects. In excited state calculations, the creation of the eh pair results in
an additional bias, from the interaction between the particle and hole. We obtain the combined
1b and eh FS correction from DFT calculations:

δE eh,1b
i j (k)= eg(k)−1EDFT

i j (k) , (4)

where eg(k)≡ e j(k)− ei(k) is the difference in band energies from a standard DFT calculation,
using a dense k-point grid, while 1EDFT

i j (k) is from self-consistent DFT calculations at k
paralleling the QMC calculations in equation (3). We correct the 2b FS error, which along with
the 1b effect are substantially reduced here because 1EQMC

i j (k) is an energy difference between
two states within the same simulation cell, using

δE2b
i j (k)=1ELDA

i j (k)−1EFS−LDA
i j (k) , (5)

where the two excitation energies on the right are from LDA calculations paralleling the QMC,
using the standard and a specially parametrized FS functional [24, 30], respectively. The sum
of equations (4) and (5) gives the total FS correction δEi j(k). The largest contribution is from
δE eh,1b

i j (k), typically ∼ 0.10 eV in the primitive unit cell of Si and diamond. Its largest value
in Si is 0.35 eV at the 0 point. In diamond, which has a large band gap, its largest value is
0.83 eV. The 2b correction is typically smaller; its largest value is 0.12 eV in Si and diamond,
and 0.08 eV for the fundamental gap in ZnO.

We then obtain a quasiparticle band structure εn(k) from a least-squares fit [17] to the
calculated many-body excitation energies 1Ei j(k)≡1EQMC

i j (k)+ δEi j(k):

min

∑
i∈v

∑
j∈c

(
1Ei j(k)− [ε j(k)− εi(k)]

)2

 , (6)

where i and j run over the occupied (v) and unoccupied (c) states, respectively. There could
be a constant energy shift (universal to all bands) between different k-points. For comparison,
the highest occupied quasiparticle energy is set equal to the corresponding DFT eigenvalue:
εm(k)= em(k).

As mentioned, the aim of the present QMC calculations is optical gaps. In a large variety
of systems, the AFQMC method has shown to be a highly accurate, parameter-free post-DFT
method in ground-state calculations using the phaseless constraint with single-determinant trial
wave functions from DFT. The present ‘promotion’ approach addresses the problem in the spirit
of capturing excitations described by number conserving eh pair excited states corresponding to
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Figure 2. Many-body band structure of silicon from AFQMC (blue dots).
GW [27] and LDA band structures are plotted by solid and dashed lines,
respectively. Available DMC results at high symmetry points 0, X and L [17] are
indicated by green triangle. Experimental values [27] are shown as red circles.

poles in the Lehman representation of the linear density response function [32]. The orbital
orthogonality approximation we have used in the present study assumes that the ordering
of many-body excited states produced by the single-determinant trial state in a Koopman’s
sense is not fundamentally wrong. We will make comparisons with GW in discussing our
results. However, it is important to note that GW calculates addition/removal energies and
corresponding gaps. In principle, these are larger than the optical band gap by the exciton
binding energy, which is small for all the systems studied here. For Si, the exciton binding
energy is about 0.015 eV [33].

We could, of course, also use AFQMC to directly calculate the addition/removal electron
excitation energy. There are advantages and disadvantages versus the ‘promotion’ approach. For
the fundamental gap, for example, the addition/removal approach will involve three ground-
state total energy calculations [E(N + 1), E(N ), E(N − 1)], so it will not have the limitation
above of the assumption about the excited state ordering as given by a single Slater determinant
trial wave function. On the other hand, FS extrapolation will be much more challenging for the
charged systems. The ‘promotion’ approach within the assumptions above applies to all k-points
and can be used to obtain the entire band structure. We will focus on the application of the latter
approach in the rest of this paper.

3. Applications

3.1. The band structure of silicon

The calculated full many-body silicon band structure is shown in figure 2 and compared to
LDA and GW, as well as to available DMC and experimental results [17, 27]. As discussed
above, because of small excitonic effect, GW’s addition/removal band structure is used as
reference. Calculations for fcc silicon were done at the experimental lattice constant of
5.431 Å. Both AFQMC and DFT calculations used a norm-conserving separable nonlocal LDA
pseudopotentials generated by the OPIUM code [34], with a planewave cutoff Ecut = 25 Ryd.
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Figure 3. Many-body band structure of diamond from AFQMC (blue dots).
GW [35] and GGA band structures are plotted by solid and dashed lines, re-
spectively. Available DMC results at high symmetry points 0, X and L [18] are
indicated by green triangles. Experimental values [27] are shown as red circles.

FS correction has been applied to the AFQMC results to remove residual FS effects, which are
small, as discussed in section 2.3. Trotter time-step extrapolation of calculated band gaps in
standard semiconductors such as silicon and diamond (as discussed below) shows that Trotter
errors are less than the statistical uncertainty (0.02 eV) for 1τ = 0.005 Ryd−1. Using a |ψ∗

T〉

from LDA, AFQMC results correct the band gap problem and are in good agreement with
experiment and with GW. The lowest band, which corresponds to the highest excitation energies,
tends to be too low. For an imaginary-time projection method, its quality can be expected to
decline for higher excited states. Also the simple singlet |ψ∗

T〉 or the orthogonalization constraint
may not be sufficient, as there are many states with similar energies.

3.2. The band structure of diamond

The many-body band structure of diamond is given in figure 3 together with available DMC
and experimental results [18, 27]. The lattice constant of 3.567 Å was used. The calculations
are similar to those in Si, except for a higher planewave cutoff Ecut = 50 Ryd and the use
of GGA pseudopotential and trial wave function. We have verified that the calculations are
insensitive to the difference in |ψ∗

T〉 at the level of LDA versus GGA or a hybrid functional.
Other calculational details are similar to those in section 3.1. Exciton binding energy is about
0.08 eV in diamond [36]. The AFQMC results are again generally in very good agreement with
GW and with experiment.

3.3. The band gap of ZnO

Accurately calculating the fundamental band gap of wurtzite structure ZnO is very challenging.
LDA and GGA underestimate the gap by almost 3 eV. Even the generally more accurate
GW method gives various values [7–11]. There has been considerable discussion about
the importance of various convergence issues, choice of pseudopotentials and additional
approximations such as the plasmon-pole model and the inclusion of self-consistency in the
GW calculation [7–11]. Here we will use the AFQMC method to study the full many-body
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Table 1. The calculated AFQMC band gap (eV) of wurtzite ZnO, compared to
experiments [37–40]. Also shown are results from GGA, hybrid DFT [41, 42]
and GW [7, 11]. (Experimental exciton binding energy is ∼ 0.06 eV [33].)

GGA Hybrid GW AFQMC Exp.

1gap 0.77 3.32,2.90 3.4,3.6,2.56 3.26(16) 3.30,3.44,3.57

Hamiltonian by using high-quality pseudopotential in an ab initio way. The orbital orthogonality
constraint is applied to guide the propagation, and its stability has been illustrated before. To
properly treat the large spatial overlap among 3s, 3p and 3d wave functions of atomic Zn [9], our
Zn GGA pseudopotential was constructed with a Ne-core, thereby fully correlating the semicore
3s, 3p along with the 3d states in the many-body calculation. Very conservative radial cutoffs
of 0.83, 1.02 and 1.13 Bohr were used for s, p and d channels, respectively, resulting in a large
planewave cutoff Ecut = 180 Ryd. The pseudopotential gives GGA optimized lattice parameters
of a = 3.279 and c = 5.284 Å, and bulk modulus of 128.7 GPa, all in good agreement with
published GGA results [43].

Our AFQMC calculations were done at the above GGA optimized geometry. While hybrid
functionals seem to perform better in ZnO, we chose to use simple trial wave functions from
GGA in our AFQMC calculations to avoid any parameter tuning. The singlet form |ψ∗

T〉 in
equation (2) was used. The main calculations were done with Trotter time-steps of 1τ = 0.01
and 0.005 Ryd−1. The Trotter error was then corrected for by extrapolation from separate runs
using a single-determinant |ψ∗

T〉. (The Trotter error at 1τ = 0.005 Ryd−1 is about ' 0.25 eV
prior to extrapolation.) The calculated raw band gap was 2.54(14) eV. Since DFT severely
underestimates the band gap, the FS correction is less straightforward in ZnO. At k = 0, for
example, the single k-point self-consistent GGA calculation would yield a metallic ground
state. We extrapolated δE eh,1b

i j (k) for k within 0.1 of the 0 point, along two high symmetry
lines. In doing so, we assume that the eh effect does not introduce a discontinuity in the band
dispersion, which is reasonable since it mainly relates to the simulation cell size. This yielded
δE1b,eh

i j (0)= 0.58(08) eV (LDA would yield 0.41(04) eV). The 2b correction of equation (5) is
well-behaved: δE2b

i j (0)= 0.08 eV. Adding the FS corrections yields our calculated band gap of
3.20(16) eV.

The experimental equilibrium geometry is at a = 3.250 and c = 5.207 Å [44]. To compare
our band gap (for the GGA equilibrium geometry) to experiment, we apply a correction
of +0.06 eV, which is the excitation energy difference given by GGA for the experimental
and GGA-optimized geometries. (Hybrid B3LYP calculations give a correction of +0.10 eV.)
Table 1 compares our final calculated band gap with optical experimental values and
representative results from recent calculations. The error bar on the AFQMC result reflects
the statistical error and the uncertainty in the FS corrections.

We note that, even with the small-core pseudopotential, there can be pseudoization and
core-relaxation errors [45]. The precise effect cannot be determined without further many-body
calculations. However, recent studies [10, 11] comparing all-electron and pseudopotential GW
calculations indicate that the effect is approximately +0.27 eV for a pseudopotential of similar
quality to the one we have adopted. This would increase the AFQMC result for the fundamental
band gap in ZnO to ∼ 3.53(16) eV, still within the range of experimental measurements but
would seem to be in better agreement with the most recent result of 3.57 eV [39, 40].
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4. Discussion and summary

We have generalized a powerful AFQMC approach to excited state calculations, and carried
out a first set of applications. There are many directions for future research, and various
further improvements can be explored. We have used a planewave basis and norm-conserving
pseudopotentials in these calculations. Other single-particle basis sets are straightforward to
use, for example, with localized or natural orbitals. The former might be useful in the study of
localized (Frenkel) excitons. One could also work with a truncated set of orbitals from a lower-
level of theory, or use a down-folded Hamiltonian directly to improve computational efficiency.
The constraining virtual orbitals have been fixed in our calculations, but could potentially be
allowed to dynamically evolve in some way. It is reassuring that DFT trial wave functions have
worked well. The overall constraint can be further improved by using better trial wave functions,
as we have illustrated in molecules [16]. More elaborate multi-determinant wave functions
can be used, for example, from diagonalization in a subspace formed by single and double
excitations to conduction orbitals. Furthermore, it may be possible to use AFQMC results as
feedback to improve the orthogonality constraint. For example, natural orbitals obtained from
the calculated 1b density matrix might be useful in this regard.

In summary, we have presented an AFQMC approach for the calculation of electronic
excitations in solids, introducing an orbitally based orthogonalization constraint in the phaseless
AFQMC framework to stabilize the projection of excited states. Simple trial wave functions
directly from DFT calculations were used for the constraint. Detailed many-body quasiparticle
band structures can be calculated. In prototypical semiconductors (Si and diamond), the
calculated band structures are in good agreement with those from GW calculations and with
experiment. In the more strongly correlated and challenging wurtzite ZnO crystal, the calculated
fundamental gap is in excellent agreement with the latest experimental data. The method is non-
perturbative and free of empirical parameters, offering a possible path for general computations
in correlated materials.
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