
W&M ScholarWorks W&M ScholarWorks 

Arts & Sciences Articles Arts and Sciences 

2009 

Bilateral attentional advantage on elementary visual tasks Bilateral attentional advantage on elementary visual tasks 

Kristin M. Reardon 

Jenna G. Kelly 

Nestor Matthews 

Kristin M. Reardon 
William & Mary 

Follow this and additional works at: https://scholarworks.wm.edu/aspubs 

Recommended Citation Recommended Citation 
Reardon, Kristin M.; Kelly, Jenna G.; Matthews, Nestor; and Reardon, Kristin M., Bilateral attentional 
advantage on elementary visual tasks (2009). Vision Research, 49(7), 691-701. 
10.1016/j.visres.2009.01.005 

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been 
accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more 
information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/aspubs
https://scholarworks.wm.edu/as
https://scholarworks.wm.edu/aspubs?utm_source=scholarworks.wm.edu%2Faspubs%2F1155&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu


Bilateral attentional advantage on elementary visual tasks

Kristin M. Reardon a,b, Jenna G. Kelly a, Nestor Matthews a,*

a Denison University, Department of Psychology, 100 South Road, Knapp Hall, Room 410-C, Granville, OH 43023, USA
b The College of William & Mary, Department of Psychology, Williamsburg, VA 23187, USA

a r t i c l e i n f o

Article history:
Received 27 May 2008
Received in revised form 4 January 2009

Keywords:
Orientation discrimination
Detection
Hemifield
Attention
Crowding

a b s t r a c t

We examined interactions between and within the left and right visual hemifields using elementary visual
tasks. Each trial required identifying a letter at fixation and then either discriminating the orientation of
(experiment 1) or detecting (experiment 2) peripheral Gabor targets. On half the trials Gabor distracters
were presented between the Gabor targets, and were either restricted to one lateral hemifield (unilateral
condition) or presented across the left and right hemifields (bilateral condition). Orientation discrimina-
tion and detection each exhibited bilateral superiority only when distracters were present. The results
confirm bilateral superiority in attentional selection, even on these most elementary visual tasks.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Our visual system has its limits. In principle, the visual system’s
limits could be uniform within and across the left and right hemi-
fields. This study was conducted to determine the extent to which
two elementary visual tasks – discrimination and detection –
depend on whether stimuli are positioned in one versus two lateral
hemifields. We use the term ‘unilateral’ to describe stimulation
restricted entirely to the left hemifield or entirely to the right
hemifield, and the term ‘bilateral’ to describe stimulation distrib-
uted across the left and right hemifields.

Previous research on various relatively high-level visual tasks
has suggested that the visual system’s limits are not uniform with-
in and across the lateral hemifields, and instead exhibit a bilateral
(across hemifield) advantage. For example, character discrimina-
tion (Ludwig, Jeeves, Norman, & DeWitt, 1993; Sereno & Kosslyn,
1991) and letter identification in crowded displays (Awh & Pashler,
2000; Chakravarthi & Cavanagh, 2006) are both better when the
targets are presented bilaterally than when presented unilaterally.
The ability to track rotating disks for three seconds (a long duration
by low-level psychophysical standards) is also characterized by
bilateral superiority. Specifically,Alvarez and Cavanagh (2005) pre-
sented a pair of rotating disks unilaterally or bilaterally while par-
ticipants tracked a target on one or both of the disks. When two
targets were presented within the same hemifield (unilateral tri-
als), participants could accurately track one of the targets but per-

formance on the second target fell to chance. By contrast,
participants could track two targets just as well as one target if
the two targets were positioned in separate lateral hemifields
(bilateral trials). This pattern of results is consistent with indepen-
dent resources for attentional selection in the left and right visual
hemifields, and shared resources within each hemifield.

Motivated by the above-mentioned studies that tested rela-
tively high-level stimuli (language dependent symbols) and tasks
(motion tracking for three seconds), here we extended the explora-
tion of laterality effects to low-level stimuli and tasks. Gabor
patches were chosen as low-level stimuli because their luminance
profiles provide a good match to the receptive fields of neurons in
the early visual pathway (Marcelja, 1980). Similarly, orientation
discrimination and detection were chosen as low-level tasks be-
cause both are easily relatable to the activity of neurons in the
early visual pathway (Regan & Beverley, 1985; Westheimer, Shi-
mamura, & McKee, 1976). Notably, orientation discrimination
and detection are controlled by separable neural events (Westhei-
mer et al., 1976; Regan & Beverley, 1985), with detection occurring
earliest in the sequence. Investigating both of these tasks therefore
permitted the possibility of determining whether laterality effects
are present at the earliest stage (i.e., detection), or emerge soon
thereafter (e.g., discrimination).

Other aspects of the present stimuli and tasks render various
types of target–distracter phenomena more or less likely. For
example, the present stimuli and tasks make the phenomenon of
spatial crowding unlikely for several reasons. First, spatial ’crowd-
ing occurs only in tasks that cannot be done based on a single
detection by coarsely coded feature detectors’ (Pelli, Palomares, &
Majaj, 2004, p. 1136). Contrarily, we explicitly chose Gabor stimuli
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and elementary tasks to probe coarsely coded feature detectors in
the early visual pathway (Marcelja, 1980; Regan & Beverley,
1985; Westheimer et al., 1976). Second, spatial crowding occurs
when the center-to-center distance between targets and distracters
is 0.1 times the target eccentricity in the tangential direction, and
0.5 times the target eccentricity in the radial direction (Toet & Levi,
1992). Our distracters were positioned beyond this bound for spa-
tial crowding. Third, the brevity of our multiple item displays
created time pressure that is less characteristic of spatial crowding
than of temporal crowding (Pelli et al., 2004). Temporal crowding is
a form of inappropriate target–distracter integration that occurs –
independent of spatial proximity – when stimuli are flashed briefly
enough to overload attentional selection (Pelli et al., 2004). The fail-
ure of attentional selection that characterizes temporal crowding
would be evidenced on our detection task to the extent that
distracters are mistaken for physically absent targets, i.e., a dis-
tracter-induced increase in ‘false alarms’. A distracter-induced
reduction in ‘hits’ would instead implicate surround suppression,
the phenomenon in which sensitivity to a target’s luminance con-
trast is reduced by a spatially displaced distracter (Petrov, Popple,
& McKee, 2007). In short, the present stimuli and tasks preclude
spatial crowding (as defined by Pelli et al., 2004) while creating
the opportunity to test diverging predictions. Temporal crowding
predicts distracter-induced increases in false alarms; surround sup-
pression predicts distracter-induced decreases in hits.

To anticipate the present results, a bilateral advantage emerged
reliably on each task – but only when the Gabor targets had to be
discriminated or detected to the exclusion of the distracters.
Distracters on the detection task did not reduce the visibility of
physically present targets, but rather increased false alarms when
targets were physically absent. This inappropriate integration of
the distracters is characteristic of the temporal crowding that
arises when briefly flashed displays overload attentional selection
(Pelli et al., 2004). The present findings therefore independently
confirm the previously reported bilateral advantages in attentional
selection (Alvarez & Cavanagh, 2005; Awh & Pashler, 2000;
Chakravarthi & Cavanagh, 2006) and extend that principle to the
most elementary visual tasks of Gabor orientation discrimination
and detection.

2. Discrimination experiments

2.1. Experiment 1A: orientation discrimination

2.1.1. Method
Some portions of the Method were identical to those of

Matthews, Rojewski, and Cox (2005), and Strong, Kurosawa, and
Matthews (2006). All portions of the Method are described here
again for completeness.

2.1.2. Apparatus
The experiment was conducted on a 21 in. (53.34 cm) ViewSon-

ic P225 monitor that was controlled by a Macintosh G4 computer

with a 733 MHz processor and software from the psychophysics
toolbox (Brainard, 1997; Pelli, 1997). The vertical refresh rate of
the monitor was 120 Hz, and the spatial resolution was 1024 �
768 pixels. A chin rest helped to stabilize head position at 57 cm
from the monitor.

2.1.3. Discriminanda
The discriminanda were achromatic Gabor patches, created by

multiplying a sinusoidal luminance profile by a two-dimensional
Gaussian envelope. The Gabor patches had maximum (108.00 cd/
m2) and minimum (5.83 cd/m2) luminances that rendered high
contrast (Michelson contrast = 89.76%) within the apparently gray
surround (16.1 cd/m2). The spatial frequency was 1.286 cycles per
degree; each Gabor patch comprised four randomly phase-shifted
light-dark cycles that collectively spanned a 3.2 � 3.2 deg (84 �
84 pixels) square region. The discriminanda were oriented at either
45 or 135 deg, randomly.

2.1.4. Stimulus sequence
The stimulus sequence is shown in Fig. 1. Each trial began with

a central white fixation circle (99 cd/m2; 72.02% contrast; 0.19 deg
diameter) that appeared simultaneously with a pair of peripheral
cues. The peripheral cues were equiluminant solid red circles1

(16.1 cd/m2; CIE 0.615, 0.345; 3.2 deg (84 pixel) diameter) at the
positions where the discriminanda (Gabor patches) were to appear.
A computerized voice synchronized with the peripheral visual cues
also indicated whether the two discrminanda on the present trial
were to appear in the ‘top’, ‘bottom’, ‘left’, or ‘right’ quadrants.
Within each quadrant, the nearest corner of the square region that
contained the discriminandum was, diagonally, 12.3 deg from fix-
ation. The center of each discriminandum was, diagonally,
14.55 deg from fixation. After 350 ms, the peripheral cues were re-
placed by the gray surround (16.1 cd/m2) for 200 ms. Subse-
quently, the discriminanda appeared at the cued positions while
one of 15 randomly selected letters (31.20 cd/m2; 31.92% contrast;
12 point Helvetica, lower case) appeared at fixation, all for 183 ms
(22 frames). The central letter was contained in a small gray square
(16.1 cd/m2; 0.44 deg or 12 pixels per side) which was inscribed in
a larger square (1.33 deg or 36 pixels per side) of noise that ren-
dered the central letter difficult to identify unless fixated directly.
The noise surrounding the letter’s region comprised 0.11 deg
(3 � 3 pixel) squares that were either dark or light (respectively,
1.6 or 99 cd/m2; 96.82% contrast), randomly. To reduce neural per-
sistence, the central letter and all Gabor patches were followed by
noise masks for 8.33 ms (one frame). The central letter was re-
placed by noise with parameters identical to those in its surround.
The noise that replaced each Gabor patch comprised 49 (7 rows by
7 columns) separate 0.44 deg squares (12 pixels on each side) that
were either dark or light, randomly. The actual dark and light
luminance values within the mask for each Gabor patch depended

Fig. 1. Stimulus sequence for experiment 1A. The actual stimulus parameters are detailed in the text.

1 For interpretation of color in Fig. 1, the reader is referred to the web version of
this article.
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on the participant’s performance, and will be described below in
the Procedure.

2.1.5. Task
The task on each trial was two-fold. First, to control fixation, the

participant was required to correctly identify the central letter. An
incorrect letter response immediately aborted the trial, and auto-
matically restarted the trial sequence.2 If the letter response was
correct, then the participant judged the Gabor patches at the two
peripherally cued locations to be either the same or different in ori-
entation. To maintain motivation, immediate auditory feedback
identified each letter response and each orientation response as
either correct or incorrect. The computer also announced the per-
centage of correct letter responses and the percentage of correct
orientation responses after every 80 trials.

2.1.6. Participants
Denison University’s Human Subject Committee approved the

study, which was conducted with the understanding and written
consent of each participant. Fifty-two naive Denison University
undergraduates completed experiment 1A. Each participant had
normal or corrected-to-normal acuity.

2.1.7. Procedure: practice trials
Participants completed a series of practice trials to establish

that the task was understood, i.e., could be performed at greater-
than-chance levels, before the actual trials began. Initially, each
participant was required to make ten consecutive correct re-
sponses at each of the following three stimulus durations before
proceeding: 2000, 1000, and 500 ms. In those initial practice trials,
there were no masks. Subsequently, the masks were added and
each participant was required to make ten consecutive correct re-
sponses to 500 ms stimuli. Lastly, the 500 ms stimuli were masked
and Gabor distracters were added between the discriminanda, as
shown in the second and fourth panels of Fig. 2. Participants were
again required to make 10 consecutive correct responses – which
could occur by chance with a probability of only 1/1024. Each par-
ticipant successfully met this behavioral criterion, indicating that
any performance limitations on the subsequent 200 ms actual tri-
als would be sensory rather than conceptual.

2.1.8. Procedure: actual trials
The four experimental conditions in experiment 1A are shown

in Fig. 2. The pair of discriminanda on each trial appeared in the
top or bottom quadrants randomly on bilateral trials (left panels),
and in the left or right quadrants randomly on unilateral trials
(right panels). Within each of those two laterality conditions, a pair

of Gabor distracters was either absent (first and third panels), or
presented at even spatial intervals between and co-linearly with
the discriminanda (second and fourth panels). Specifically, the cen-
ter-to-center distance between a discriminandum and the nearest
Gabor distracter was 7.1 deg, which is beyond the critical region
for spatial crowding (Toet & Levi, 1992).3 Each Gabor distracter
was centered 11 deg from fixation, randomly oriented, randomly
phase shifted, but identical to the discriminanda in all other ways.
All Gabor distracters and discriminanda were followed by noise
masks. The initial luminance contrast of the noise masks was 6%.
After every ten trials, the luminance contrast of the noise masks
was set according to the cumulative percentage of correct orienta-
tion responses: 6% contrast for <68% correct; 15% contrast for <71%
correct; 45% contrast for <74% correct; and 90% contrast for >74%
correct. This reduced floor and ceiling effects. For each participant,
the various experimental conditions (shown in Fig. 2) were block-
randomly sequenced. The target orientations were the same on
half the trials, and differed by 90 deg on the remaining trials,
randomly.

2.1.9. Procedure: data analysis
In experiment 1A there were two independent variables, later-

ality (bilateral versus unilateral) and distracters (absent versus
present). The dependent variable – orientation discrimination (d0)
– was computed using standard signal detection procedures
(Green & Swets, 1966). A performance level of 84% correct without
response bias corresponded to d0 = 1.0. Hits and false alarms were
defined, respectively, as ‘different’ responses to differently oriented
versus identically oriented discriminanda. There were 20 chances
to hit and 20 chances to false alarm (40 trials total) in each of
the four stimulus conditions for each participant. Unless otherwise
noted, we used a within subject t-test to directly evaluate the lat-
erality effect (i.e., bilateral versus unilateral discriminability) in
each distracter condition. Because these were planned (a priori)
comparisons – indeed, the very motivation for the study – we
did not evaluate laterality by distracter interactions, and made
no adjustment for cumulative type 1 error (Keppel, Saufley, &
Tokunaga, 1992). For each t statistic, however, partial g2 is re-
ported as an index of effect size independent of statistical signifi-
cance. Lastly, the error bars shown on figures throughout this
study reflect 1 SEM, and asterisks indicate significant differences
in the laterality variable.

2 In all experiments reported here, the accuracy of the letter response for each
participant far exceeded the chance-performance level of 0.067% correct.

Fig. 2. Stimuli for experiment 1A. Sample stimuli from the bilateral condition and unilateral condition are shown in the left and right pairs of panels, respectively. On
distracter trials (second and fourth panels), the distracters were presented between the two corner targets. The center-to-center distance between a target and the nearest
distracter was beyond the critical region for spatial crowding (Toet & Levi, 1992).

3 Toet and Levi (1992) found that spatial crowding occurs when the center-to-
center distance between targets and distracters is 0.1 times the target eccentricity in
the tangential direction, and 0.5 times the target eccentricity in the radial direction.
Our targets were centered 14.55 deg diagonally from fixation, rendering target-
distracter critical spacings of 1.455 and 7.275 deg along the tangential and radial
directions, respectively. Our distracters were centered 7.1 deg from the nearest target
and halfway between the tangential and radial axes, i.e., well beyond the bound for
spatial crowding at that position.
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2.1.10. Results and discussion
The data from the 52 participants who completed experiment

1A are shown in Fig. 3. Visual inspection immediately reveals that
bilateral orientation sensitivity (d0 = 0.813) and unilateral orienta-
tion sensitivity (d0 = 0.794) were virtually identical when there
were no distracters (t(51) = 0.373, p = 0.711, n.s., partial g2 =
0.003). By contrast, when distracters were present, orientation sen-
sitivity for bilateral stimulation (d’ = 0.377) was more than twice
that for unilateral stimulation (d’ = 0.133). A t-test confirmed that
the bilateral superiority was significant in the target-present
condition (t(51) = 4.758, p < 0.001, partial g2 = 0.307). In short,
experiment 1A provides evidence for distracter-induced bilateral
superiority in orientation discrimination.

In principle, the bilateral superiority in experiment 1A could
have emerged because of the distracters per se, or simply because
the distracters reduced the overall performance level. In other
words, it is possible that bilateral superiority occurs whenever
performance is relatively low (for any reason), but not when per-
formance is relatively high. We next explored this possibility by
considering a manipulation in which d0 levels were systematically
reduced – even in the absence of distracters – by shortening the
stimulus duration.

2.2. Experiment 1B: stimulus duration

2.2.1. Method
Fourteen of the 52 participants who completed experiment 1A

also completed experiment 1B on stimulus duration. Previous
work indicated that orientation sensitivity improves significantly
with masked-stimulus duration across the tens of ms after reliable
orientation sensitivity first emerges (Matthews et al., 2005; Strong
et al., 2006). The present experiment 1B assessed the extent to
which laterality effects in orientation sensitivity depend on stimu-
lus duration, even in the absence of distracters. Consequently, no
distracters were presented. The two new stimulus durations in this
experiment were 50 ms (6 frames) and 117 ms (14 frames), each
temporally centered within the 183 ms (22 frames) duration that
had been tested in experiment 1A. All other aspects of the Method
for experiment 1B were identical to those for experiment 1A.

2.2.2. Results and discussion
Fig. 4 shows the data from the 14 (of 52) participants who com-

pleted experiment 1A (Fig. 3), and who also completed experiment
1B. The left panel of Fig. 4 confirms that in experiment 1A – when
the stimulus duration was 183 ms – these 14 participants exhib-
ited the same general pattern as that in Fig. 3. That is, orientation

discrimination for these 14 participants was characterized by com-
parable bilateral and unilateral performance when distracters were
absent (t(13) = 1.972, p = .07, n.s., g2 = 0.230), and significant bilat-
eral superiority when distracters were present (t(13) = 4.036,
p = .001, partial g2 = 0.556).4 However, as is visually evident in the
right panel of Fig. 4, when distracters were absent bilateral superi-
ority was non-significant at stimulus durations of 50 ms (t(13) =
1.365, p = 0.195, n.s., partial g2 = 0.125), and 117 ms
(t(13) = 0.164, p = 0.872, n.s., partial g2 = 0.002). Importantly, bilat-
eral superiority was non-significant at 50 ms with no distracters
even though bilateral performance in that condition (d0 = 0.488)
was slightly lower than that at 183 ms with distracters
(d0 = 0.532), where significant bilateral superiority occurred. This
pattern rules out the possibility that bilateral superiority emerges
whenever performance is relatively low (e.g., bilateral d0 < 0.532).
Instead, the critical factor appears to be the presence of distracters.
Indeed, unilateral performance in the 183-ms-distracter condition
(d0 = 0.117) was one-third that of the 50-ms-no-distracter condition
(d0 = 0.354), and that difference was significant (t(13) = 2.216,
p = 0.045, partial g2 = 0.274). This demonstrates how vulnerable
unilateral performance is to distracters.

2.2.3. Detection experiments
In addition to orientation discrimination experiments 1A and

1B, we conducted a series of five detection experiments (2A
through 2E). As noted in the Introduction, orientation discrimina-
tion and detection are controlled by separable neural events
(Regan & Beverley, 1985; Westheimer et al., 1976), with detection
occurring earliest in the sequence. Experiments 2A through 2E
therefore allowed us to determine the extent to which the dis-
tracter-induced bilateral superiority that occurred in orientation
discrimination also extends to the earlier stage of detection.

2.3. Experiment 2A: one versus two targets

2.3.1. Method
Twenty-four new naïve participants completed experiment 2A.

The trial sequence was identical to that of the primary discrimina-
tion task (experiment 1A, as shown in Fig. 1) except that the sec-
ond prompt read, ‘‘Target present? Yes (y) or No (n)”. Gabor
targets were present on only half the trials, randomly. Hits and
false alarms corresponded to ‘yes’ responses in the presence and
absence of targets, respectively. Each participant completed a
two-target block and a one-target block. The block sequence was
counter-balanced across participants. In the two-target block, tar-
get-present trials were identical to those in our primary discrimi-
nation task (experiment 1A), as shown in Fig. 2. However, correct
discrimination (experiment 1A) required information from both
spatially cued positions, whereas information from just one spa-
tially cued position was sufficient for correct responses in the
two-target detection block. Therefore one of the two targets in
the two-target detection block provided redundant information.
The extent to which participants exploited that redundant infor-
mation was revealed by a comparison to performance in the one-
target block. On each target-present trial in the one-target block

Fig. 3. Data are shown from the 52 participants who completed experiment 1A, on
orientation discrimination.

4 When the distracters were absent in the 183 ms condition, bilateral performance
was not significantly greater than unilateral performance (p = 0.07), but the difference
approached the p = 0.05 alpha level. Thus, the statistically significant bilateral
superiority when the distracters were present could reflect mere chance variation
beyond the near-significant bilateral bias without distracters. To investigate this
possibility, an Analysis of Covariation (ANCOVA) was conducted for the distracter-
present condition, after defining the bilateral bias in the distracter-absent condition
as a covariate. Specifically, the covariate was defined as the bilateral-versus-unilateral
difference when distracters were absent. The ANCOVA revealed that bilateral
superiority when the distracters were present remained statistically significant
(F(1,12) = 9.685, p = .009, partial g2 = 0.447).
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only one of the two targets, chosen randomly, was presented. Bilat-
eral and unilateral trials in the one-target block were defined by
the positions of the attentional cues. All other aspects of the Meth-
od in experiment 2A were identical to those in experiment 1A.

2.3.2. Results and discussion
That distracters impair unilateral performance more than bilat-

eral performance was also evident for the 24 new naïve partici-
pants who completed experiment 2A – our first experiment on
detection. Data from experiment 2A are shown in Fig. 5, where
the conventions are the same as those used above for orientation
discrimination (Fig. 3). As was the case for orientation discrimina-
tion, the ability to detect targets did not depend on laterality when
distracters were absent. This was true whether the display con-
tained two targets (left panel, left bars; t(23) = 1.136, p =
0.268, n.s., partial g2 = 0.053) or one target (right panel, left bars;
t(23) = 1.315, p = 0.201, n.s., partial g2 = 0.070). By contrast, when
distracters were present, bilateral detection significantly exceeded
unilateral detection in the two-target condition (left panel, right
bars; t(23) = 4.823, p < 0.001, partial g2 = 0.503) and in the one-tar-
get condition (right panel, right bars; t(23) = 4.670, p < 0.001,
partial g2 = 0.487). In short, the data from experiment 2A indicate
that distracter-induced bilateral superiority extends to the ele-
mentary task of detecting Gabor targets.

The data from experiment 2A also indicated that mean detec-
tion (d0) was 1.002 for two targets (left panel) versus 0.844 for
one target (right panel), and that difference was statistically signif-
icant (t(23) = 2.277, p = 0.032, partial g2 = 0.184). However, the
magnitude of the difference (d0 = 0.158) between the two- and

one-target conditions indicates that participants were only mod-
estly able to exploit the redundant information (i.e., the second tar-
get) on the detection task.

2.4. Experiment 2B: spatial frequency

2.4.1. Method
Twenty new naïve participants completed experiment 2B,

which was designed to assess the spatial frequency dependence
of laterality effects in detection. We tested two spatial frequencies
(SFs). The high-SF (2.572 c.p.d.) and low-SF (0.643 c.p.d.) condi-
tions differed from each other by two octaves, and were, respec-
tively, twice and half the spatial frequency tested in experiment
2A. Accordingly, the size of the light and dark noise-mask-squares
that followed each target and distracter was halved (high-SF con-
ditions) or doubled (low-SF conditions) relative to experiment
2A. Trials were blocked by target-SF. Half of the participants
completed the high-SF-target block first, the remaining partici-
pants completed the low-SF-target block first. Within each of the
two target-SF blocks there were three block-randomized distracter
conditions: no distracters; high-SF-distracters; and low-SF-
distracters. All other aspects of the Method were identical to the
1-target condition in experiment 2A.

2.4.2. Results and discussion
Data from the 20 new naïve participants who completed exper-

iment 2B are shown in Fig. 6, where visual inspection reveals spa-
tial-frequency effects on both overall performance and the bilateral
superiority in detection. Each will be described in turn.

Fig. 5. Data are shown from the 24 new na participants who completed experiment 2A, on detection. The two- and one-target conditions are shown in the left and right
panels, respectively.

Fig. 4. Data are shown from the 14 participants who completed both experiments 1A (183 ms duration; left panel) and 1B (50 and 117 ms duration, no distracters; right
panel), on orientation discrimination.
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Each panel of Fig. 6 provides evidence for spatial-frequency
effects on overall performance. For high spatial frequency targets
(left panel), d0 was significantly more impaired by high (center
bars, mean d0 = 0.643) than by low spatial frequency distracters
(right bars, mean d0 = 0.875) (t(19) = 2.633, p = 0.016, partial
g2 = 0.267). Conversely, for low spatial frequency targets (right
panel), d0 was significantly more impaired by low (right bars, mean
d0 = 0.564) than by high spatial frequency distracters (center bars,
mean d0 = 0.836) (t(19) = 3.971, p = 0.001, partial g2 = 0.454).

Additionally, at each target-SF, bilateral superiority in detection
was both statistically significant and largest when the distracter-
SF matched the target-SF. Specifically, for high-SF targets (left
panel), bilateral superiority was largest with high-SF distracters
(t(19) = 2.842, p = 0.010, partial g2 = 0.298), next largest with low-
SF distracters (t(19) = 1.794, p = 0.089, n.s., partial g2 = 0.145), and
smallest when distracters were absent (t(19) = 1.169, p = 0.257,
n.s., partial g2 = 0.067). For low-SF targets (right panel), bilateral
superiority was largest with low-SF distracters (t(19) = 4.477,
p < 0.001, partial g2 = 0.513), next largest with high-SF distracters
(t(19) = 2.811, p = 0.011, partial g2 = 0.294), and smallest when
distracters were absent (t(19) = 2.817, p = 0.041, partial g2 =
0.201). This pattern of outcomes demonstrates that bilateral superi-
ority at each target-SF had both distracter dependence and some
spatial frequency specificity. However, the bilateral superiority in
detection was also evident, albeit to a lesser extent, even when the
distracter-SF did not match the target-SF.5 This implies that the spa-
tial frequency tuning of the mechanisms responsible for the bilateral
superiority in detection was likely broader than 2 octaves.

We were surprised by the significant bilateral superiority that
occurred with low-SF targets in the absence of distracters. It is
tempting to speculate that this effect obtained for low-SF but not
high-SF targets because of the relatively coarse spatial resolution
of attention (Intriligator & Cavanagh, 2001). To the extent that
attentional resources are more available bilaterally than unilater-

ally, bilateral superiority would be more likely at lower SFs than
at higher SFs. However, it is not obvious why attentional selection
would be necessary in the absence of distracters, i.e., when atten-
tional selection was not needed to exclude the distracters. We
therefore suspect that the bilateral superiority in the low-SF-no-
distracter condition may reflect mere chance variability. In any
event, the effects sizes (partial g2 values) reveal that – even for
low-SF targets – bilateral superiority increased when distracters
were added, and especially so when the target-SF and distracter-
SF matched.

2.5. Experiment 2C: orientation

2.5.1. Method
Fifteen new naïve participants completed experiment 2C, which

was designed to assess the orientation dependence of laterality ef-
fects in detection. The target orientation was oblique (45 or
135 deg randomly across trials) in one trial block, and cardinal
(horizontal or vertical randomly across trials) in another trial
block. Eight of the participants completed the oblique-target block
first, the remaining participants completed the cardinal-target
block first. Within the oblique-target block, there were three
block-randomized distracter conditions: no distracters; randomly
oriented distracters (as in all previous experiments); distracters
that were identical to the target. Within the cardinal-target block
there were also three block-randomized distracter conditions.
The first was the no-distracters condition. The second contained
distracters that were identical to each other, and had local orienta-
tions perpendicular to the global configuration: vertically oriented
distracters on bilateral (horizontally aligned) trials; horizontally
oriented distracters on unilateral (vertically aligned) trials. The
third contained distracters that were identical to each other, and
had local orientations parallel to the global configuration: horizon-
tally oriented distracters on bilateral (horizontally aligned) trials;
vertically oriented distracters on unilateral (vertically aligned) tri-
als. This third condition allowed us to evaluate the extent to which
laterality effects in detection depend on local and global co-linear-
ity. All other aspects of the Method were identical to the 1-target
condition in experiment 2A.

2.5.2. Results and discussion
Data from the 15 new naïve participants who completed exper-

iment 2C are shown in Fig. 7, where bilateral superiority is visually
evident whenever distracters were present. For oblique targets

5 As was the case for discrimination in experiment 1B, detection in experiment 2B
was also characterized by a substantial bilateral-bias even in the absence of
distracters. To control for this bias, ANCOVAs were conducted by defining the
covariate as the bilateral-versus-unilateral difference in the absence of distracters,
separately for the high-SF-target and low-SF-target conditions. The ANCOVAs
revealed that the bilaterally superiority remained significant in the high-SF-target-
hi-SF-distracter condition (F(1,18) = 6.610, p = 0.019, partial g2 = 0.269), and in the
low-SF-target-high-SF-distracter condition (F(1,18)=6.656, p = 0.019, partial g2 =
0.270), and in the low-SF-target-low-SF-distracter condition (F(1,18) = 15.571, p =
0.001, partial g2 = 0.464).

Fig. 6. Data are shown from the 20 new naive participants who completed experiment 2B, on target–distracter spatial-frequency relationships in detection. The high-SF and
low-SF target conditions are shown in the left and right panels, respectively.
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(left panel), detection did not depend on laterality when distracters
were absent (t(14) = 1.097, p = 0.291, n.s., partial g2 = 0.079), yet
significant bilateral superiority occurred whether distracters were
randomly oriented (t(14) = 2.889, p = 0.012, partial g2 = 0.373) or
iso-oriented (t(14) = 2.312, p = 0.037, partial g2 = 0.276) with the
targets. Similarly for cardinal targets (right panel), detection did
not depend on laterality when distracters were absent (t(14) =
0.906, p = 0.381, n.s., partial g2 = 0.055), yet significant bilateral
superiority occurred whether the distracters’ local orientation
was perpendicular (t(14) = 3.488, p = 0.004, partial g2 = 0.465) or
parallel (t(14) = 4.173, p = 0.001, partial g2 = 0.554) to the global
configuration. Taken together, these data indicate that the dis-
tracter-induced bilateral superiority in detection was robust across
the various target–distracter orientation relationships.

Given that spatial frequency and orientation are each elemen-
tary features that are relevant to visual neurons responsible for
detection, why did the observed distracter effects depend on spa-
tial frequency but not orientation? A plausible answer pertains to
the manner in which our choice of stimuli likely influenced the
participants’ strategy. Recall that within each trial block of the
present experiments the spatial frequency of the targets was fixed.
The orientation of the targets, however, varied randomly between
two orthogonal angles across trials. Consequently, the optimal
strategy for detection would entail looking for the target’s spatial
frequency regardless of the target’s orientation. This strategy
would lead to the observed distracter effects: spatial-frequency
dependence and orientation independence. An interesting implica-
tion from this is that the distracter effects did not depend simply
on target–distracter similarity alone, but rather on whether the
targets and distracters were similar on a feature that was task-
relevant.

2.6. Experiment 2D: Striped versus solid distracters

2.6.1. Method
Forty new naïve participants completed experiment 2D, which

was designed to further explore the distracter characteristics that
generate bilateral superiority in detection. For each participant,
two distracter categories were tested in separate trial blocks. One
block comprised ‘striped’ distracters and the other block comprised
‘solid’ distracters. Half the participants completed the striped-dis-
tracter block first, and half completed the solid-distracter block first.
The details of each distracter category will be described in turn.

The striped-distracter block comprised three block-randomly
ordered distracter conditions: a no-distracter condition, a ran-
domly oriented Gabor distracter condition (as in experiment 2A),
and a bulls-eye distracter condition. The two bulls-eye distracters
shown on each bulls-eye trial had opposite luminance phases
(i.e., dark-center versus light-center), as schematized in the left-
most panel of Fig. 8a. Each bulls-eye distracter was identical to
the Gabor stimuli in size, shape, duration, fundamental spatial fre-
quency, and luminance contrast. Importantly, luminance contrast
was evenly distributed across all orientations in the bulls-eye
distracters, but concentrated at a single orientation in the Gabor
distracters. This difference allowed us to assess the extent to which
laterality effects in detection depend on how distracter luminance
contrast is distributed across the orientation spectrum.

The solid-distracter block also comprised three block-randomly
ordered distracter conditions: a mixed-polarity distracter condi-
tion, an all-white distracter condition, and a chromatic-distracter
condition, respectively, schematized in the second, third, and
fourth panels of Fig. 8a. In the mixed-polarity condition one of
the two solid-disk distracters, chosen randomly, was dark gray in
appearance (CIE 0.347, 0.346), having a luminance of just
3.99 cd/m2. The other solid-disk distracter was white in appear-
ance (CIE 0.316, 0.336), having a luminance of 65 cd/m2. In the
all-white condition both distracters were identical to the appar-
ently white distracter presented in the mixed-polarity condition.
In the chromatic-distracter condition one of the two distracters,
chosen randomly, appeared green (CIE 0.295, 0.588) and the other
appeared yellow (CIE 0.444, 0.476). The luminance of each was
65 cd/m2. Importantly, every distracter in the solid-distracter con-
dition had 60.30% luminance contrast with the apparently gray
surround. The various solid distracters differed from each other
only in chromaticity, and/or how the luminance was distributed
across the distracters. Also, because the spatial frequency of the so-
lid distracters was 0 c.p.d., the solid distracters represented an
extension of the spatial-frequency manipulation in experiment
2B. All other aspects of the Method were identical to the 1-target
condition in experiment 2A.

2.6.2. Results and discussion
Data from the forty new naïve participants who completed

experiment 2D –solid versus striped distracters – are shown in
Fig. 8b. Visual inspection of the two leftmost distracter conditions
reveals the now familiar pattern. The laterality effect was non-sig-

Fig. 7. Data are shown from the 15 new naive participants who completed experiment 2C, on target–distracter orientation relationships in detection. The oblique and
cardinal-target conditions are shown in the left and right panels, respectively.
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nificant when distracters were absent (t(39) = 1.001, p = 0.323, n.s.,
partial g2 = 0.025), but significant bilateral superiority occurred
when Gabor distracters were present (t(39) = 4.239, p < 0.001, par-
tial g2 = 0.315).

An additional pattern emerges in Fig. 8b when scanning the
conditions to the right of the Gabor-distracter condition: Mean
detection (d0) increased monotonically while bilateral superiority
decreased monotonically. These trends occurred as the targets
and distracters became more dissimilar to each other.

The progression of target–distracter dissimilarity across the
conditions in experiment 2D may provide some insight into the re-
sults from the Gabor distracter and bulls-eye distracter conditions.
Overall detection was significantly lower with Gabor distracters
(mean d0 = 0.5784) than with bulls-eye distracters (mean
d0 = 0.8716) (t(39) = 6.216, p < 0.001, partial g2 = 0.498). Addition-
ally, although bilateral superiority was smaller for bulls-eye than
for Gabor distracters whether expressed as the ratio of or differ-
ence between bilateral and unilateral detection, bilateral superior-
ity was both significant and large for bulls-eye distracters
(t(39) = 4.307, p < 0.001, partial g2 = 0.322). Indeed, the partial g2

value for bilateral superiority with bulls-eye distracters (0.322)
was virtually identical to that with Gabor distracters (0.315). Recall
that the bulls-eye and Gabor distracters had identical fundamental
spatial frequencies but differed in how the luminance contrast was
concentrated across the orientation spectrum. The large bilateral
superiority in the bulls-eye condition therefore implies that the
bilateral superiority in detection depended more on target–dis-
tracter similarity in spatial frequency than on target–distracter
similarity in orientation. This implication from experiment 2D is
consistent with those of experiments 2B and 2C.

Target-distracter similarity in spatial frequency may also pro-
vide some insight into the results from the remaining distracter

conditions in experiment 2D (Fig. 8b). Overall detection in the
mixed-polarity (MP) condition (mean d0 = 0.9578) was significantly
lower than that in the all-white (AW) condition (mean d0 = 1.0842)
(t(39) = 3.812, p < 0.001, partial g2 = 0.271). Additionally, bilateral
superiority was statistically significant (albeit modest) in the MP
condition (t(39) = 2.367, p = 0.023, partial g2 = 0.126) but not in
the AW condition (t(39) = 1.581, p = 0.122, n.s., partial g2 = 0.060).
These differences might seem surprising given that the spatial fre-
quency of each distracter was 0 c.p.d. in both the MP and AW con-
ditions. However, if one considers the spatial distribution of
luminances across the two distracters on each trial, the spatial fre-
quency was higher in the MP condition than in the AW condition.
Consequently, the target-SF (1.286 c.p.d.) more closely matched
the distracter-SF in the MP condition than in the AW condition.
Also, bilateral superiority was non-significant and comparable in
the AW (t(39) = 1.581, p = 0.122, n.s., partial g2 = 0.060) and the
chromatic-distracter (t(39) = 1.108, p = 0.275, n.s., partial g2 =
0.030) conditions, which comprised distracters that were identical
to each other – but very different from the targets – in luminance
defined spatial frequency. In short, the trends across Fig. 8b indi-
cate that target–distracter similarity in spatial frequency was an
important stimulus feature for generating bilateral superiority on
the present detection task.

2.7. Experiment 2E: distracter displacement control

2.7.1. Method
Eighteen new naïve participants completed experiment 2E,

which was designed to control two factors that co-varied with
laterality in the preceding experiments. One previously co-varying
factor was the orientation of the target–distracter displacement:
the distracters in the preceding experiments were horizontally

Fig. 8. (a) Schematic of Non-Gabor distracters used in experiment 2D, bilateral condition. The actual stimulus parameters are detailed in the text. (b) Data are shown from the
40 new naive participants who completed experiment 2D, on target–distracter similarity in detection. The ‘‘striped” and ‘‘solid” distracter conditions are shown in the left and
right panels, respectively.
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displaced from bilateral targets, but vertically displaced from
unilateral targets. The other previously co-varying factor was the
distance from each distracter’s center to the vertical meridian;
3.6 deg for bilateral distracters versus 10.6 deg for unilateral
distracters (2 versus 9 deg, respectively, for each distracter’s near-
est point). The primary question to be addressed in experiment 2E,
therefore, was whether distracter-induced bilateral superiority
would occur after controlling both the orientation of the target–
distracter displacement and the distracters’ distance from the
vertical meridian.

To control these two previously co-varying factors, each partic-
ipant in experiment 2E completed two trial blocks. In one trial
block the distracters were collinear with the target positions, as
in the preceding experiments and as shown (again) in the first
and third panels of Fig. 9. The other trial block comprised distract-
ers in the control positions, which were simply new combinations
of the distracter positions from the collinear configurations. In the
bilateral control configuration (second panel of Fig. 9), the distract-
ers were vertically displaced from the cued target locations and
centered 10.6 deg from the vertical meridian. In the unilateral
control configuration (fourth panel of Fig. 9), the distracters were
horizontally displaced from the cued target locations and centered
3.6 deg from the vertical meridian. Half of the participants com-
pleted the collinear-configuration block first, and the remaining
participants completed the control-configuration block first. All
other aspects of the Method were identical to the 1-target condi-
tion in experiment 2A.

2.7.2. Results and discussion
Data from the 18 new naïve participants who completed exper-

iment 2E are shown in Fig. 10. Despite complete counter-balancing
across the collinear and control configurations (see Fig. 9), visual
inspection of the leftmost panel in Fig. 10 reveals the pattern seen
in all preceding experiments. Specifically, the laterality effect was
non-significant when distracters were absent (t(17) = 0.700, p =
0.493, n.s., partial g2 = 0.028), but significant bilateral superiority
occurred when distracters were present (t(17) = 2.640, p = 0.017,
partial g2 = 0.291). This indicates that significant distracter-in-
duced bilateral superiority emerges even after controlling (1) the
orientation of the target–distracter displacement and (2) the
distracters’ distance from the vertical meridian.

The center and left panels of Fig. 10 reveal information about
how the distracters impaired detection. In principle, the dis-
tracter-induced impairments in detection could reflect temporal
crowding (inappropriate integration), or surround suppression
(inhibition), or both. In the context of the present experiment, tem-
poral crowding would be evident to the extent that distracters
were mistaken for physically absent targets. Surround suppression
would be evident to the extent that the distracters reduced the
visibility of physically present targets. Importantly, these two phe-

nomena make diverging predictions in experiment 2E. Temporal
crowding predicts a distracter-induced increase in the false alarm
rate i.e., an increase in ‘yes’ responses on target-absent trials.
Contrarily, surround suppression predicts a distracter-induced
decrease in the hit rate i.e., a decrease in ‘yes’ responses on target-
present trials.

Visual inspection of the center panel in Fig. 10 reveals support
for temporal crowding. Specifically, distracters significantly in-
creased the false alarm rate in the bilateral condition (from 0.217
to 0.344; t(17) = 3.305, p = 0.004, partial g2 = 0.391), and in the
unilateral condition (from 0.225 to 0.410; t(17) = 3.629, p = 0.002
partial g2 = 0.437). Moreover, the bilateral (0.217) and unilateral
(0.225) false alarm rates were virtually identical when distracters
were absent (t(17) = 0.508, p = 0.618, n.s., partial g2 = 0.015), but
when distracters were present the false alarm rate was signifi-
cantly greater unilaterally (0.410) than bilaterally (0.344)
(t(17) = 2.653, p = 0.017, partial g2 = 0.437). Taken together, these
false-alarm data indicate that (1) the distracters induced temporal
crowding, and that (2) the temporal crowding effect was signifi-
cantly larger unilaterally than bilaterally. Because temporal crowd-
ing reflects a failure of attentional selection (Pelli et al., 2004), the
false alarm data in experiment 2E implicate a bilateral advantage
in attentional selection.

In contrast, visual inspection of the right panel in Fig. 10 reveals
that the hit rates fluctuated only modestly across conditions.
T-tests indicated that all of these fluctuations were non-significant.
This disconfirms the predictions from surround suppression.

In summary, experiment 2E generated three notable findings.
First, the distracter-induced bilateral superiority remained signifi-
cant even after controlling the orientation of the target–distracter
displacement and the distracters’ distance from the vertical merid-
ian. Second, the distracters induced significant increases in false
alarm rates but did not significantly alter hit rates – a finding that
implicates temporal crowding rather than surround suppression.
Third, the temporal crowding effect was significantly larger unilat-
erally than bilaterally, consistent with a bilateral advantage in
attentional selection.

3. General discussion

This study was conducted to explore bilateral (cross-hemifield)
versus unilateral (within-hemifield) differences on elementary
visual tasks. Each trial comprised a foveal component and a periph-
eral component. The foveal component required identifying a low
contrast letter embedded in noise. This ensured fixation and
rendered the subsequent peripheral component more difficult.
The peripheral component required either discriminating the ori-
entation of Gabor targets (experiment 1) or detecting them (exper-
iment 2). Hemifield capacity was tested by the presence or absence
of Gabor distracters positioned between the peripherally cued

Fig. 9. Distracter configurations for experiment 2E. In the collinear distracter configurations that were used in the preceding experiments, the bilateral distracters (first panel)
were horizontally displaced from the targets and relatively near (3.6 deg) to the vertical meridian; the unilateral distracters (third panel) were vertically displaced from the
targets and relatively far (10.6 deg) from the vertical meridian. These differences were completely counter-balanced in experiment 2E with the bilateral (second panel) and
unilateral (fourth panel) control configurations. Targets remained in the corners, as in all preceding experiments.
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Gabor target locations. A bilateral advantage emerged reliably on
each peripheral task – but only when the Gabor targets had to be
discriminated or detected to the exclusion of the distracters.

The consistency of the distracter-induced bilateral advantage is
readily seen in Table 1. The table summarizes the p values (center,
light gray columns) and effect sizes (right, dark gray columns) for
the twenty task and stimulus variations tested here – each shown
in a different row. Each column reflects the bilateral versus unilat-
eral comparison, either when distracters were absent (first and
third data columns) or present (second and fourth columns). With-
in every experiment, the bilateral advantage became larger (p val-
ues decreased; partial g2 values increased) when distracters were
added to the display. Notably, the distracters increased the magni-
tude of the bilateral superiority even in those conditions that
exhibited considerable bilateral superiority when distracters were
absent (experiment 1B, and experiment 2B low-SF target).

Visual inspection of Table 1 also reveals that the magnitude of
the distracter-induced bilateral superiority depended on some
elementary stimulus features more than others. As can be seen in
the rows with bold type, bilateral superiority was particularly en-
hanced (i.e., large partial g2 values) when distracters matched the
targets in fundamental spatial frequency. By contrast, a target–dis-

tracter match in orientation did not reliably enhance the magni-
tude of the distracter-induced bilateral superiority. For example,
bilateral superiority was slightly larger when the distracters were
randomly oriented than when the distracters matched the oblique
target orientations in experiment 2C. Similarly, in experiment 2D,
bulls-eye distracters generated a large bilateral superiority effect
despite the fact that their orientation profiles differed markedly
from those of the Gabor targets.

The relatively strong spatial-frequency dependence and weak
orientation dependence across the present detection experiments
can likely be attributed to the participants’ strategy. That is, given
our stimuli, the optimal detection strategy entailed looking for the
target’s spatial frequency regardless of the target’s orientation.
Interestingly, the relatively strong spatial-frequency dependence
and weak orientation dependence indicates that the distracter-in-
duced bilateral superiority did not depend on target–distracter
similarity per se. Instead, the distracter-induced bilateral superior-
ity depended on whether the targets and distracters were similar
on a feature that was task-relevant.

That the magnitude of the distracter-induced bilateral superior-
ity was more strongly associated with an elementary task-relevant
feature (spatial frequency) than with an equally elementary

Table 1
Summary of p values (light gray columns, center) and partial g2 values (dark gray columns, right) associated with the laterality effects in all experiments. Relative to the
distracter-absent conditions (first and third data columns), bilateral superiority increased in the distracter-present conditions (second and fourth data columns), particularly
when the distracters and targets were identical in fundamental spatial frequency (bolded rows).

Fig. 10. Data are shown from the 18 new naive participants who completed experiment 2E, on target–distracter offset relationships. Detection (d0) results are shown in the
left panel, false alarms and hits are shown in the center and right panels, respectively.
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task-irrelevant feature (orientation) poses a challenge to purely
stimulus-driven explanations. That is, it is not obvious why the
distracters would overload a spatial frequency channel but not
an orientation channel, particularly because many individual
neurons in the early visual pathway are tuned to both spatial fre-
quency and orientation. By contrast, the fact that the distracter-in-
duced bilateral superiority aligned well with the optimal
participant strategy – i.e., selecting the target’s spatial frequency
regardless of the target’s orientation – is consistent with the influ-
ence of attentional selection.

Two other observations provide evidence that attentional selec-
tion played an important role in the present results. First the data
analysis in detection experiment 2E revealed that distracters signif-
icantly increased the false alarm rate without significantly decreas-
ing the hit rate. That finding is contrary to an explanation based on
surround suppression, but consistent with the inappropriate inte-
gration that is characteristic of temporal crowding – which arises
when briefly flashed displays overload attentional selection (Pelli
et al., 2004). Second, discrimination experiment 1B demonstrated
that bilateral superiority did not arise simply whenever discrimina-
bility was relatively low. Recall that when discriminability on dis-
tracter-absent trials was reduced – via shorter stimulus durations
– to match discriminability on distracter-present trials, bilateral
superiority was not observed. In fact, unilateral discriminability at
50 ms without distracters was three-fold greater than that at
183 ms with distracters. This shows how vulnerable unilateral ori-
entation discrimination is to the additional requirement of select-
ing targets to the exclusion of the distracters – an attentional demand.

Intriguingly, some earlier studies have revealed instances of uni-
lateral superiority. For example, Pillow and Rubin (2002) found that
illusory-contour completion was significantly better when the rel-
evant inducers were on the same side (versus opposite sides) of
the vertical meridian. Preliminary reports on detecting repetitions
in physically matched stimuli (Butcher & Cavanagh, 2004) and
detecting matched motion paths (Butcher & Cavanagh, 2005) have
similarly indicated unilateral superiority. Given those findings, it
may seem surprising that there were no unilateral superiority
effects on the present orientation discrimination task, which also
required a form of stimulus matching (in orientation). Although fur-
ther studies are necessary to elucidate the conditions for generating
unilateral superiority, Pillow and Rubin (2002) suggest that unilat-
eral superiority is more likely to occur on tasks that require percep-
tual grouping. Indeed, they found that the unilateral superiority
effect in illusory-contour completion – which requires perceptual
grouping – can be eliminated when the inducing disks are replaced
with simple line segments that do not group perceptually. Consis-
tent with Pillow and Rubin’s (2002) explanation, the Gabor targets
in the present orientation discrimination experiments generated
neither perceptual grouping nor unilateral superiority.

Pillow and Rubin’s (2002) finding of unilateral superiority on
tasks that require perceptual grouping may provide insight about
the origin of the distracter induced bilateral superiority observed
here. Ironically, these seemingly incongruent effects may reflect
opposite sides of the same coin – namely, enhanced unilateral inte-
gration. Pillow and Rubin (2002) suggest that spatial integration is
more efficient unilaterally than bilaterally because neural activity
that cascades across neighboring cortical units does not have to
traverse the corpus callosum under unilateral stimulation. To the
extent that spatial integration is more efficient within than be-
tween lateral hemifields, one would expect unilateral superiority
on grouping tasks and unilateral inferiority (excessive false alarms)
on tasks requiring distracter exclusion. In this way, a single mech-
anism – enhanced unilateral integration – might generate either
unilateral superiority or unilateral inferiority, depending on
whether the task demands grouping or exclusion, respectively.

It is noteworthy that the lateral hemifield effects reported here
and by Pillow and Rubin (2002) differ with respect to attention. In
a control experiment, Pillow and Rubin (2002) demonstrated that
the unilateral superiority on their illusory-contour completion task
did not depend on attention. By contrast, Table 1 of the present study
demonstrates that the bilateral superiority reported here was stron-
gest and reliable only when participants had to exclude distracters
containing task-relevant features – an attentional demand.

4. Conclusion

In the present experiments, the elementary visual tasks of dis-
criminating and detecting Gabor targets did not exhibit reliable lat-
eral hemifield effects in the absence of distracters. By contrast,
reliable bilateral (cross-hemifield) advantages emerged when Gabor
targets had to be discriminated or detected to the exclusion of
distracters – an attentional requirement. This finding extends the
bilateral attentional advantages that had been previously reported
for higher-level tasks (Alvarez & Cavanagh, 2005; Awh & Pashler,
2000) to the most elementary visual tasks. Indeed, it now seems that
a wide range of visual tasks – motion tracking, letter identification,
Gabor orientation discrimination, Gabor detection – can be used to
demonstrate a bilateral advantage in attentional selection.
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